Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 936
Filtrar
1.
Science ; 382(6667): eadf9941, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824646

RESUMO

The thalamus plays a central coordinating role in the brain. Thalamic neurons are organized into spatially distinct nuclei, but the molecular architecture of thalamic development is poorly understood, especially in humans. To begin to delineate the molecular trajectories of cell fate specification and organization in the developing human thalamus, we used single-cell and multiplexed spatial transcriptomics. We show that molecularly defined thalamic neurons differentiate in the second trimester of human development and that these neurons organize into spatially and molecularly distinct nuclei. We identified major subtypes of glutamatergic neuron subtypes that are differentially enriched in anatomically distinct nuclei and six subtypes of γ-aminobutyric acid-mediated (GABAergic) neurons that are shared and distinct across thalamic nuclei.


Assuntos
Neurônios GABAérgicos , Neurogênese , Tálamo , Humanos , Núcleos Talâmicos/citologia , Núcleos Talâmicos/crescimento & desenvolvimento , Tálamo/citologia , Tálamo/crescimento & desenvolvimento , Neurônios GABAérgicos/fisiologia , Feminino , Gravidez , Análise de Célula Única , Segundo Trimestre da Gravidez
2.
Neuropharmacology ; 232: 109527, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37011784

RESUMO

Parvalbumin-expressing dorsal striatal fast-spiking interneurons, comprising ∼1% of the total dorsal striatal neuronal population, are necessary for the expression of compulsive-like ethanol consumption mice. Fast-spiking interneurons are driven to fire by glutamatergic inputs derived primarily from the cortex. However, these neurons also receive substantial GABAergic input from two sources: the globus pallidus and the reticular nucleus of the thalamus. How ethanol modulates inhibitory input onto fast-spiking neurons is unclear and, more broadly, alcohol effects on GABAergic synaptic transmission onto GABAergic interneurons are understudied. Examining this, we found that acute bath application of ethanol (50 mM) potentiated GABAergic transmission from both the globus pallidus and the reticular nucleus of the thalamus onto fast-spiking interneurons in mouse of both sexes. This ethanol-induced potentiation required postsynaptic calcium and was not accompanied by a sustained change in presynaptic GABA release probability. Examining whether this ethanol effect persisted following chronic intermittent ethanol exposure, we found attenuated acute-ethanol potentiation of GABAergic transmission from both the globus pallidus and the reticular nucleus of the thalamus onto striatal fast-spiking interneurons. These data underscore the impact of ethanol on GABAergic signaling in the dorsal striatum and support the notion that ethanol may disinhibit the dorsolateral striatum.


Assuntos
Corpo Estriado , Etanol , Neurônios GABAérgicos , Interneurônios , Animais , Feminino , Masculino , Camundongos , Corpo Estriado/citologia , Corpo Estriado/efeitos dos fármacos , Etanol/administração & dosagem , Etanol/farmacologia , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Globo Pálido/citologia , Globo Pálido/efeitos dos fármacos , Interneurônios/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Núcleos Talâmicos/citologia , Núcleos Talâmicos/efeitos dos fármacos , Núcleos Talâmicos/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Cálcio/metabolismo
3.
Nature ; 608(7923): 578-585, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35922512

RESUMO

Hierarchical and parallel networks are fundamental structures of the mammalian brain1-8. During development, lower- and higher-order thalamic nuclei and many cortical areas in the visual system form interareal connections and build hierarchical dorsal and ventral streams9-13. One hypothesis for the development of visual network wiring involves a sequential strategy wherein neural connections are sequentially formed alongside hierarchical structures from lower to higher areas14-17. However, this sequential strategy would be inefficient for building the entire visual network comprising numerous interareal connections. We show that neural pathways from the mouse retina to primary visual cortex (V1) or dorsal/ventral higher visual areas (HVAs) through lower- or higher-order thalamic nuclei form as parallel modules before corticocortical connections. Subsequently, corticocortical connections among V1 and HVAs emerge to combine these modules. Retina-derived activity propagating the initial parallel modules is necessary to establish retinotopic inter-module connections. Thus, the visual network develops in a modular manner involving initial establishment of parallel modules and their subsequent concatenation. Findings in this study raise the possibility that parallel modules from higher-order thalamic nuclei to HVAs act as templates for cortical ventral and dorsal streams and suggest that the brain has an efficient strategy for the development of a hierarchical network comprising numerous areas.


Assuntos
Córtex Visual , Vias Visuais , Animais , Mapeamento Encefálico , Camundongos , Modelos Neurológicos , Retina/citologia , Retina/fisiologia , Núcleos Talâmicos/citologia , Núcleos Talâmicos/fisiologia , Córtex Visual/citologia , Córtex Visual/fisiologia , Vias Visuais/citologia , Vias Visuais/fisiologia
4.
Nature ; 608(7923): 586-592, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35859170

RESUMO

The ability to associate temporally segregated information and assign positive or negative valence to environmental cues is paramount for survival. Studies have shown that different projections from the basolateral amygdala (BLA) are potentiated following reward or punishment learning1-7. However, we do not yet understand how valence-specific information is routed to the BLA neurons with the appropriate downstream projections, nor do we understand how to reconcile the sub-second timescales of synaptic plasticity8-11 with the longer timescales separating the predictive cues from their outcomes. Here we demonstrate that neurotensin (NT)-expressing neurons in the paraventricular nucleus of the thalamus (PVT) projecting to the BLA (PVT-BLA:NT) mediate valence assignment by exerting NT concentration-dependent modulation in BLA during associative learning. We found that optogenetic activation of the PVT-BLA:NT projection promotes reward learning, whereas PVT-BLA projection-specific knockout of the NT gene (Nts) augments punishment learning. Using genetically encoded calcium and NT sensors, we further revealed that both calcium dynamics within the PVT-BLA:NT projection and NT concentrations in the BLA are enhanced after reward learning and reduced after punishment learning. Finally, we showed that CRISPR-mediated knockout of the Nts gene in the PVT-BLA pathway blunts BLA neural dynamics and attenuates the preference for active behavioural strategies to reward and punishment predictive cues. In sum, we have identified NT as a neuropeptide that signals valence in the BLA, and showed that NT is a critical neuromodulator that orchestrates positive and negative valence assignment in amygdala neurons by extending valence-specific plasticity to behaviourally relevant timescales.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Aprendizagem , Vias Neurais , Neurotensina , Punição , Recompensa , Complexo Nuclear Basolateral da Amígdala/citologia , Complexo Nuclear Basolateral da Amígdala/fisiologia , Cálcio/metabolismo , Sinais (Psicologia) , Plasticidade Neuronal , Neurotensina/metabolismo , Optogenética , Núcleos Talâmicos/citologia , Núcleos Talâmicos/fisiologia
5.
Nat Commun ; 12(1): 4646, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330901

RESUMO

Microglia are important for brain homeostasis and immunity, but their role in regulating vigilance remains unclear. We employed genetic, physiological, and metabolomic methods to examine microglial involvement in the regulation of wakefulness and sleep. Microglial depletion decreased stable nighttime wakefulness in mice by increasing transitions between wakefulness and non-rapid eye movement (NREM) sleep. Metabolomic analysis revealed that the sleep-wake behavior closely correlated with diurnal variation of the brain ceramide, which disappeared in microglia-depleted mice. Ceramide preferentially influenced microglia in the thalamic reticular nucleus (TRN), and local depletion of TRN microglia produced similar impaired wakefulness. Chemogenetic manipulations of anterior TRN neurons showed that they regulated transitions between wakefulness and NREM sleep. Their firing capacity was suppressed by both microglial depletion and added ceramide. In microglia-depleted mice, activating anterior TRN neurons or inhibiting ceramide production both restored stable wakefulness. These findings demonstrate that microglia can modulate stable wakefulness through anterior TRN neurons via ceramide signaling.


Assuntos
Potenciais de Ação/fisiologia , Neurônios GABAérgicos/fisiologia , Microglia/fisiologia , Sono/fisiologia , Núcleos Talâmicos/fisiologia , Vigília/fisiologia , Algoritmos , Animais , Eletroencefalografia/métodos , Eletromiografia/métodos , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Modelos Neurológicos , Núcleos Talâmicos/citologia
6.
J Comp Neurol ; 529(1): 87-110, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32337719

RESUMO

The nucleus prethalamicus (PTh) receives fibers from the optic tectum and then projects to the dorsal telencephalon in the yellowfin goby Acanthogobius flavimanus. However, it remained unclear whether the PTh is a visual relay nucleus, because the optic tectum receives not only visual but also other sensory modalities. Furthermore, precise telencephalic regions receiving prethalamic input remained unknown in the goby. We therefore investigated the full set of afferent and efferent connections of the PTh by direct tracer injections into the nucleus. Injections into the PTh labeled cells in the optic tectum, ventromedial thalamic nucleus, central and medial parts of the dorsal telencephalon, and caudal lobe of the cerebellum. We found that the somata of most tecto-prethalamic neurons are present in the stratum periventriculare. Their dendrites ascend to reach the major retinorecipient layers of the tectum. The PTh is composed of two subnuclei (medial and lateral) and topographic organization was appreciated only for tectal projections to the lateral subnucleus (PTh-l), which also receives sparse retinal projections. In contrast, the medial subnucleus receives fibers only from the medial tectum. We found that the PTh projects to nine subregions in the dorsal telencephalon and four in the ventral telencephalon. Furthermore, cerebellar injections revealed that cerebello-prethalamic fibers cross the midline twice to innervate the PTh-l on both sides. The present study is the first detailed report on the full set of the connections of PTh, which suggests that the PTh relays visual information from the optic tectum to the telencephalon.


Assuntos
Vias Aferentes/anatomia & histologia , Vias Eferentes/anatomia & histologia , Colículos Superiores/anatomia & histologia , Telencéfalo/anatomia & histologia , Núcleos Talâmicos/anatomia & histologia , Vias Visuais/anatomia & histologia , Vias Aferentes/citologia , Animais , Vias Eferentes/citologia , Feminino , Peixes , Masculino , Colículos Superiores/citologia , Telencéfalo/citologia , Núcleos Talâmicos/citologia , Vias Visuais/citologia
7.
PLoS One ; 15(9): e0239125, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32991590

RESUMO

A mesoscale network model is proposed for the development of spike and wave discharges (SWDs) in the cortico-thalamo-cortical (C-T-C) circuit. It is based on experimental findings in two genetic models of childhood absence epilepsy-rats of WAG/Rij and GAERS strains. The model is organized hierarchically into two levels (brain structures and individual neurons) and composed of compartments for representation of somatosensory cortex, reticular and ventroposteriomedial thalamic nuclei. The cortex and the two thalamic compartments contain excitatory and inhibitory connections between four populations of neurons. Two connected subnetworks both including relevant parts of a C-T-C network responsible for SWD generation are modelled: a smaller subnetwork for the focal area in which the SWD generation can take place, and a larger subnetwork for surrounding areas which can be only passively involved into SWDs, but which is mostly responsible for normal brain activity. This assumption allows modeling of both normal and SWD activity as a dynamical system (no noise is necessary), providing reproducibility of results and allowing future analysis by means of theory of dynamical system theories. The model is able to reproduce most time-frequency changes in EEG activity accompanying the transition from normal to epileptiform activity and back. Three different mechanisms of SWD initiation reported previously in experimental studies were successfully reproduced in the model. The model incorporates also a separate mechanism for the maintenance of SWDs based on coupling analysis from experimental data. Finally, the model reproduces the possibility to stop ongoing SWDs with high frequency electrical stimulation, as described in the literature.


Assuntos
Epilepsia Tipo Ausência/fisiopatologia , Modelos Neurológicos , Neurônios/fisiologia , Córtex Somatossensorial/fisiopatologia , Núcleos Talâmicos/fisiopatologia , Animais , Conjuntos de Dados como Assunto , Modelos Animais de Doenças , Eletroencefalografia , Epilepsia Tipo Ausência/genética , Epilepsia Tipo Ausência/terapia , Masculino , Vias Neurais/fisiopatologia , Ratos , Ratos Transgênicos , Córtex Somatossensorial/citologia , Núcleos Talâmicos/citologia , Estimulação Transcraniana por Corrente Contínua/métodos
8.
Nature ; 583(7818): 813-818, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32699410

RESUMO

Most sensory information destined for the neocortex is relayed through the thalamus, where considerable transformation occurs1,2. One means of transformation involves interactions between excitatory thalamocortical neurons that carry data to the cortex and inhibitory neurons of the thalamic reticular nucleus (TRN) that regulate the flow of those data3-6. Although the importance of the TRN has long been recognised7-9, understanding of its cell types, their organization and their functional properties has lagged behind that of the thalamocortical systems they control. Here we address this by investigating the somatosensory and visual circuits of the TRN in mice. In the somatosensory TRN we observed two groups of genetically defined neurons that are topographically segregated and physiologically distinct, and that connect reciprocally with independent thalamocortical nuclei through dynamically divergent synapses. Calbindin-expressing cells-located in the central core-connect with the ventral posterior nucleus, the primary somatosensory thalamocortical relay. By contrast, somatostatin-expressing cells-which reside along the surrounding edges of the TRN-synapse with the posterior medial thalamic nucleus, a higher-order structure that carries both top-down and bottom-up information10-12. The two TRN cell groups process their inputs in pathway-specific ways. Synapses from the ventral posterior nucleus to central TRN cells transmit rapid excitatory currents that depress deeply during repetitive activity, driving phasic spike output. Synapses from the posterior medial thalamic nucleus to edge TRN cells evoke slower, less depressing excitatory currents that drive more persistent spiking. Differences in the intrinsic physiology of TRN cell types, including state-dependent bursting, contribute to these output dynamics. The processing specializations of these two somatosensory TRN subcircuits therefore appear to be tuned to the signals they carry-a primary central subcircuit tuned to discrete sensory events, and a higher-order edge subcircuit tuned to temporally distributed signals integrated from multiple sources. The structure and function of visual TRN subcircuits closely resemble those of the somatosensory TRN. These results provide insights into how subnetworks of TRN neurons may differentially process distinct classes of thalamic information.


Assuntos
Vias Neurais , Núcleos Talâmicos/citologia , Núcleos Talâmicos/fisiologia , Potenciais de Ação , Animais , Calbindinas/metabolismo , Potenciais Somatossensoriais Evocados , Potenciais Evocados Visuais , Feminino , Cinética , Masculino , Camundongos , Inibição Neural , Neurônios/metabolismo , Somatostatina/metabolismo , Sinapses/metabolismo
9.
Nature ; 583(7818): 819-824, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32699411

RESUMO

The thalamic reticular nucleus (TRN), the major source of thalamic inhibition, regulates thalamocortical interactions that are critical for sensory processing, attention and cognition1-5. TRN dysfunction has been linked to sensory abnormality, attention deficit and sleep disturbance across multiple neurodevelopmental disorders6-9. However, little is known about the organizational principles that underlie its divergent functions. Here we performed an integrative study linking single-cell molecular and electrophysiological features of the mouse TRN to connectivity and systems-level function. We found that cellular heterogeneity in the TRN is characterized by a transcriptomic gradient of two negatively correlated gene-expression profiles, each containing hundreds of genes. Neurons in the extremes of this transcriptomic gradient express mutually exclusive markers, exhibit core or shell-like anatomical structure and have distinct electrophysiological properties. The two TRN subpopulations make differential connections with the functionally distinct first-order and higher-order thalamic nuclei to form molecularly defined TRN-thalamus subnetworks. Selective perturbation of the two subnetworks in vivo revealed their differential role in regulating sleep. In sum, our study provides a comprehensive atlas of TRN neurons at single-cell resolution and links molecularly defined subnetworks to the functional organization of thalamocortical circuits.


Assuntos
Redes Reguladoras de Genes , Núcleos Talâmicos/citologia , Núcleos Talâmicos/metabolismo , Animais , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica , Hibridização in Situ Fluorescente , Metaloendopeptidases/metabolismo , Camundongos , Vias Neurais , Neurônios/metabolismo , Osteopontina/metabolismo , Técnicas de Patch-Clamp , RNA-Seq , Análise de Célula Única , Sono/genética , Sono/fisiologia , Núcleos Talâmicos/fisiologia , Transcriptoma
10.
Behav Brain Res ; 390: 112690, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32422237

RESUMO

Chronic neuropathic pain resulting from damage to the central or peripheral nervous system is a prevalent and debilitating condition affecting 7-18% of the population. Symptoms include spontaneous pain, dysesthesia, paresthesia, allodynia and hyperalgesia. The reported sensory symptoms are comorbid with behavioral disabilities such as insomnia and depression. Neonatal anoxia, a worldwide clinical problem in both neonatal and pediatric care, causes long-term deficits similar to those mentioned. The effect of neonatal anoxia on the maturation of nociceptive pathways has been sparsely explored. To address this question and to determine whether the effects differ depending on sex, a neonatal anoxia model was used in which Wistar rat pups approximately 30 h old and of both sexes were placed in a chamber with 100% nitrogen flow at 3.5 L/min for 25 min at 36 °C ± 1 °C. After recovery, the animals (n = 16 in each group (anoxia and control; males and females)) were returned to their mothers. The control animals were subjected to the same conditions, but no gas exchange was performed. At postnatal day (PND) 18 and PND43, the animals were subjected to pain testing by stimulation of the hind paws with von Frey monofilaments. The results revealed a significant reduction (approximately 50%) in the pain threshold in the animals exposed to anoxia in comparison with their respective controls. The pain threshold increased between PND18 and PND43. A sex-based difference was observed in the male control group at PND18. Histological analysis revealed decreased cell numbers in the ventral posterolateral thalamic nucleus (VPL), with sex differences. These results demonstrate the long-lasting negative impact of neonatal anoxia and indicate the relevance of performing suitable approaches taking in consideration the possible sex differences.


Assuntos
Hiperalgesia/fisiopatologia , Hipóxia/complicações , Nociceptividade/fisiologia , Dor Nociceptiva/fisiopatologia , Limiar da Dor/fisiologia , Núcleos Talâmicos/patologia , Fatores Etários , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Feminino , Masculino , Gravidez , Ratos , Caracteres Sexuais , Núcleos Talâmicos/citologia
11.
Brain Struct Funct ; 225(5): 1643-1667, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32458050

RESUMO

Recent studies of the neurobiology of the dorsal frontal cortex (FC) of the ferret have illuminated its key role in the attention network, top-down cognitive control of sensory processing, and goal directed behavior. To elucidate the neuroanatomical regions of the dorsal FC, and delineate the boundary between premotor cortex (PMC) and dorsal prefrontal cortex (dPFC), we placed retrograde tracers in adult ferret dorsal FC anterior to primary motor cortex and analyzed thalamo-cortical connectivity. Cyto- and myeloarchitectural differences across dorsal FC and the distinctive projection patterns from thalamic nuclei, especially from the subnuclei of the medial dorsal (MD) nucleus and the ventral thalamic nuclear group, make it possible to clearly differentiate three separate dorsal FC fields anterior to primary motor cortex: polar dPFC (dPFCpol), dPFC, and PMC. Based on the thalamic connectivity, there is a striking similarity of the ferret's dorsal FC fields with other species. This possible homology opens up new questions for future comparative neuroanatomical and functional studies.


Assuntos
Córtex Motor/citologia , Neurônios/citologia , Córtex Pré-Frontal/citologia , Núcleos Talâmicos/citologia , Animais , Feminino , Furões , Masculino , Vias Neurais/citologia , Técnicas de Rastreamento Neuroanatômico
12.
Brain ; 143(1): 161-174, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31800012

RESUMO

Inborn errors of CACNA1A-encoded P/Q-type calcium channels impair synaptic transmission, producing early and lifelong neurological deficits, including childhood absence epilepsy, ataxia and dystonia. Whether these impairments owe their pathologies to defective channel function during the critical period for thalamic network stabilization in immature brain remains unclear. Here we show that mice with tamoxifen-induced adult-onset ablation of P/Q channel alpha subunit (iKOp/q) display identical patterns of dysfunction, replicating the inborn loss-of-function phenotypes and, therefore demonstrate that these neurological defects do not rely upon developmental abnormality. Unexpectedly, unlike the inborn model, the adult-onset pattern of excitability changes believed to be pathogenic within the thalamic network is non-canonical. Specifically, adult ablation of P/Q channels does not promote Cacna1g-mediated burst firing or T-type calcium current (IT) in the thalamocortical relay neurons; however, burst firing in thalamocortical relay neurons remains essential as iKOp/q mice generated on a Cacna1g deleted background show substantially diminished seizure generation. Moreover, in thalamic reticular nucleus neurons, burst firing is impaired accompanied by attenuated IT. Interestingly, inborn deletion of thalamic reticular nucleus-enriched, human childhood absence epilepsy-linked gene Cacna1h in iKOp/q mice reduces thalamic reticular nucleus burst firing and promotes rather than reduces seizure, indicating an epileptogenic role for loss-of-function Cacna1h gene variants reported in human childhood absence epilepsy cases. Together, our results demonstrate that P/Q channels remain critical for maintaining normal thalamocortical oscillations and motor control in the adult brain, and suggest that the developmental plasticity of membrane currents regulating pathological rhythmicity is both degenerate and age-dependent.


Assuntos
Ataxia/genética , Canais de Cálcio Tipo N/genética , Córtex Cerebral/metabolismo , Epilepsia Tipo Ausência/genética , Neurônios/metabolismo , Tálamo/metabolismo , Potenciais de Ação , Fatores Etários , Animais , Ataxia/metabolismo , Ataxia/fisiopatologia , Canais de Cálcio Tipo T/genética , Canais de Cálcio Tipo T/metabolismo , Córtex Cerebral/fisiopatologia , Modelos Animais de Doenças , Epilepsia Tipo Ausência/metabolismo , Epilepsia Tipo Ausência/fisiopatologia , Potenciais Pós-Sinápticos Excitadores/genética , Potenciais Pós-Sinápticos Inibidores/genética , Potenciais da Membrana/genética , Camundongos , Camundongos Knockout , Técnicas de Patch-Clamp , Núcleos Talâmicos/citologia , Tálamo/fisiopatologia
13.
Neuron ; 104(3): 488-500.e11, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31648899

RESUMO

Autism spectrum disorder (ASD) is associated with noise hypersensitivity, the suboptimal extraction of meaningful signals in noisy environments. Because sensory filtering can involve distinct automatic and executive circuit mechanisms, however, developing circuit-specific therapeutic strategies for ASD noise hypersensitivity can be challenging. Here, we find that both of these processes are individually perturbed in one monogenic form of ASD, Ptchd1 deletion. Although Ptchd1 is preferentially expressed in the thalamic reticular nucleus during development, pharmacological rescue of thalamic perturbations in knockout (KO) mice only normalized automatic sensory filtering. By discovering a separate prefrontal perturbation in these animals and adopting a combinatorial pharmacological approach that also rescued its associated goal-directed noise filtering deficit, we achieved full normalization of noise hypersensitivity in this model. Overall, our work highlights the importance of identifying large-scale functional circuit architectures and utilizing them as access points for behavioral disease correction.


Assuntos
Transtornos da Percepção Auditiva/fisiopatologia , Transtorno do Espectro Autista/fisiopatologia , Ruído , Córtex Pré-Frontal/fisiopatologia , Filtro Sensorial/fisiologia , Núcleos Talâmicos/fisiopatologia , Animais , Transtorno do Espectro Autista/genética , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Função Executiva/fisiologia , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Vias Neurais , Neurônios/fisiologia , Prosencéfalo , Razão Sinal-Ruído , Núcleos Talâmicos/citologia
14.
Cell Rep ; 28(3): 605-615.e4, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31315041

RESUMO

Many forms of behavior require selective amplification of neuronal representations of relevant environmental signals. Emotional learning enhances sensory responses in the sensory cortex, yet the underlying circuits remain poorly understood. We identify a pathway between the basolateral amygdala (BLA), an emotional learning center in the mouse brain, and the inhibitory reticular nucleus of the thalamus (TRN). Optogenetic activation of BLA suppressed spontaneous, but not tone-evoked, activity in the auditory cortex (AC), amplifying tone-evoked responses. Viral tracing identified BLA projections terminating at TRN. Optogenetic activation of amygdala-TRN projections further amplified tone-evoked responses in the auditory thalamus and cortex. The results are explained by a computational model of the thalamocortical circuitry, in which activation of TRN by BLA primes thalamocortical neurons to relay relevant sensory input. This circuit mechanism shines a neural spotlight on behaviorally relevant signals and provides a potential target for the treatment of neuropsychological disorders.


Assuntos
Tonsila do Cerebelo/fisiologia , Potenciais Evocados Auditivos , Núcleos Talâmicos/fisiologia , Tonsila do Cerebelo/citologia , Animais , Córtex Auditivo/citologia , Córtex Auditivo/fisiologia , Percepção Auditiva , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleos Talâmicos/citologia
15.
Eur J Neurosci ; 50(4): 2683-2693, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30803080

RESUMO

Orexins/hypocretins are hypothalamic neuropeptides that have a variety of functions, including maintenance of arousal, control over the sleep/wake cycle, reward and feeding. Accumulating evidence links orexins to the time-keeping system with a documented action in the master clock-the suprachiasmatic nucleus. The intergeniculate leaflet (IGL) is a thalamic structure with the well-known function of collecting photic and non-photic cues to adjust the rhythm of the suprachiasmatic nucleus to changing environmental conditions. The IGL consists of GABAergic neurons that are intrinsically active, even in slice preparations. Our previous studies revealed the excitatory postsynaptic effects of orexins on single IGL neurons, even though the ionic mechanism underlying this effect remained elusive. Therefore, in this study, we used patch clamp electrophysiology to identify the ions and distinct ion channels responsible for the observed depolarisations. The major finding of this article is that the orexin A-evoked depolarisation of IGL neurons depends on non-selective cation channels, implicating the orexinergic tone in establishing the basal firing rate in these cells. The data presented here strengthen the mutual connections between the time-keeping and orexinergic systems.


Assuntos
Corpos Geniculados/efeitos dos fármacos , Canais Iônicos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Orexinas/farmacologia , Núcleos Talâmicos/efeitos dos fármacos , Animais , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Corpos Geniculados/citologia , Masculino , Técnicas de Patch-Clamp , Potássio/fisiologia , Ratos , Ratos Wistar , Sódio/fisiologia , Núcleo Supraquiasmático/efeitos dos fármacos , Núcleos Talâmicos/citologia , Ácido gama-Aminobutírico/fisiologia
16.
J Comp Neurol ; 527(3): 535-545, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29315552

RESUMO

The dorsal lateral geniculate nucleus receives projections from visuotopically organized subcortical nuclei, in addition to inputs from the retina, visual cortices, and the thalamic reticular nucleus. Here, we study subcortical projections to the geniculate from the superior colliculus (SC) and parabigeminal nucleus (PBG) in the midbrain, and the nucleus of the optic tract (NOT) in the pretectum of marmosets. Marmosets are New World diurnal foveate monkeys, and are an increasingly popular model for studying the primate visual system. Furthermore, the koniocellular geniculate layers in marmosets, unlike those in the geniculate of commonly studied diurnal Old World monkeys, are well differentiated from the parvocellular and magnocellular layers. Thus, in the present study, we have made small iontophoretic injections of the retrograde tracer microruby, targeted to the koniocellular layers in the geniculates of four marmosets. We found direct projections from the ipsilateral SC, PBG, and NOT to the koniocellular geniculate layers. The distribution of retrogradely labeled cells in the superficial, visual layers of SC is consistent with the idea that projections from the SC to the koniocellular layers are visuotopically organized. A little over 20 years ago, Vivien Casagrande () introduced the idea that koniocellular geniculate layers (rather than the parvocellular and magnocellular layers) are principal targets of visuotopically organized subcortical nuclei. Our results add to subsequent evidence assembled by Casagrande and others in favor of this hypothesis.


Assuntos
Corpos Geniculados/fisiologia , Colículos Superiores/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Animais , Callithrix , Feminino , Corpos Geniculados/citologia , Masculino , Trato Óptico/citologia , Trato Óptico/fisiologia , Colículos Superiores/citologia , Núcleos Talâmicos/citologia , Núcleos Talâmicos/fisiologia , Córtex Visual/citologia , Vias Visuais/citologia
17.
J Neurophysiol ; 119(6): 2358-2372, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29561202

RESUMO

Slow repetitive burst firing by hyperpolarized thalamocortical (TC) neurons correlates with global slow rhythms (<4 Hz), which are the physiological oscillations during non-rapid eye movement sleep or pathological oscillations during idiopathic epilepsy. The pacemaker activity of TC neurons depends on the expression of several subthreshold conductances, which are modulated in a behaviorally dependent manner. Here we show that upregulation of the small and neglected inward rectifier potassium current IKir induces repetitive burst firing at slow and delta frequency bands. We demonstrate this in mouse TC neurons in brain slices by manipulating the Kir maximum conductance with dynamic clamp. We also performed a thorough theoretical analysis that explains how the unique properties of IKir enable this current to induce slow periodic bursting in TC neurons. We describe a new ionic mechanism based on the voltage- and time-dependent interaction of IKir and hyperpolarization-activated cationic current Ih that endows TC neurons with the ability to oscillate spontaneously at very low frequencies, even below 0.5 Hz. Bifurcation analysis of conductance-based models of increasing complexity demonstrates that IKir induces bistability of the membrane potential at the same time that it induces sustained oscillations in combination with Ih and increases the robustness of low threshold-activated calcium current IT-mediated oscillations. NEW & NOTEWORTHY The strong inwardly rectifying potassium current IKir of thalamocortical neurons displays a region of negative slope conductance in the current-voltage relationship that generates potassium currents activated by hyperpolarization. Bifurcation analysis shows that IKir induces bistability of the membrane potential; generates sustained subthreshold oscillations by interacting with the hyperpolarization-activated cationic current Ih; and increases the robustness of oscillations mediated by the low threshold-activated calcium current IT. Upregulation of IKir in thalamocortical neurons induces repetitive burst firing at slow and delta frequency bands (<4 Hz).


Assuntos
Relógios Biológicos , Neurônios/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Núcleos Talâmicos/fisiologia , Animais , Ritmo Delta , Potenciais da Membrana , Camundongos , Neurônios/metabolismo , Núcleos Talâmicos/citologia
18.
Brain Struct Funct ; 223(5): 2499-2514, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29520482

RESUMO

Leptin is an adipose-derived hormone that controls appetite and energy expenditure. Leptin receptors are expressed on extra-hypothalamic ventrobasal (VB) and reticular thalamic (RTN) nuclei from embryonic stages. Here, we studied the effects of pressure-puff, local application of leptin on both synaptic transmission and action potential properties of thalamic neurons in thalamocortical slices. We used whole-cell patch-clamp recordings of thalamocortical VB neurons from wild-type (WT) and leptin-deficient obese (ob/ob) mice. We observed differences in VB neurons action potentials and synaptic currents kinetics when comparing WT vs. ob/ob. Leptin reduced GABA release onto VB neurons throughout the activation of a JAK2-dependent pathway, without affecting excitatory glutamate transmission. We observed a rapid and reversible reduction by leptin of the number of action potentials of VB neurons via the activation of large conductance Ca2+-dependent potassium channels. These leptin effects were observed in thalamocortical slices from up to 5-week-old WT but not in leptin-deficient obese mice. Results described here suggest the existence of a leptin-mediated trophic modulation of thalamocortical excitability during postnatal development. These findings could contribute to a better understanding of leptin within the thalamocortical system and sleep deficits in obesity.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Leptina/farmacologia , Neurônios/efeitos dos fármacos , Núcleos Talâmicos/citologia , Núcleos Talâmicos/metabolismo , Ácido gama-Aminobutírico/metabolismo , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Temperatura Corporal/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Janus Quinase 2/metabolismo , Leptina/deficiência , Leptina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/fisiologia , Transdução de Sinais/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/farmacologia , Potenciais Sinápticos/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Tetrodotoxina/farmacologia , Tirfostinas/farmacologia
19.
Sci Rep ; 8(1): 4953, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29563579

RESUMO

In this paper, we use a model modified from classic corticothalamic network(CT) to explore the mechanism of absence seizures appearing on specific relay nuclei (SRN) of the thalamus. It is found that typical seizure states appear on SRN through tuning several critical connection strengths in the model. In view of previous experimental and theoretical works which were mainly on epilepsy seizure phenomena appearing on excitatory pyramidal neurons (EPN) of the cortex, this is a novel model to consider the seizure observed on thalamus. In particular, the onset mechanism is different from previous theoretical studies. Inspired by some previous clinical and experimental studies, we employ the external stimuli voltage on EPN and SRN in the network, and observe that the seizure can be well inhibited by tuning the stimulus intensity appropriately. We further explore the effect of the signal transmission delays on seizures, and found that the polyspike phenomenon appears only when the delay is sufficiently large. The experimental data also confirmed our model. Since there is a complex network in the brain and all organizations are interacting closely with each other, the results obtained in this paper provide not only biological insights into the regulatory mechanisms but also a reference for the prevention and treatment of epilepsy in future.


Assuntos
Córtex Cerebral/fisiologia , Epilepsia Tipo Ausência/etiologia , Modelos Neurológicos , Núcleos Talâmicos/fisiologia , Potenciais de Ação/fisiologia , Eletroencefalografia , Epilepsia Tipo Ausência/diagnóstico , Humanos , Vias Neurais/fisiologia , Neurônios/fisiologia , Núcleos Talâmicos/citologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-29479309

RESUMO

Previous avian thalamic studies have shown that the medial ventral thalamus is composed of several nuclei located close to the lateral wall of the third ventricle. Although the general connectivity is known, detailed morphology and connectivity pattern in some regions are still elusive. Here, using the intracellular filling technique in the chicken, we focused on two neural structures, namely, the retinorecipient neuropil of the n. geniculatus lateralis pars ventralis (GLv), and the adjacent n. intercalatus thalami (ICT). We found that the GLv-ne cells showed two different neuronal types: projection cells and horizontal interneurons. The projection cells showed variable morphologies and dendritic arborizations with axons that targeted the n. lentiformis mesencephali (LM), griseum tectale (GT), ICT, n. principalis precommissuralis (PPC), and optic tectum (TeO). The horizontal cells showed a widespread mediolateral neural process throughout the retinorecipient GLv-ne. The ICT cells, on the other hand, had multipolar somata with wide dendritic fields that extended toward the lamina interna of the GLv, and a projection pattern that targeted the n. laminaris precommissuralis (LPC). Together, these results elucidate the rich complexity of the connectivity pattern so far described between the GLv, ICT, pretectum, and tectum. Interestingly, the implication of some of these neural structures in visuomotor and somatosensory roles strongly suggests that the GLv and ICT are part of a bimodal circuit that may be involved in the generation/modulation of saccades, gaze control, and space perception.


Assuntos
Neurônios/citologia , Núcleos Talâmicos/citologia , Animais , Galinhas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...