Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 561
Filtrar
1.
Biophys Chem ; 291: 106895, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36182744

RESUMO

Despite the rich knowledge of the influence of 2,2,2-trifluoroethanol (TFE) on the structure and conformation of peptides and proteins, the mode(s) of TFE-protein interactions and the mechanism by which TFE reversibly denatures a globular protein remain elusive. This study systematically examines TFE-induced equilibrium transition curves for six paradigmatic globular proteins by using basic fluorescence and circular dichroism measurements under neutral pH conditions. The results are remarkably simple. Low TFE invariably unfolds the tertiary structure of all proteins to produce the obligate intermediate (I) which retains nearly all of native-state secondary structure, but enables the formation of extra α-helices as the level of TFE is raised higher. Inspection of the transitions at once reveals that the tertiary structure unfolding is always a distinct process, necessitating the inclusion of at least one obligate intermediate in the TFE-induced protein denaturation. It appears that the intermediate in the minimal unfolding mechanism N⇌I⇌D somehow acquires higher α-helical propensity to generate α-helices in excess of that in the native state to produce the denatured state (D), also called the TFE state. The low TFE-populated intermediate I may be called a universal intermediate by virtue of its α-helical propensity. Contrary to many earlier suggestions, this study dismisses molten globule (MG)-like attribute of I or D.


Assuntos
Trifluoretanol , Naftalenossulfonato de Anilina/química , Naftalenossulfonato de Anilina/metabolismo , Dicroísmo Circular , Conformação Proteica , Desnaturação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Trifluoretanol/farmacologia
2.
Molecules ; 27(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35056804

RESUMO

Fungal laccase obtained from a Cerrena unicolor strain was used as an effective biocatalyst for the transformation of 8-anilino-1-naphthalenesulfonic acid into a green-coloured antibacterial compound, which can be considered as both an antimicrobial agent and a textile dye, simultaneously. The process of biosynthesis was performed in buffered solutions containing methanol as a co-solvent, allowing better solubilisation of substrate. The transformation process was optimised in terms of the buffer pH value, laccase activity, and concentrations of the substrate and co-solvent. The crude product obtained exhibited low cytotoxicity, antibacterial properties against Staphylococcus aureus and Staphylococcus epidermidis, and antioxidant properties. Moreover, the synthesised green-coloured compound proved non-allergenic and demonstrated a high efficiency of dyeing wool fibres.


Assuntos
Naftalenossulfonato de Anilina/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Corantes/química , Corantes/farmacologia , Lacase/metabolismo , Adulto , Idoso , Aliivibrio fischeri/efeitos dos fármacos , Naftalenossulfonato de Anilina/química , Antibacterianos/biossíntese , Antibacterianos/toxicidade , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Antioxidantes/toxicidade , Biocatálise , Linhagem Celular , Colo/efeitos dos fármacos , Corantes/metabolismo , Corantes/toxicidade , Células Epiteliais/efeitos dos fármacos , Feminino , Fibroblastos/efeitos dos fármacos , Fungos/enzimologia , Voluntários Saudáveis , Humanos , Hipersensibilidade , Lacase/química , Masculino , Pessoa de Meia-Idade , Oxirredução , Pele/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos
3.
Molecules ; 26(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466888

RESUMO

8-Anilino-1-naphthalenesulfonic acid (ANS) is used as a hydrophobic fluorescence probe due to its high intensity in hydrophobic environments, and also as a microenvironment probe because of its unique ability to exhibit peak shift and intensity change depending on the surrounding solvent environment. The difference in fluorescence can not only be caused by the microenvironment but can also be affected by the binding affinity, which is represented by the binding constant (K). However, the overall binding process considering the binding constant is not fully understood, which requires the ANS fluorescence binding mechanism to be examined. In this study, to reveal the rate-limiting step of the ANS-protein binding process, protein concentration-dependent measurements of the ANS fluorescence of lysozyme and bovine serum albumin were performed, and the binding constants were analyzed. The results suggest that the main factor of the binding process is the microenvironment at the binding site, which restricts the attached ANS molecule, rather than the attractive diffusion-limited association. The molecular mechanism of ANS-protein binding will help us to interpret the molecular motions of ANS molecules at the binding site in detail, especially with respect to an equilibrium perspective.


Assuntos
Naftalenossulfonato de Anilina/metabolismo , Corantes Fluorescentes/química , Muramidase/metabolismo , Soroalbumina Bovina/metabolismo , Naftalenossulfonato de Anilina/química , Animais , Sítios de Ligação , Bovinos , Transferência de Energia , Interações Hidrofóbicas e Hidrofílicas , Muramidase/química , Ligação Proteica , Conformação Proteica , Soroalbumina Bovina/química
4.
Appl Biochem Biotechnol ; 193(5): 1513-1531, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33484450

RESUMO

Alginate lyases have been widely used for the preparation of bioactive alginate oligosaccharides. An alginate lyase AlgL-CD was rationally designed by introducing alkaline amino acid residues near active center to increase activity. One of its mutants E226K presented much higher activity than wild-type AlgL-CD. Substrate affinity of E226K increased 10 folds as the Km values indicated. The spectra of intrinsic emission fluorescence and circular dichroism of E226K suggested the whole enzyme turned to be more flexible. The 8-anilino-1-naphthalenesulfonate (ANS)-binding assay showed that the hydrophobic active center of E226K was more available to ligand. Molecular dynamic analysis of the enzyme-substrate complex showed that lid loops of the active center in E226K turned to be more opened up, which might contribute to the increase of substrate-binding affinity. Meanwhile, the catalytic residue of E226K was closer to the hydrogen donor C5 atom of the substrate to increase catalysis rate. The final degradation products of alginate by E226K were determined to be identical with that of AlgL-CD. This study provides guidance for improving enzymatic preparation efficiency of bioactive alginate oligosaccharides.


Assuntos
Polissacarídeo-Liases/metabolismo , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/metabolismo , Naftalenossulfonato de Anilina/metabolismo , Mutação Puntual/genética , Pseudomonas aeruginosa/genética , Especificidade por Substrato
5.
FEBS Lett ; 594(20): 3305-3323, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32808291

RESUMO

Among the two GroEL paralogs in Mycobacterium tuberculosis, GroEL1 and GroEL2, GroEL1 has a characteristic histidine-rich C terminus. Since histidine richness is likely to be involved in metal binding, we attempted to decipher the role of GroEL1 in chelating metals and the consequence on M. tuberculosis physiology. Isothermal titration calorimetry showed that GroEL1 binds copper and other metals. Mycobacterial viability assay, redox balance, and DNA protection assay concluded that GroEL1 protects from copper stress in vitro. Solution X-ray scattering and constrained modeling of GroEL1 -/+ copper ions showed reorientation of the apical domain as seen in functional assembly. We conclude that the duplication of chaperonin genes in M. tuberculosis might have led to their evolutionary divergence and consequent functional divergence of chaperonins.


Assuntos
Chaperonina 60/metabolismo , Cobre/metabolismo , Homeostase , Mycobacterium tuberculosis/metabolismo , Homologia de Sequência de Aminoácidos , Sequência de Aminoácidos , Naftalenossulfonato de Anilina/metabolismo , Sítios de Ligação , Chaperonina 60/química , Dano ao DNA , Técnicas de Inativação de Genes , Inativação Gênica , Histidina/metabolismo , Modelos Biológicos , Modelos Moleculares , Oxirredução , Conformação Proteica , Espalhamento a Baixo Ângulo , Homologia Estrutural de Proteína , Termodinâmica , Difração de Raios X
6.
J Struct Biol ; 211(3): 107569, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32650131

RESUMO

Plakophilin 1 (PKP1) is a member of the armadillo repeat family of proteins. It serves as a scaffold component of desmosomes, which are key structural components for cell-cell adhesion. We have embarked on the biophysical and conformational characterization of the ARM domain of PKP1 (ARM-PKP1) in solution by using several spectroscopic (namely, fluorescence and circular dichroism (CD)) and biophysical techniques (namely, analytical ultracentrifugation (AUC), dynamic light scattering (DLS) and differential scanning calorimetry (DSC)). ARM-PKP1 was a monomer in solution at physiological pH, with a low conformational stability, as concluded from DSC experiments and thermal denaturations followed by fluorescence and CD. The presence or absence of disulphide bridges did not affect its low stability. The protein unfolded through an intermediate which has lost native-like secondary structure. ARM-PKP1 acquired a native-like structure in a narrow pH range (between pH 6.0 and 8.0), indicating that its adherent properties might only work in a very narrow pH range.


Assuntos
Placofilinas/química , Naftalenossulfonato de Anilina/metabolismo , Varredura Diferencial de Calorimetria , Dicroísmo Circular , Difusão Dinâmica da Luz , Humanos , Concentração de Íons de Hidrogênio , Placofilinas/isolamento & purificação , Conformação Proteica , Desnaturação Proteica , Domínios Proteicos , Soluções , Espectrometria de Fluorescência , Ultracentrifugação
7.
ACS Chem Biol ; 15(7): 1759-1764, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32433863

RESUMO

While kinases have been attractive targets to combat many diseases, including cancer, selective kinase inhibition has been challenging, because of the high degree of structural homology in the active site, where many kinase inhibitors bind. We have previously discovered that 8-anilino-1-naphthalene sulfonic acid (ANS) binds an allosteric pocket in cyclin-dependent kinase 2 (Cdk2). Here, we detail the positive cooperativity between ANS and orthosteric Cdk2 inhibitors dinaciclib and roscovitine, which increase the affinity of ANS toward Cdk2 5-fold to 10-fold, and the relatively noncooperative effects of ATP. We observe these effects using a fluorescent binding assay and heteronuclear single quantum correlation nuclear magnetic resonance (HSQC NMR), where we noticed a shift from fast exchange to slow exchange upon ANS titration in the presence of roscovitine but not with an ATP mimic. The discovery of cooperative relationships between orthosteric and allosteric kinase inhibitors could further the development of selective kinase inhibitors in general.


Assuntos
Naftalenossulfonato de Anilina/química , Óxidos N-Cíclicos/química , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Indolizinas/química , Inibidores de Proteínas Quinases/química , Compostos de Piridínio/química , Roscovitina/química , Regulação Alostérica , Naftalenossulfonato de Anilina/metabolismo , Óxidos N-Cíclicos/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Sinergismo Farmacológico , Humanos , Indolizinas/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/metabolismo , Compostos de Piridínio/metabolismo , Roscovitina/metabolismo
8.
J Fluoresc ; 30(3): 483-496, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32146650

RESUMO

The binding of 8-anilino-1-naphthalene sulfonate (ANS) to the nucleotide binding domain (N-domain) of the sarcoplasmic reticulum Ca2+-ATPase (SERCA) was studied. Molecular docking predicted two ANS binding modes (BMI and BMII) in the nucleotide binding site. The molecular interaction was confirmed as the fluorescence intensity of ANS was dramatically increased when in the presence of an engineered recombinant N-domain. Molecular dynamics simulation showed BMI (which occupies the ATP binding site) as the mode that is stable in solution. The above was confirmed by the absence of ANS fluorescence in the presence of a fluorescein isothiocyanate (FITC)-labeled N-domain. Further, the labeling of the N-domain with FITC was hindered by the presence of ANS, i.e., ANS was bound to the ATP binding site. Importantly, ANS displayed a higher affinity than ATP. In addition, ANS binding led to quenching the N-domain intrinsic fluorescence displaying a FRET pattern, which suggested the existence of a Trp-ANS FRET couple. Nonetheless, the chemical modification of the sole Trp residue with N-bromosuccinimide (NBS) discarded the existence of FRET and instead indicated structural rearrangements in the nucleotide binding site during ANS binding. Finally, Ca2+-ATPase kinetics in the presence of ANS showed a partial mixed-type inhibition. The Dixon plot showed the ANS-Ca2+-ATPase complex as catalytically active, hence supporting the existence of a functional dimeric Ca2+-ATPase in sarcoplasmic reticulum vesicles. ANS may be used as a molecular platform for the development of more effective inhibitors of Ca2+-ATPase and appears to be a new fluorescent probe for the nucleotide binding site. Graphical Abstract Molecular docking of ANS to the nucleotide binding site of Ca2+-ATPase. ANS fluorescence increase reveals molecular interaction.


Assuntos
Naftalenossulfonato de Anilina/química , Cálcio/química , Nucleotídeos/química , ATPases Translocadoras de Prótons/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Naftalenossulfonato de Anilina/metabolismo , Sítios de Ligação , Cálcio/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Isotiocianatos/química , Isotiocianatos/metabolismo , Simulação de Acoplamento Molecular , Nucleotídeos/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Retículo Sarcoplasmático/química , Retículo Sarcoplasmático/metabolismo
9.
Prion ; 14(1): 67-75, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32008441

RESUMO

Fluorescent probes thioflavin T (ThT) and 1-anilino-8-naphthalene sulfonate (ANS) are widely used to study amyloid fibrils that accumulate in the body of patients with serious diseases, such as Alzheimer's, Parkinson's, prion diseases, etc. However, the possible effect of these probes on amyloid fibrils is not well understood. In this work, we investigated the photophysical characteristics, structure, and morphology of mature amyloid fibrils formed from two model proteins, insulin and lysozyme, in the presence of ThT and ANS. It turned out that ANS affects the secondary structure of amyloids (shown for fibrils formed from insulin and lysozyme) and their fibers clusterization (valid for lysozyme fibrils), while ThT has no such effects. These results confirm the differences in the mechanisms of these dyes interaction with amyloid fibrils. Observed effect of ANS was explained by the electrostatic interactions between the dye molecule and cationic groups of amyloid-forming proteins (unlike hydrophobic binding of ThT) that induce amyloids conformational changes. This interaction leads to weakening repulsion between positive charges of amyloid fibrils and can promote their clusterization. It was shown that when fibrillogenesis conditions and, consequently, fibrils structure is changing, as well as during defragmentation of amyloids by ultrasonication, the influence of ANS to amyloids does not change, which indicates the universality of the detected effects. Based on the obtained results, it was concluded that ANS should be used cautiously for the study of amyloid fibrils, since this fluorescence probe have a direct effect on the object of study.


Assuntos
Amiloide/metabolismo , Naftalenossulfonato de Anilina/metabolismo , Benzotiazóis/metabolismo , Corantes Fluorescentes/metabolismo , Amiloide/química , Amiloide/ultraestrutura , Sítios de Ligação , Interações Hidrofóbicas e Hidrofílicas , Insulina/química , Insulina/metabolismo , Muramidase/química , Muramidase/metabolismo , Estrutura Secundária de Proteína , Eletricidade Estática
10.
Chemphyschem ; 20(11): 1456-1466, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30945450

RESUMO

The molecular behaviors of proteins under crowding conditions are crucial for understanding the protein actions in intracellular environments. Under a crowded environment, the distance between protein molecules is almost the same size as the molecular level, thus, both the excluded volume effect and short ranged soft chemical interaction on protein surface could induce the complicated influence on the protein behavior cooperatively. Recently, various kinds of analytical approaches from macroscopic to microscopic aspects have been made to evaluate the crowding effect. The method, however, has not been established to evaluate the surface specific interactions on protein surface. In this study, the analytical method to evaluate the crowding effect has been suggested by using a charge-transfer fluorescence probe, ANS. By employing the unique property of ANS attaching to charged residues on the surface of lysozyme, the crowding effect was focused, while the case was compared as a reference, in which ANS is confined in hydrophobic pockets of BSA. Consequently, the surface specific changes of fluorescence spectra were readily observed under the crowded environment, whereas the fluorescence spectra of ANS in protein inside did not change. This result suggests the fluorescence spectra of ANS binding to protein surface have the capability to estimate the crowding effect of proteins.


Assuntos
Naftalenossulfonato de Anilina/química , Corantes Fluorescentes/química , Muramidase/química , Soroalbumina Bovina/química , Naftalenossulfonato de Anilina/metabolismo , Animais , Bovinos , Galinhas , Fluorescência , Corantes Fluorescentes/metabolismo , Muramidase/metabolismo , Ligação Proteica , Soroalbumina Bovina/metabolismo , Espectrometria de Fluorescência , Eletricidade Estática , Viscosidade
11.
Int J Biol Macromol ; 122: 636-643, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30391427

RESUMO

The exposed hydrophobic patches of protein are widely detected through the binding by the fluorescent probes such as 1-anilino-8-naphthalene sulfonate (ANS), Nile Red (NR) and 1-(N-phenylamino) naphthalene, N-(1-Naphthyl) aniline (1NPN). Interestingly, at pH4, where the Toxoplasma gondii Ferredoxin-NADP(+) reductase (TgFNR) is stable, an exclusive binding and fluorescence emission was observed for ANS. To understand the underlying difference in the binding of ANS, NR and 1NPN; their effect on the protein structure was studied in detail. ANS was found to interact with TgFNR via electrostatic as well as hydrophobic interactions at pH4. NR and 1NPN did not show any such binding to TgFNR in the similar conditions, however showed strong hydrophobic interaction in the presence of NaCl or DSS (2, 2-dimethyl-2-silapentane-5-sulfonate). The subsequent structural studies suggest that ANS, NaCl and DSS induced partial unfolding of TgFNR by modulating ionic interactions of the enzyme, leading to the exposure of buried hydrophobic patches amicable for the binding by NR and 1NPN. The induced unfolding of TgFNR by ANS is unique and thus cautions to use the fluorescent dye as simple indicator to probe the exposed hydrophobic patches of the protein or its folding intermediates.


Assuntos
Naftalenossulfonato de Anilina/metabolismo , Naftalenossulfonato de Anilina/farmacologia , Ferredoxinas/metabolismo , Interações Hidrofóbicas e Hidrofílicas , NADP/metabolismo , Oxirredutases/metabolismo , Toxoplasma/enzimologia , Oxirredutases/química , Ligação Proteica , Desdobramento de Proteína/efeitos dos fármacos
12.
J Photochem Photobiol B ; 180: 125-133, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29413695

RESUMO

Fenhexamid, as a hydroxyanilide, is widely applied to control Botrytis cinerea for protecting crops and fruits. But it could adversely affect human and animals health due to accumulation of residues in food production. Here, the affinity characteristics of fenhexamid on bovine serum albumin (BSA) was studied via a series of spectroscopic methods such as steady-state fluorescence spectroscopy, ultraviolet spectroscopy (UV), synchronous fluorescence spectroscopy (SFS), 3D fluorescence spectroscopy, and fourier transform infrared spectroscopy (FT-IR). The experimental results illustrated that the fluorescence quenching mechanism of BSA induced by fenhexamid was a static quenching. The binding constant (Kb) of fenhexamid with BSA was 2.399 × 104 M-1 at 298 K and the combination ratio was about 1:1. The competitive experiment demonstrated that fenhexamid was binding on the BSA at site II (subdomain IIIA), which was confirmed by the molecular docking studies. The negative values of thermodynamic parameter (ΔH0, ΔS0 and ΔG0) revealed that the reaction of fenhexamid with BSA could proceed spontaneously, the van der Waals force and hydrogen bonding interaction conducted the main effect, and the binding process was enthalpy-driven. What's more, the 8-Anilino-1-naphthalenesulfonate (ANS) and sucrose binding studies were also performed and further verified the binding force between BSA and fenhexamid.


Assuntos
Amidas/metabolismo , Soroalbumina Bovina/metabolismo , Amidas/química , Naftalenossulfonato de Anilina/química , Naftalenossulfonato de Anilina/metabolismo , Animais , Sítios de Ligação , Bovinos , Ligação de Hidrogênio , Cinética , Simulação de Acoplamento Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Soroalbumina Bovina/química , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica
13.
J Biomol Struct Dyn ; 36(13): 3453-3462, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28990867

RESUMO

The transport of more than 90% of the drugs viz. anticoagulants, analgesics, and general anesthetics in the blood takes place by albumin. Hence, albumin is the prime protein needs to be investigated to find out the nature of drug binding. Serum albumin molecules are prone to glycation at elevated blood glucose levels as observed in diabetics. In this piece of work, glycation of bovine serum albumin (BSA) was carried out with glyceraldehyde and characterized by molecular docking and fluorometry techniques. Glycation of BSA showed 25% loss of free amino groups and decreased protein fluorescence (60%) with blue shift of 6 nm. The present study was also designed to evaluate the binding of colchicine (an anti-inflammatory drug) to native and glycated BSA and its ability to displace 8-analino-1-nephthalene sulfonic acid (ANS), from the BSA-ANS complex. Binding of ANS to BSA showed strong binding (Ka = 4.4 µM) with native conformation in comparison to glycated state (Ka = 8.4 µM). On the other hand, colchicine was able to quench the fluorescence of native BSA better than glycated BSA and also showed weaker affinity (Ka = 23 µM) for glycated albumin compared with native state (Ka = 16 µM). Molecular docking study showed that both glyceraldehyde and colchicine bind to common residues located near Sudlow's site I that explain the lower binding of colchicine in the glycated BSA. Based on our results, we believe that reduced drugs-binding affinity to glycated albumin may lead to drugs accumulation and precipitation in diabetic patients.


Assuntos
Naftalenossulfonato de Anilina/metabolismo , Colchicina/metabolismo , Gliceraldeído/metabolismo , Soroalbumina Bovina/metabolismo , Albumina Sérica/metabolismo , Animais , Transporte Biológico , Bovinos , Produtos Finais de Glicação Avançada , Glicosilação , Simulação de Acoplamento Molecular , Ligação Proteica , Albumina Sérica Glicada
14.
J Mol Recognit ; 29(9): 446-51, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27060481

RESUMO

A fluorescent reporter, 8-anilino-1-naphthalene sulfonic acid (ANS), can serve as a reference molecule for conformational transition of a protein because its aromatic carbons have strong affinity with hydrophobic cores of partially unfolded molten globules. Using a typical calcium-binding protein, bovine α-lactalbumin (BLA), as a model protein, we compared the ANS binding thermodynamics to the decalcified (10 mM EDTA treated) apo-BLA at two representative temperatures: 20 and 40 °C. This is because the authentic molten globule is known to form more heavily at an elevated temperature such as 40 °C. Isothermal titration calorimetry experiments revealed that the BLA-ANS interactions at both temperatures were entropy-driven, and the dissociation constants were similar on the order of 10(-4) M, but there was a dramatic changeover in the binding thermodynamics from endothermic at 20 °C to exothermic at 40 °C. We believe that the higher subpopulation of authentic molten globules at 40 °C than 20 °C would be responsible for the results, which also indicate that weak binding is sufficient to alter the ANS binding mechanisms. We expect that the thermodynamic properties obtained from this study would serve as a useful reference for investigating the binding of other hydrophobic ligands such as oleic acid to apo-BLA, because oleic acid is known to have tumor-selective cytotoxicity when complexed with partially unfolded α-lactalbumin. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Naftalenossulfonato de Anilina/metabolismo , Temperatura Alta , Lactalbumina/metabolismo , Termodinâmica , Calorimetria , Concentração de Íons de Hidrogênio , Ácido Oleico/metabolismo , Ligação Proteica , Dobramento de Proteína
15.
Pharm Res ; 32(10): 3432-46, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26248795

RESUMO

PURPOSE: To examine the expression of fatty acid binding proteins (FABPs) at the human blood-brain barrier (BBB) and to assess their ability to bind lipophilic drugs. METHODS: mRNA and protein expression of FABP subtypes in immortalized human brain endothelial (hCMEC/D3) cells were examined by RT-qPCR and Western blot, respectively. FABPs that were found in hCMEC/D3 cells (hFABPs) were recombinantly expressed and purified from Escherichia coli C41(DE3) cells. Drug binding to these hFABPs was assessed using a fluorescence assay, which measured the ability of a panel of lipophilic drugs to displace the fluorescent probe compound 1-anilinonaphthalene-8-sulfonic acid (ANS). RESULTS: hFABP3, 4 and 5 were expressed in hCMEC/D3 cells at the mRNA and protein level. The competitive ANS displacement assay demonstrated that, in general, glitazones preferentially bound to hFABP5 (Ki: 1.0-28 µM) and fibrates and fenamates preferentially bound to hFABP4 (Ki: 0.100-17 µM). In general, lipophilic drugs appeared to show weaker affinities for hFABP3 relative to hFABP4 and hFABP5. No clear correlation was observed between the molecular structure or physicochemical properties of the drugs and their ability to displace ANS from hFABP3, 4 and 5. CONCLUSIONS: hFABP3, 4 and 5 are expressed at the human BBB and bind differentially to a diverse range of lipophilic drugs. The unique expression and binding patterns of hFABPs at the BBB may therefore influence drug disposition into the brain.


Assuntos
Barreira Hematoencefálica/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Preparações Farmacêuticas/metabolismo , Ligação Proteica/fisiologia , Isoformas de Proteínas/metabolismo , Naftalenossulfonato de Anilina/metabolismo , Transporte Biológico/fisiologia , Encéfalo/metabolismo , Linhagem Celular , Células Endoteliais/metabolismo , Fenamatos/metabolismo , Ácidos Fíbricos/metabolismo , Corantes Fluorescentes/metabolismo , Humanos , RNA Mensageiro/metabolismo , Tiazolidinedionas/metabolismo
16.
Sci Rep ; 5: 12332, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26227615

RESUMO

Human profilin-1 is a novel protein associated with a recently discovered form of familial amyotrophic lateral sclerosis. This urges the characterization of possible conformational states, different from the fully folded state, potentially able to initiate self-assembly. Under native conditions, profilin-1 is monomeric and possesses a well-defined secondary and tertiary structure. When incubated at low pH or with high urea concentrations, profilin-1 remains monomeric but populates unfolded states exhibiting larger hydrodynamic radius and disordered structure, as assessed by dynamic light scattering, far-UV circular dichroism and intrinsic fluorescence. Refolding from the urea-unfolded state was studied at equilibrium and in real-time using a stopped-flow apparatus. The results obtained with intrinsic fluorescence and circular dichroism indicate a single phase without significant changes of the corresponding signals before the major refolding transition. However, such a transition is preceded by a burst phase with an observed increase of ANS fluorescence, which indicates the conversion into a transiently populated collapsed state possessing solvent-exposed hydrophobic clusters. Kinetic analysis reveals that such state has a conformational stability comparable to that of the fully unfolded state. To our knowledge, profilin-1 is the first example of an amyloid-related protein where folding occurs in the absence of thermodynamically stable partially folded states.


Assuntos
Profilinas/química , Dobramento de Proteína , Esclerose Lateral Amiotrófica/metabolismo , Naftalenossulfonato de Anilina/química , Naftalenossulfonato de Anilina/metabolismo , Dicroísmo Circular , Escherichia coli/genética , Humanos , Concentração de Íons de Hidrogênio , Cinética , Profilinas/genética , Profilinas/metabolismo , Conformação Proteica , Espectrometria de Fluorescência , Termodinâmica , Ureia/química
17.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 4): 829-43, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25849394

RESUMO

Hyp-1, a pathogenesis-related class 10 (PR-10) protein from St John's wort (Hypericum perforatum), was crystallized in complex with the fluorescent probe 8-anilino-1-naphthalene sulfonate (ANS). The highly pseudosymmetric crystal has 28 unique protein molecules arranged in columns with sevenfold translational noncrystallographic symmetry (tNCS) along c and modulated X-ray diffraction with intensity crests at l = 7n and l = 7n ± 3. The translational NCS is combined with pseudotetragonal rotational NCS. The crystal was a perfect tetartohedral twin, although detection of twinning was severely hindered by the pseudosymmetry. The structure determined at 2.4 Šresolution reveals that the Hyp-1 molecules (packed as ß-sheet dimers) have three novel ligand-binding sites (two internal and one in a surface pocket), which was confirmed by solution studies. In addition to 60 Hyp-1-docked ligands, there are 29 interstitial ANS molecules distributed in a pattern that violates the arrangement of the protein molecules and is likely to be the generator of the structural modulation. In particular, whenever the stacked Hyp-1 molecules are found closer together there is an ANS molecule bridging them.


Assuntos
Naftalenossulfonato de Anilina/química , Hypericum/química , Proteínas de Plantas/química , Naftalenossulfonato de Anilina/metabolismo , Cristalografia por Raios X , Hypericum/metabolismo , Modelos Moleculares , Proteínas de Plantas/metabolismo , Conformação Proteica
18.
Xenobiotica ; 45(10): 847-57, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25801059

RESUMO

1. This study compared the extent, affinity, and kinetics of drug binding to human serum albumin (HSA) and liver fatty acid binding protein (LFABP) using ultrafiltration and surface plasmon resonance (SPR). 2. Binding of basic and neutral drugs to both HSA and LFABP was typically negligible. Binding of acidic drugs ranged from minor (fu > 0.8) to extensive (fu < 0.1). Of the compounds screened, the highest binding to both HSA and LFABP was observed for the acidic drugs torsemide and sulfinpyrazone, and for ß-estradiol (a polar, neutral compound). 3. The extent of binding of acidic drugs to HSA was up to 40% greater than binding to LFABP. SPR experiments demonstrated comparable kinetics and affinity for the binding of representative acidic drugs (naproxen, sulfinpyrazone, and torsemide) to HSA and LFABP. 4. Simulations based on in vitro kinetic constants derived from SPR experiments and a rapid equilibrium model were undertaken to examine the impact of binding characteristics on compartmental drug distribution. Simulations provided mechanistic confirmation that equilibration of intracellular unbound drug with the extracellular unbound drug is attained rapidly in the absence of active transport mechanisms for drugs bound moderately or extensively to HSA and LFABP.


Assuntos
Proteínas de Ligação a Ácido Graxo/metabolismo , Preparações Farmacêuticas/metabolismo , Albumina Sérica/metabolismo , Naftalenossulfonato de Anilina/química , Naftalenossulfonato de Anilina/metabolismo , Ácido Araquidônico/química , Ácido Araquidônico/metabolismo , Ácido Araquidônico/farmacocinética , Sequência de Bases , Simulação por Computador , Estradiol/química , Estradiol/metabolismo , Estradiol/farmacocinética , Proteínas de Ligação a Ácido Graxo/genética , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Modelos Teóricos , Dados de Sequência Molecular , Preparações Farmacêuticas/química , Farmacocinética , Albumina Sérica/genética , Sulfimpirazona/química , Sulfimpirazona/metabolismo , Sulfimpirazona/farmacocinética , Sulfonamidas/química , Sulfonamidas/metabolismo , Sulfonamidas/farmacocinética , Ressonância de Plasmônio de Superfície , Torasemida , Ultrafiltração
19.
J Mol Biol ; 427(10): 1977-92, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25816771

RESUMO

The intrinsically disordered, 18.5-kDa isoform of myelin basic protein (MBP) is a peripheral membrane protein that is essential to proper myelin formation in the central nervous system. MBP acts in oligodendrocytes both to adjoin membrane leaflets to each other in forming myelin and as a hub in numerous protein-protein and protein-membrane interaction networks. Like many intrinsically disordered proteins (IDPs), MBP multifunctionality arises from its high conformational plasticity and its ability to undergo reversible disorder-to-order transitions. One such transition is the disorder-to-α-helical conformational change that is induced upon MBP-membrane binding. Here, we have investigated the disorder-to-α-helical transition of MBP-derived α-peptides and the full-length 18.5-kDa protein. This transition was induced through titration of the membrane-mimetic solvent trifluoroethanol into both protein and peptide solutions, and conformational change was monitored using circular dichroism spectroscopy, 1-anilinonaphthalene-8-sulfonic acid binding, tryptophan fluorescence quenching, and Förster (fluorescence) resonance energy transfer measurements. The data suggest that the disorder-to-α-helical transition of MBP follows a 3-state model: disordered↔intermediate↔α-helical, with each of the identified equilibrium states likely representing a conformational ensemble. The disordered state is characterized by slight compaction with little regular secondary structure, whereas the intermediate is also disordered but globally more compact. Surprisingly, the α-helical conformation is less compact than the intermediate. This study suggests that multifunctionality in MBP could arise from differences in the population of energetically distinct ensembles under different conditions and also provides an example of an IDP that undergoes cooperative global conformation change.


Assuntos
Naftalenossulfonato de Anilina/metabolismo , Proteínas Mutantes/química , Proteína Básica da Mielina/química , Fragmentos de Peptídeos/química , Proteínas Recombinantes/química , Dicroísmo Circular , Transferência Ressonante de Energia de Fluorescência , Humanos , Modelos Moleculares , Proteínas Mutantes/metabolismo , Mutação/genética , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/metabolismo , Termodinâmica
20.
PLoS One ; 10(3): e0119099, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25781460

RESUMO

High-pressure methods have become an interesting tool of investigation of structural stability of proteins. They are used to study protein unfolding, but dissociation of oligomeric proteins can be addressed this way, too. HIV-1 protease, although an interesting object of biophysical experiments, has not been studied at high pressure yet. In this study HIV-1 protease is investigated by high pressure (up to 600 MPa) fluorescence spectroscopy of either the inherent tryptophan residues or external 8-anilino-1-naphtalenesulfonic acid at 25°C. A fast concentration-dependent structural transition is detected that corresponds to the dimer-monomer equilibrium. This transition is followed by a slow concentration independent transition that can be assigned to the monomer unfolding. In the presence of a tight-binding inhibitor none of these transitions are observed, which confirms the stabilizing effect of inhibitor. High-pressure enzyme kinetics (up to 350 MPa) also reveals the stabilizing effect of substrate. Unfolding of the protease can thus proceed only from the monomeric state after dimer dissociation and is unfavourable at atmospheric pressure. Dimer-destabilizing effect of high pressure is caused by negative volume change of dimer dissociation of -32.5 mL/mol. It helps us to determine the atmospheric pressure dimerization constant of 0.92 µM. High-pressure methods thus enable the investigation of structural phenomena that are difficult or impossible to measure at atmospheric pressure.


Assuntos
Naftalenossulfonato de Anilina/metabolismo , Darunavir/metabolismo , Protease de HIV/química , Protease de HIV/metabolismo , Dobramento de Proteína , Estabilidade Proteica/efeitos dos fármacos , Pressão Atmosférica , Dimerização , Inibidores da Protease de HIV/metabolismo , Humanos , Cinética , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Espectrometria de Fluorescência , Termodinâmica , Triptofano/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...