Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 410
Filtrar
1.
Langmuir ; 40(18): 9471-9480, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38649324

RESUMO

Nanometer-sized diamonds (NDs) containing nitrogen vacancy centers have garnered significant attention as potential quantum sensors for reading various types of physicochemical information in vitro and in vivo. However, NDs intrinsically aggregate when placed in biological environments, hampering their sensing capacities. To address this issue, the grafting of hydrophilic polymers onto the surface of NDs has been demonstrated considering their excellent ability to prevent protein adsorption. To this end, crowding of the grafted chains plays a crucial role because it is directly associated with the antiadsorption effect of proteins; however, its quantitative evaluation has not been reported previously. In this study, we graft poly(ethylene glycol) (PEG) with various molecular weights onto NDs, determine their crowding using a gas adsorption technique, and disclose the cross-correlation between the pH in the grafting reaction, crowding density, molecular weight, and the prevention effect on protein adsorption. PEG-grafted NDs exhibit a pronounced effect on the prevention of lung accumulation after intravenous injection in mice. PEG crowding was compared to that calculated by using a diameter determined by dynamic light scattering (DLS) assuming a sphere.


Assuntos
Técnicas Biossensoriais , Pulmão , Nanodiamantes , Polietilenoglicóis , Polietilenoglicóis/química , Adsorção , Animais , Nanodiamantes/química , Camundongos , Técnicas Biossensoriais/métodos , Proteínas/química
2.
Bioconjug Chem ; 35(5): 623-632, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38659333

RESUMO

Nanodiamonds (NDs) are considered promising delivery platforms, but inaccurate and uncontrolled release of drugs at target sites is the biggest challenge of NDs in precision medicine. This study presents the development of phototriggerable ND-based drug delivery systems, utilizing ortho-nitrobenzyl (o-NB) molecules as photocleavable linkers between drugs and nanocarriers. UV irradiation specifically cleaved o-NB molecules and then was followed by releasing antisense oligonucleotides from ND-based carriers in both buffer and cellular environments. This ND system carried cell nonpermeable therapeutic agents for bypassing lysosomal trapping and degradation. The presence of fluorescent nitrogen-vacancy centers also allowed NDs to serve as biological probes for tracing in cells. We successfully demonstrated phototriggered release of antisense oligonucleotides from ND-based nanocarriers, reactivating their antisense functions. This highlights the potential of NDs, photocleavable linkers, and light stimuli to create advanced drug delivery systems for controlled drug release in disease therapy, opening possibilities for targeted and personalized treatments.


Assuntos
Sistemas de Liberação de Medicamentos , Nanodiamantes , Oligonucleotídeos Antissenso , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/administração & dosagem , Humanos , Nanodiamantes/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Portadores de Fármacos/química , Raios Ultravioleta , Luz
3.
Biomed Mater ; 19(3)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574581

RESUMO

In terms of biomedical tools, nanodiamonds (ND) are a more recent innovation. Their size typically ranges between 4 to 100 nm. ND are produced via a variety of methods and are known for their physical toughness, durability, and chemical stability. Studies have revealed that surface modifications and functionalization have a significant influence on the optical and electrical properties of the nanomaterial. Consequently, surface functional groups of NDs have applications in a variety of domains, including drug administration, gene delivery, immunotherapy for cancer treatment, and bio-imaging to diagnose cancer. Additionally, their biocompatibility is a critical requisite for theirin vivoandin vitrointerventions. This review delves into these aspects and focuses on the recent advances in surface modification strategies of NDs for various biomedical applications surrounding cancer diagnosis and treatment. Furthermore, the prognosis of its clinical translation has also been discussed.


Assuntos
Nanodiamantes , Neoplasias , Humanos , Nanodiamantes/química , Nanodiamantes/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Diagnóstico por Imagem/métodos , Imunoterapia
4.
Biosens Bioelectron ; 257: 116332, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38677016

RESUMO

In situ detection of dopamine (DA) at single-cell level is critical for exploring neurotransmitter-related biological processes and diseases. However, the low content of DA and a variety of distractors with similar oxidation potentials as DA in cells brought great challenges. Here, a sensitive and specific electrochemical nanosensor was proposed for in situ detection of DA in single living cells based on nanodiamond (ND) and molecularly imprinted polymer (MIP)-functionalized carbon fiber nanoelectrode (ND/MIP/CFNE). Due to its excellent electrocatalytic property, ND was modified to the surface of CFNE based on amide bonding. Compared with bare CFNE, ND-modified CFNE can enhance oxidation currents of DA by about 4-fold, improving signal-to-noise ratio and detection sensitivity. MIP was further electropolymerized on the surface of nanoelectrodes to achieve specific capture and recognition of DA, which could avoid the interference of complex matrix and analogs in cells. Taking advantage of the precise positioning capability of a single-cell analyzer and micromanipulator, ND/MIP/CFNE could be precisely inserted into different locations of single cells and monitor oxidation signal of DA. The concentration of DA in the cytoplasm of single pheochromocytoma (PC12) cell was measured to be about 0.4 µM, providing a sensitive and powerful method for single-cell detection. Furthermore, the nanoelectrodes can monitor the fluctuation of intracellular DA under drug stimulation, providing new ideas and methods for new drug development and efficacy evaluation.


Assuntos
Técnicas Biossensoriais , Dopamina , Técnicas Eletroquímicas , Polímeros Molecularmente Impressos , Análise de Célula Única , Dopamina/análise , Dopamina/química , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Células PC12 , Técnicas Eletroquímicas/métodos , Polímeros Molecularmente Impressos/química , Animais , Ratos , Nanodiamantes/química , Eletrodos , Fibra de Carbono/química , Impressão Molecular/métodos , Limite de Detecção , Polímeros/química
5.
Environ Sci Technol ; 58(19): 8554-8564, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38634679

RESUMO

Peracetic acid (PAA) oxidation catalyzed by metal-free carbons is promising for advanced water decontamination. Nevertheless, developing reaction-oriented and high-performance carbocatalysts has been limited by the ambiguous understanding of the intrinsic relationship between carbon chemical/molecular structure and PAA transformation behavior. Herein, we comprehensively investigated the PAA activation using a family of well-defined sp2/sp3 carbon hybrids from annealed nanodiamonds (ANDs). The activity of ANDs displays a volcano-type trend, with respect to the sp2/sp3 ratio. Intriguingly, sp3-C-enriched AND exhibits the best catalytic activity for PAA activation and phenolic oxidation, which is different from persulfate chemistry in which the sp2 network normally outperforms sp3 hybridization. At the electron-rich sp2-C site, PAA undergoes a reduction reaction to generate a reactive complex (AND-PAA*) and induces an electron-transfer oxidation pathway. At the sp3-C site adjacent to C═O, PAA is oxidized to surface-confined OH* and O* successively, which ultimately evolves into singlet oxygen (1O2) as the primary reactive species. Benefiting from the dual nonradical regimes on sp2/sp3 hybrids, AND mediates a sustainable redox recycle with PAA to continuously generate reactive species to attack water contaminants, meanwhile maintaining structural/chemical integrity and exceptional reusability in cyclic runs.


Assuntos
Ácido Peracético , Ácido Peracético/química , Catálise , Nanodiamantes/química , Purificação da Água/métodos , Oxirredução , Poluentes Químicos da Água/química , Água/química
6.
Chem Rec ; 24(4): e202400006, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38530037

RESUMO

Nanodiamonds (NDs) have garnered attention in the field of nanomedicine due to their unique properties. This review offers a comprehensive overview of NDs synthesis methods, properties, and their uses in biomedical applications. Various synthesis techniques, such as detonation, high-pressure, high-temperature, and chemical vapor deposition, offer distinct advantages in tailoring NDs' size, shape, and surface properties. Surface modification methods further enhance NDs' biocompatibility and enable the attachment of bioactive molecules, expanding their applicability in biological systems. NDs serve as promising nanocarriers for drug delivery, showcasing biocompatibility and the ability to encapsulate therapeutic agents for targeted delivery. Additionally, NDs demonstrate potential in cancer treatment through hyperthermic therapy and vaccine enhancement for improved immune responses. Functionalization of NDs facilitates their utilization in biosensors for sensitive biomolecule detection, aiding in precise diagnostics and rapid detection of infectious diseases. This review underscores the multifaceted role of NDs in advancing biomedical applications. By synthesizing NDs through various methods and modifying their surfaces, researchers can tailor their properties for specific biomedical needs. The ability of NDs to serve as efficient drug delivery vehicles holds promise for targeted therapy, while their applications in hyperthermic therapy and vaccine enhancement offer innovative approaches to cancer treatment and immunization. Furthermore, the integration of NDs into biosensors enhances diagnostic capabilities, enabling rapid and sensitive detection of biomolecules and infectious diseases. Overall, the diverse functionalities of NDs underscore their potential as valuable tools in nanomedicine, paving the way for advancements in healthcare and biotechnology.


Assuntos
Doenças Transmissíveis , Nanodiamantes , Vacinas , Humanos , Nanodiamantes/química , Sistemas de Liberação de Medicamentos , Propriedades de Superfície
7.
Cancer Lett ; 587: 216710, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38369006

RESUMO

Cancer remains a leading global cause of mortality, demanding early diagnosis and effective treatment. Traditional therapeutic methods often fall short due to their need for more specificity and systemic toxicity. In this challenging landscape, nanodiamonds (ND) emerge as a potential solution, mitigating the limitations of conventional approaches. ND are tiny carbon particles that mimic traditional diamonds chemical stability and hardness and harness nanomaterials' advantages. ND stands out for the unique properties that make them promising nanotheranostics candidates, combining therapeutic and imaging capabilities in one platform. Many of these applications depend on the design of the particle's surface, as the surface's role is crucial in transporting bioactive molecules, preventing aggregation, and building composite materials. This review delves into ND's distinctive features, structural and optical characteristics, and their profound relevance in advancing cancer diagnosis and treatment methods. The report delves into how these exceptional ND properties drive the development of state-of-the-art techniques for precise tumor targeting, boosting the effectiveness of chemotherapy as a chemosensitizer, harnessing immunotherapy strategies, facilitating precision medicine, and creating localized microfilm devices for targeted therapies.


Assuntos
Nanodiamantes , Neoplasias , Humanos , Nanodiamantes/química , Nanodiamantes/uso terapêutico , Medicina de Precisão , Sistemas de Liberação de Medicamentos , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Diagnóstico por Imagem
8.
Adv Mater ; 36(11): e2310109, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38037437

RESUMO

Nanodiamonds (ND) hold great potential for diverse applications due to their biocompatibility, non-toxicity, and versatile functionalization. Direct visualization of ND by means of non-invasive imaging techniques will open new venues for labeling and tracking, offering unprecedented and unambiguous detection of labeled cells or nanodiamond-based drug carrier systems. The structural defects in diamonds, such as vacancies, can have paramagnetic properties and potentially act as contrast agents in magnetic resonance imaging (MRI). The smallest nanoscale diamond particles, detonation ND, are reported to effectively reduce longitudinal relaxation time T1 and provide signal enhancement in MRI. Using in vivo, chicken embryos, direct visualization of ND is demonstrated as a bright signal with high contrast to noise ratio. At 24 h following intravascular application marked signal enhancement is noticed in the liver and the kidneys, suggesting uptake by the phagocytic cells of the reticuloendothelial system (RES), and in vivo labeling of these cells. This is confirmed by visualization of nanodiamond-labeled macrophages as positive (bright) signal, in vitro. Macrophage cell labeling is not associated with significant increase in pro-inflammatory cytokines or marked cytotoxicity. These results indicate nanodiamond as a novel gadolinium-free contrast-enhancing agent with potential for cell labeling and tracking and over periods of time.


Assuntos
Nanodiamantes , Embrião de Galinha , Animais , Nanodiamantes/química , Imageamento por Ressonância Magnética/métodos , Fígado/diagnóstico por imagem , Macrófagos , Portadores de Fármacos/farmacologia
9.
Int J Mol Sci ; 24(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38068942

RESUMO

Nanoparticles are being increasingly studied to enhance radiation effects. Among them, nanodiamonds (NDs) are taken into great consideration due to their low toxicity, inertness, chemical stability, and the possibility of surface functionalization. The objective of this study is to explore the influence of the chemical/physical properties of NDs on cellular radiosensitivity to combined treatments with radiation beams of different energies. DAOY, a human radioresistant medulloblastoma cell line was treated with NDs-differing for surface modifications [hydrogenated (H-NDs) and oxidized (OX-NDs)], size, and concentration-and analysed for (i) ND internalization and intracellular localization, (ii) clonogenic survival after combined treatment with different radiation beam energies and (iii) DNA damage and apoptosis, to explore the nature of ND-radiation biological interactions. Results show that chemical/physical characteristics of NDs are crucial in determining cell toxicity, with hydrogenated NDs (H-NDs) decreasing either cellular viability when administered alone, or cell survival when combined with radiation, depending on ND size and concentration, while OX-NDs do not. Also, irradiation at high energy (γ-rays at 1.25 MeV), in combination with H-NDs, is more efficient in eliciting radiosensitisation when compared to irradiation at lower energy (X-rays at 250 kVp). Finally, the molecular mechanisms of ND radiosensitisation was addressed, demonstrating that cell killing is mediated by the induction of Caspase-3-dependent apoptosis that is independent to DNA damage. Identifying the optimal combination of ND characteristics and radiation energy has the potential to offer a promising therapeutic strategy for tackling radioresistant cancers using H-NDs in conjunction with high-energy radiation.


Assuntos
Nanodiamantes , Neoplasias , Humanos , Nanodiamantes/química , Tolerância a Radiação , Sobrevivência Celular , Neoplasias/radioterapia
10.
Anal Chem ; 95(32): 12080-12088, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37534668

RESUMO

Nanodiamonds (NDs) are carbon nanoparticles with a large refractive index, a high density, and exceptional chemical stability. When excited by green light, they can emit bright red fluorescence from implanted nitrogen-vacancy (NV) centers. Taking advantage of these properties, we have developed antibody-conjugated NDs as in vitro diagnostic sensors for two complementary assays: particle-enhanced turbidimetric immunoassay (PETIA) and spin-enhanced lateral flow immunoassay (SELFIA). To achieve this goal, monocrystalline diamond powders (∼100 nm in diameter) with or without NV implantation were first treated in molten KNO3 to reduce their size and shape inhomogeneity, followed by surface carboxylation in strong oxidative acids and non-covalent conjugation with antibodies in water. PETIA and SELFIA were carried out separately with a microplate reader and a magnetically modulated fluorescence analyzer. Using C-reactive protein (CRP) as the target antigen, we found that anti-CRP-conjugated NDs exhibited high colloidal stability over 1 month at 4 °C in buffer solution. The limits of detection for 3 µL of CRP sample solution were 0.06 µg/mL and 1 ng/mL with variation coefficients of less than 10 and 15% for PETIA and SELFIA, respectively. These two methods together provide a detection range of 1 ng/mL-10 µg/mL, potentially useful for clinical applications. This work represents the first practical use of rounded monocrystalline NDs as in vitro diagnostic reagents.


Assuntos
Técnicas Biossensoriais , Imunoconjugados , Nanodiamantes , Nanodiamantes/química , Imunoensaio , Diamante , Nitrogênio/química , Anticorpos
11.
Biosensors (Basel) ; 13(7)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37504090

RESUMO

Negatively charged nitrogen-vacancy (NV-) centers in diamond have unique magneto-optical properties, such as high fluorescence, single-photon generation, millisecond-long coherence times, and the ability to initialize and read the spin state using purely optical means. This makes NV- centers a powerful sensing tool for a range of applications, including magnetometry, electrometry, and thermometry. Biocompatible NV-rich nanodiamonds find application in cellular microscopy, nanoscopy, and in vivo imaging. NV- centers can also detect electron spins, paramagnetic agents, and nuclear spins. Techniques have been developed to hyperpolarize 14N, 15N, and 13C nuclear spins, which could open up new perspectives in NMR and MRI. However, defects on the diamond surface, such as hydrogen, vacancies, and trapping states, can reduce the stability of NV- in favor of the neutral form (NV0), which lacks the same properties. Laser irradiation can also lead to charge-state switching and a reduction in the number of NV- centers. Efforts have been made to improve stability through diamond substrate doping, proper annealing and surface termination, laser irradiation, and electric or electrochemical tuning of the surface potential. This article discusses advances in the stabilization and enrichment of shallow NV- ensembles, describing strategies for improving the quality of diamond devices for sensing and spin-polarization transfer applications. Selected applications in the field of biosensing are discussed in more depth.


Assuntos
Nanodiamantes , Termometria , Diamante/química , Nitrogênio/química , Nanodiamantes/química , Microscopia , Termometria/métodos
12.
Prog Nucl Magn Reson Spectrosc ; 134-135: 20-38, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37321756

RESUMO

Nanodiamonds containing fluorescent Nitrogen-Vacancy (NV) centers are the smallest single particles, of which a magnetic resonance spectrum can be recorded at room temperature using optically-detected magnetic resonance (ODMR). By recording spectral shift or changes in relaxation rates, various physical and chemical quantities can be measured such as the magnetic field, orientation, temperature, radical concentration, pH or even NMR. This turns NV-nanodiamonds into nanoscale quantum sensors, which can be read out by a sensitive fluorescence microscope equipped with an additional magnetic resonance upgrade. In this review, we introduce the field of ODMR spectroscopy of NV-nanodiamonds and how it can be used to sense different quantities. Thereby we highlight both, the pioneering contributions and the latest results (covered until 2021) with a focus on biological applications.


Assuntos
Nanodiamantes , Nanodiamantes/química , Nitrogênio/química , Espectroscopia de Ressonância Magnética/métodos , Microscopia de Fluorescência , Imageamento por Ressonância Magnética
13.
Molecules ; 28(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37241802

RESUMO

Nanodiamonds (NDs) are emerging as a promising candidate for multimodal bioimaging on account of their optical and spectroscopic properties. NDs are extensively utilized for bioimaging probes due to their defects and admixtures in their crystal lattice. There are many optically active defects presented in NDs called color centers, which are highly photostable, extremely sensitive to bioimaging, and capable of electron leap in the forbidden band; further, they absorb or emit light when leaping, enabling the nanodiamond to fluoresce. Fluorescent imaging plays a significant role in bioscience research, but traditional fluorescent dyes have some drawbacks in physical, optical and toxicity aspects. As a novel fluorescent labeling tool, NDs have become the focus of research in the field of biomarkers in recent years because of their various irreplaceable advantages. This review primarily focuses on the recent application progress of nanodiamonds in the field of bioimaging. In this paper, we will summarize the progress of ND research from the following aspects (including fluorescence imaging, Raman imaging, X-ray imaging, magnetic modulation fluorescence imaging, magnetic resonance imaging, cathodoluminescence imaging, and optical coherence tomography imaging) and expect to supply an outlook contribution for future nanodiamond exploration in bioimaging.


Assuntos
Nanodiamantes , Nanodiamantes/química , Imagem Óptica/métodos , Corantes Fluorescentes/química , Tomografia de Coerência Óptica
14.
Biochim Biophys Acta Gen Subj ; 1867(9): 130384, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37209777

RESUMO

We report the synthesis of covalent conjugates of nanodiamonds with doxorubicin and a cytostatic drug from the class of 1,3,5-triazines. The obtained conjugates were identified using a number of physicochemical methods (IR-spectroscopy, NMR-spectroscopy, XRD, XPS, TEM). As a result of our study, it was found that ND-СONH-Dox and ND-COO-Diox showed good hemocompatibility, since they did not affect plasma coagulation hemostasis, platelet functional activity, and erythrocyte membrane. The ND-COO-Diox conjugates are also capable of binding to human serum albumin due to the presence of ND in their composition. In the study of the cytotoxic properties of ND-СONH-Dox and ND-COO-Diox in the T98G glioblastoma cell line, indicating that ND-СONH-Dox and ND-COO-Diox demonstrate greater cytotoxicity at lower concentrations of Dox and Diox in the composition of the conjugates compared to individual drugs; the cytotoxic effect of ND-COO-Diox was statistically significantly higher than that of ND-СONH-Dox at all concentrations studied. Greater cytotoxicity at lower concentrations of Dox and Diox in the composition of conjugates compared to individual cytostatics makes it promising to further study the specific antitumor activity and acute toxicity of these conjugates in models of glioblastoma in vivo. Our results demonstrated that ND-СONH-Dox and ND-COO-Diox enter HeLa cells predominantly via a nonspecific actin-dependent mechanism, while for ND-СONH-Dox a clathrin-dependent endocytosis pathway. All data obtained provide that the synthesized nanomaterials show a potential application as the agents for intertumoral administration.


Assuntos
Citostáticos , Glioblastoma , Nanodiamantes , Humanos , Nanodiamantes/química , Células HeLa , Doxorrubicina/química
15.
SLAS Technol ; 28(4): 214-222, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37004790

RESUMO

Advances in nanotechnology have great potential to address many unmet clinical and biomedical needs. Nanodiamonds, as a class of carbon nanoparticles with unique properties, may be useful towards a versatile range of biomedical applications from drug delivery to diagnostics. This review describes how these properties of nanodiamonds facilitate their application in different fields of biomedicine, including delivery of chemotherapy drugs, peptides, proteins, nucleic acids and biosensors. Additionally, clinical potential of nanodiamonds, with studies in both preclinical and clinical stages, is also reviewed here, highlighting the translational potential of nanodiamonds in biomedical research.


Assuntos
Nanodiamantes , Nanodiamantes/química , Sistemas de Liberação de Medicamentos , Nanotecnologia
16.
Chem Commun (Camb) ; 59(15): 2039-2055, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36723092

RESUMO

Nanodiamonds (NDs) are a remarkable class of carbon-based nanoparticles in nanomedicine which have recently become a hot topic of research due to their unique features including functionalization versatility, tunable opto-magnetic properties, chemical stability, minimal cytotoxicity, high affinity to biomolecules and biocompatibility. These attractive features make NDs versatile tools for a wide range of biologically relevant applications. In this feature article, we discuss the opto-magnetic properties of negatively charged nitrogen vacancy (NV-) centres in NDs as fluorescence probes. We further discuss the frequently used chemical methods for surface chemistry modification of NDs which are relevant for biomedical applications. The in vitro and in vivo biocompatibility of modified NDs is also highlighted. Subsequently, we give an overview of recent state-of-the-art biomedical applications of NDs as versatile tools for bioimaging and detection, and as targeting nanocarriers for chemotherapy, photodynamic therapy, gene therapy, antimicrobial and antiviral therapy, and bone tissue engineering. Finally, we pinpoint the main challenges for NDs in biomedical applications which lie ahead and discuss perspectives on future directions in advancing the field for practical applications and clinical translations.


Assuntos
Nanodiamantes , Fotoquimioterapia , Nanodiamantes/uso terapêutico , Nanodiamantes/química , Nanomedicina/métodos , Engenharia Tecidual , Corantes Fluorescentes
17.
Small ; 19(11): e2205429, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36638251

RESUMO

Fluorescent nanodiamonds (FNDs) with negative nitrogen-vacancy (NV- ) defect centers are great probes for biosensing applications, with potential to act as biomarkers for cell differentiation. To explore this concept, uptake of FNDs (≈120 nm) by THP-1 monocytes and monocyte-derived M0-macrophages is studied. The time course analysis of FND uptake by monocytes confirms differing FND-cell interactions and a positive time-dependence. No effect on cell viability, proliferation, and differentiation potential into macrophages is observed, while cells saturated with FNDs, unload the FNDs completely by 25 cell divisions and subsequently take up a second dose effectively. FND uptake variations by THP-1 cells at early exposure-times indicate differing phagocytic capability. The cell fraction that exhibits relatively enhanced FND uptake is associated to a macrophage phenotype which derives from spontaneous monocyte differentiation. In accordance, chemical-differentiation of the THP-1 cells into M0-macrophages triggers increased and homogeneous FND uptake, depleting the fraction of cells that were non-responsive to FNDs. These observations imply that FND uptake allows for distinction between the two cell subtypes based on phagocytic capacity. Overall, FNDs demonstrate effective cell labeling of monocytes and macrophages, and are promising candidates for sensing biological processes that involve cell differentiation.


Assuntos
Técnicas Biossensoriais , Corantes Fluorescentes , Macrófagos , Monócitos , Nanodiamantes , Fagocitose , Nanodiamantes/química , Nanodiamantes/toxicidade , Nitrogênio/química , Corantes Fluorescentes/química , Corantes Fluorescentes/toxicidade , Humanos , Linhagem Celular , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/fisiologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Fagocitose/efeitos dos fármacos
18.
Acc Chem Res ; 56(2): 95-105, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36594628

RESUMO

Nanothermometry is increasingly demanded in frontier research in physics, chemistry, materials science and engineering, and biomedicine. An ideal thermometer should have features of reliable temperature interpretation, high sensitivity, fast response, minimum disturbance of the target's temperature, applicability in a variety of environments, and a large working temperature range. For applications in nanosystems, high spatial resolution is also desirable. Such requirements impose great challenges in nanothermometry since the shrinking of the sensor volume usually leads to a reduction in sensitivity.Diamond with nitrogen-vacancy (NV) centers provides opportunities for nanothermometry. NV center spins have sharp resonances due to their superb coherence. NV centers are multimodal sensors. They can directly sense magnetic fields, electric fields, temperature, pressure, and nuclear spins and, through proper transduction, measure other quantities such as the pH and deformation. In particular, their spin resonance frequencies vary with temperature, making them a promising thermometer. The high thermal conductivity, high hardness, chemical stability, and biocompatibility of diamond enable reliable and fast temperature sensing in complex environments ranging from erosive liquids to live systems. Chemical processing of diamond surfaces allows various functionalities such as targeting. The small size and the targeting capability of nanodiamonds then enable site-specific temperature sensing with nanoscale spatial resolution. However, the sensitivity of NV-based nanothermometry is yet to meet the requirement of practical systems with a large gap of a few orders of magnitude. On the other hand, although NV-based quantum sensing works well from 0.3 to 600 K, extending the sensing scheme to high temperature remains challenging due to uncertainty in identifying the exact physical limits and possible solution at elevated temperatures.This Account focuses on our efforts to enhance the temperature sensitivity and widen the working temperature range of diamond-based nanothermometry. We start with explaining the working principle and features of NV-based thermometry with examples of applications. Then a transducer-based concept is introduced with practical schemes to improve the sensitivity of the nanodiamond thermometer. Specifically, we show that the temperature signal can be transduced and amplified by adopting hybrid structures of nanodiamond and magnetic nanoparticles, which results in a record temperature sensitivity of 76 µK/√Hz. We also demonstrate quantum sensing with NV at high temperatures of up to 1000 K by adopting a pulsed heating-cooling scheme to carry out the spin polarization and readout at room temperature and the spin manipulation (sensing) at high temperatures. Finally, unsolved problems and future endeavors of diamond nanothermometry are discussed.


Assuntos
Diamante , Nanodiamantes , Nanodiamantes/química , Temperatura , Nitrogênio/química
19.
J Mater Chem B ; 11(3): 675-686, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36562480

RESUMO

Safety assessment of carbon nanomaterials is of paramount importance since they are on the frontline for applications in sensing, bioimaging and drug delivery. The biocompatibility and safety of functionalized nanodiamonds (NDs) are here addressed through the study of the pro-inflammatory response of RAW-264.7 macrophages exposed to new nanodiamonds@corrole hybrids. The corrole unit selected is as a prototype for a hydrophobic organic molecule that can function as a NIR fluorophore reporter, an optical sensor, a photodynamic therapy agent or a photocatalyst. The new functional nanohybrids containing detonated nanodiamonds (NDs) were obtained through esterification using carboxylated NDs and glycol corroles. The success of the covalent functionalization via carbodiimide activation was confirmed through X-ray photoelectron spectroscopy (XPS), Raman and Fourier transform infrared (FTIR) spectroscopy. The UV-vis absorption and emission spectra of the hybrids are additive with respect to the corrole features. The cellular uptake, localization, cell viability and effects on immune cell activation of the new hybrids and of the precursors were carefully investigated using RAW-264.7 macrophages. Overall results showed that the ND@corrole hybrids had no pro-inflammatory effects on the RAW-264.7 macrophage cell line, making them an ideal candidate for a wide range of biomedical applications.


Assuntos
Nanodiamantes , Porfirinas , Nanodiamantes/química , Sistemas de Liberação de Medicamentos , Porfirinas/farmacologia , Macrófagos
20.
Acc Chem Res ; 55(24): 3572-3580, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36475573

RESUMO

Relaxometry is a technique which makes use of a specific crystal lattice defect in diamond, the so-called NV center. This defect consists of a nitrogen atom, which replaces a carbon atom in the diamond lattice, and an adjacent vacancy. NV centers allow converting magnetic noise into optical signals, which dramatically increases the sensitivity of the readout, allowing for nanoscale resolution. Analogously to T1 measurements in conventional magnetic resonance imaging (MRI), relaxometry allows the detection of different concentrations of paramagnetic species. However, since relaxometry allows very local measurements, the detected signals are from nanoscale voxels around the NV centers. As a result, it is possible to achieve subcellular resolutions and organelle specific measurements.A relaxometry experiment starts with polarizing the spins of NV centers in the diamond lattice, using a strong laser pulse. Afterward the laser is switched off and the NV centers are allowed to stochastically decay into the equilibrium mix of different magnetic states. The polarized configuration exhibits stronger fluorescence than the equilibrium state, allowing one to optically monitor this transition and determine its rate. This process happens faster at higher levels of magnetic noise. Alternatively, it is possible to conduct T1 relaxation measurements from the dark to the bright equilibrium by applying a microwave pulse which brings NV centers into the -1 state instead of the 0 state. One can record a spectrum of T1 at varying strengths of the applied magnetic field. This technique is called cross-relaxometry. Apart from detecting magnetic signals, responsive coatings can be applied which render T1 sensitive to other parameters as pH, temperature, or electric field. Depending on the application there are three different ways to conduct relaxometry experiments: relaxometry in moving or stationary nanodiamonds, scanning magnetometry, and relaxometry in a stationary bulk diamond with a stationary sample on top.In this Account, we present examples for various relaxometry modes as well as their advantages and limitations. Due to the simplicity and low cost of the approach, relaxometry has been implemented in many different instruments and for a wide range of applications. Herein we review the progress that has been achieved in physics, chemistry, and biology. Many articles in this field have a proof-of-principle character, and the full potential of the technology still waits to be unfolded. With this Account, we would like to stimulate discourse on the future of relaxometry.


Assuntos
Diamante , Nanodiamantes , Diamante/química , Nitrogênio/química , Nanodiamantes/química , Fluorescência , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...