Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.459
Filtrar
6.
Int J Pharm ; 656: 124097, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38609058

RESUMO

The size and concentration are critical for the diagnostic and therapeutic applications of nanomaterials but the accurate measurement remains challenging. Nanoparticle tracking analysis (NTA) is widely used for size and concentration determination. However, highly repeatable standard operating procedures (SOPs) are absent. We adopted the "search-evaluate-test" strategy to standardize the measurement by searching the critical parameters. The particles per frame are linearly proportional to the sample concentration and the measured results are more accurate and repeatable when the concentration is 108-109 particles/ml. The optimal detection threshold is around 5. The optimal camera level is such that it allows clear observation of particles without diffractive rings and overexposure. The optimal speed is ≤ 50 in AU and âˆ¼ 10 µl/min in flow rate. We then evaluated the protocol using polydisperse polystyrene particles and we found that NTA could discriminate particles in bimodal mixtures with high size resolution but the performance on multimodal mixtures is not as good as that of resistive pulse sensing (RPS). We further analyzed the polystyrene particles, SiO2 particles, and biological samples by NTA following the SOPs. The size and concentration measured by NTA differentially varies to those determined by RPS and transmission electron microscopy.


Assuntos
Nanopartículas , Tamanho da Partícula , Poliestirenos , Dióxido de Silício , Nanopartículas/química , Nanopartículas/análise , Poliestirenos/química , Dióxido de Silício/química , Ouro/química , Microscopia Eletrônica de Transmissão , Nanoestruturas/química , Animais
7.
Anal Bioanal Chem ; 416(11): 2657-2676, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38329514

RESUMO

The extensive application of metallic nanoparticles (NPs) in several fields has significantly impacted our daily lives. Nonetheless, uncertainties persist regarding the toxicity and potential risks associated with the vast number of NPs entering the environment and human bodies, so the performance of toxicological studies are highly demanded. While traditional assays focus primarily on the effects, the comprehension of the underlying processes requires innovative analytical approaches that can detect, characterize, and quantify NPs in complex biological matrices. Among the available alternatives to achieve this information, mass spectrometry, and more concretely, inductively coupled plasma mass spectrometry (ICP-MS), has emerged as an appealing option. This work critically reviews the valuable contribution of ICP-MS-based techniques to investigate NP toxicity and their transformations during in vitro and in vivo toxicological assays. Various ICP-MS modalities, such as total elemental analysis, single particle or single-cell modes, and coupling with separation techniques, as well as the potential of laser ablation as a spatially resolved sample introduction approach, are explored and discussed. Moreover, this review addresses limitations, novel trends, and perspectives in the field of nanotoxicology, particularly concerning NP internalization and pathways. These processes encompass cellular uptake and quantification, localization, translocation to other cell compartments, and biological transformations. By leveraging the capabilities of ICP-MS, researchers can gain deeper insights into the behaviour and effects of NPs, which can pave the way for safer and more responsible use of these materials.


Assuntos
Terapia a Laser , Nanopartículas Metálicas , Nanopartículas , Humanos , Análise Espectral , Nanopartículas Metálicas/química , Espectrometria de Massas/métodos , Nanopartículas/toxicidade , Nanopartículas/análise
8.
J Pharm Sci ; 113(4): 891-899, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37926233

RESUMO

During biopharmaceutical development, particle monitoring and characterization are crucial. Notably, particles can be impurities considered as critical quality attribute, or active pharmaceutical ingredient (e.g., viral vectors) or drug delivery system (e.g., lipid nanoparticles) itself. Three-dimensional homodyne light detection (3D-HLD) is a novel technique that can characterize particles in the ∼0.2 µm to 2.0 µm size range. We evaluated 3D-HLD for the analysis of high concentration protein formulations (up to 200 mg/mL), where formulation refractive index and background noise became limiting factors with increasing protein concentration. Sample viscosity however did not impact 3D-HLD results, in contrast to comparative analyses with NTA and MRPS. We also applied 3D-HLD in high-throughput screenings at high protein concentration or of lipid nanoparticle and viral vector formulations, where impurities were analyzed in the presence of a small (<0.2 µm) particulate active pharmaceutical ingredient. 3D-HLD turned out to be in good agreement with or a good complement to other state-of-the-art particle characterization techniques, including BMI, MRPS, and DLS. The main application of 3D-HLD is high-throughput particle analysis at low sample volume. Follow-up investigation of the optimized particle sizing approach and of detection settings could further improve the understanding of the method and potentially increase ease of operation.


Assuntos
Produtos Biológicos , Nanopartículas , Princípios Ativos , Proteínas/análise , Nanopartículas/análise , Ensaios de Triagem em Larga Escala , Tamanho da Partícula
9.
Transfus Med ; 33(5): 398-402, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37483014

RESUMO

BACKGROUND: Cryoprecipitate is used primarily to replenish fibrinogen levels in patients. Little is known about the presence of micro- or nano-sized particles in cryoprecipitate. Therefore, we aimed to quantify these particles and investigate some pre-analytical considerations. MATERIALS AND METHODS: Particle concentration and size distribution were determined in 10 cryoprecipitate units by nanoparticle tracking analysis (NTA). The effects of freeze-thawing cryoprecipitate and 0.45 µm filtration with either regenerated cellulose (RC) or polytetrafluoroethylene (PTFE) filters before sample analysis were examined. RESULTS: Neither the size nor concentration of particles were affected by two freeze/thaw cycles. PTFE filtration, but not RC filtration, significantly reduced particle mean and mode size compared to RC filtration and mode size compared to unfiltered cryoprecipitate. The 10 cryoprecipitate units had an average particle concentration of 2.50 × 1011 ± 1.10 × 1011 particles/mL, a mean particle size of 133.8 ± 7.5 nm and a mode particle size of 107.9 ± 11.1 nm. CONCLUSION: This study demonstrated that preanalytical filtration of cryoprecipitate units using RC filters was suitable for NTA. An additional freeze/thaw cycle did not impact NTA parameters, suggesting that aliquoting cryoprecipitate units prior to laboratory investigations is suitable for downstream analyses.


Assuntos
Fator VIII , Fibrinogênio , Nanopartículas , Humanos , Nanopartículas/análise , Tamanho da Partícula , Politetrafluoretileno , Fator VIII/química , Fibrinogênio/química , Filtração
10.
An. R. Acad. Nac. Farm. (Internet) ; 89(2): 197-202, Abril - Junio 2023. ilus, graf
Artigo em Espanhol | IBECS | ID: ibc-223525

RESUMO

Con la intención de vehiculizar fármacos cannabinoides (agonistas CB2) de forma selectiva hacia la placa de ateroma, se han obtenido nanopartículas biocompatibles y biodegradables. Para ello, las nanopartículas PEGyladas, han sido funcionalizadas con un péptido capaz de unirse selectivamente a proteínas endoteliales de adhesión sobreexpresadas en la placa aterosclerótica (vascular cell adhesion molecule 1, VCAM-1). Las partículas han sido caracterizadas fisicoquímicamente, in vitro en cultivos celulares e in vivo en un modelo animal de aterosclerosis (ratones deficientes en apolipoproteína E, ApoE-/-), demostrando un óptimo control espacio-temporal de la liberación del cannabinoide y una respuesta farmacológica superior. Dado que los fármacos agonistas CB2 presentan alta lipofilia y baja disponibilidad, la introducción de nanosistemas selectivos para la vehiculización de estos fármacos antiaterogénicos, mejoraría su biodisponibilidad y eficacia.El trabajo presentado muestra parte de los resultados obtenidos de un proyecto previo. Estos resultados nos han avalado para la concesión de una nueva ayuda de financiación para abordar una estrategia más avanzada que implica la introducción de elementos de diagnóstico y de un fitocannabinoide. (AU)


In order to selectively deliver cannabinoid drugs (CB2 agonists) to the atherosclerotic plaque, biocompatible and biodegradable nanoparticles have been obtained. For this purpose, the PEGylated nanoparticles have been functionalized with a peptide capable of selectively binding to endothelial adhesion proteins overexpressed in the atherosclerotic plaque (vascular cell adhesion molecules 1, VCAM-1). The particles have been characterized physicochemically, in vitro in cell cultures and in vivo in an animal model of atherosclerosis (apolipoprotein E-deficient ApoE-/- mice), demonstrating optimal spatiotemporal control of cannabinoid release and superior pharmacological response. Given that CB2 agonist drugs present high lipophilicity and low availability, the introduction of selective nanosystems for the vehiculation of these antiatherogenic drugs would improve their bioavailability and efficacy.The work presented shows part of the results obtained from a previous project. These results have supported us for the award of a new funding grant to address a more advanced strategy involving the introduction of diagnostic elements and a phytocannabinoid. (AU)


Assuntos
Animais , Camundongos , Placa Aterosclerótica/terapia , Molécula 1 de Adesão de Célula Vascular , Agonistas de Receptores de Canabinoides , Nanopartículas/análise , Aterosclerose/terapia , Canabinoides , Apolipoproteínas E , Técnicas de Cultura de Células , Polietilenoglicóis/farmacologia
11.
Food Chem Toxicol ; 176: 113779, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37062331

RESUMO

This study aims to provide information on the behaviour and biopersistence rate (BP) of metallic nanoparticles (Ag-NPs, TiO2-NPs, ZnO-NPs) naturally occurring in canned seafood and subjected to static in vitro digestion. Single particle ICP-MS analysis was performed to determine NPs distribution and concentrations in oral, gastric, and intestinal digests. Depending on the conditions of the digestive phase and the sample matrix, the phenomena of agglomeration and dispersion were highlighted and confirmed by Dynamic Light Scattering (DLS) technique. In standard suspensions, Ag-NPs had lower biopersistence (BP) than ZnO and TiO2-NPs (BP 34%, 89% and >100%, respectively). Among Ag-NPs and TiO2-NPs naturally present in the food matrix, those in canned tuna were more degradable than those in canned clam (BP Ag-NPs 36% vs. > 100%; BP TiO2-NPs 96% vs. > 100%), while BP ZnO-NPs showed high biopersistence in both seafood matrix (>100%). The biopersistence rates were higher than the recommended limit set by European Food Safety Authority (EFSA) (12%), referred to nanotechnologies to be applied in the food and feed chain, thus the investigated naturally occurring NPs cannot be considered readily degradable.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Humanos , Nanopartículas/análise , Titânio , Alimentos Marinhos/análise , Trato Gastrointestinal
12.
J Pharm Sci ; 112(5): 1401-1410, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36596392

RESUMO

Delivery of messenger RNA (mRNA) using lipid nanoparticles (LNPs) is expected to be applied to various diseases following the successful clinical use of the mRNA COVID-19 vaccines. This study aimed to evaluate the effect of the cholesterol molar percentage of mRNA-LNPs on protein expression in hepatocellular carcinoma-derived cells and in the liver after intramuscular or subcutaneous administration of mRNA-LNPs in mice. For mRNA-LNPs with cholesterol molar percentages reduced to 10 mol% and 20 mol%, we formulated neutral charge particles with a diameter of approximately 100 nm and polydispersity index (PDI) <0.25. After the intramuscular or subcutaneous administration of mRNA-LNPs with different cholesterol molar percentages in mice, protein expression in the liver decreased as the cholesterol molar percentage in mRNA-LNPs decreased from 40 mol% to 20 mol% and 10 mol%, suggesting that reducing the cholesterol molar percentage in mRNA-LNPs decreases protein expression in the liver. Furthermore, in HepG2 cells, protein expression decreased as cholesterol in mRNA-LNPs was reduced by 40 mol%, 20 mol%, and 10 mol%. These results suggest that the downregulated expression of mRNA-LNPs with low cholesterol content in the liver involves degradation in systemic circulating blood and decreased protein expression after hepatocyte distribution.


Assuntos
Colesterol , Fígado , RNA Mensageiro , RNA Mensageiro/administração & dosagem , Animais , Camundongos , Colesterol/análise , Colesterol/sangue , Colesterol/metabolismo , Linhagem Celular Tumoral , Carcinoma Hepatocelular , Neoplasias Hepáticas Experimentais , Fígado/metabolismo , Luciferases/metabolismo , Masculino , Humanos , Lipossomos/administração & dosagem , Lipossomos/análise , Lipossomos/química , Nanopartículas/administração & dosagem , Nanopartículas/análise , Nanopartículas/química
13.
Water Res ; 230: 119545, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36623384

RESUMO

The growing applications of CuO nanoparticles (NPs) in industrial and agriculture has increased their concentrations in wastewater and subsequently accumulated in waste activated sludge (WAS), raising concerns about their impact on reutilization of WAS, especially on the medium-chain carboxylates (MCCs) production from anaerobic fermentation of WAS. Here we showed that CuO NPs at 10-50 mg/g-TS can significantly inhibit MCCs production, and reactive oxygen species generation was revealed to be the key factor linked to the phenomena. At lower CuO NPs concentrations (0.5-2.5 mg/g-TS), however, MCCs production was enhanced, with a maximum level of 37% compared to the control. The combination of molecular approaches and metaproteomic analysis revealed that although low dosage CuO NPs (2.5 mg/g-TS) weakly inhibited chain elongation process, they displayed contributive characteristics both in WAS solubilization and transport/metabolism of carbohydrate. These results demonstrated that the complex microbial processes for MCCs production in the anaerobic fermentation of WAS can be affected by CuO NPs in a dosage-dependent manner via regulating microbial protein expression level. Our findings can provide new insights into the influence of CuO NPs on anaerobic fermentation process and shed light on the treatment option for the resource utilization of CuO NPs polluted WAS.


Assuntos
Nanopartículas , Esgotos , Eliminação de Resíduos Líquidos/métodos , Nanopartículas/análise , Cobre
14.
Int J Nanomedicine ; 18: 225-241, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36660337

RESUMO

Background: Gallium (III) metal-organic complexes have been shown to have the ability to inhibit tumor growth, but the poor water solubility of many of the complexes precludes further application. The use of materials with high biocompatibility as drug delivery carriers for metal-organic complexes to enhance the bioavailability of the drug is a feasible approach. Methods: Here, we modified the ligands of gallium 8-hydroxyquinolinate complex with good clinical anticancer activity by replacing the 8-hydroxyquinoline ligands with 5-bromo-8-hydroxyquinoline (HBrQ), and the resulting Ga(III) + HBrQ complex had poor water solubility. Two biocompatible materials, bovine serum albumin (BSA) and graphene oxide (GO), were used to synthesize the corresponding Ga(III) + HBrQ complex nanoparticles (NPs) BSA/Ga/HBrQ NPs and GO/Ga/HBrQ NPs in different ways to enhance the drug delivery of the metal complex. Results: Both of BSA/Ga/HBrQ NPs and GO/Ga/HBrQ NPs can maintain stable existence in different solution states. In vitro cytotoxicity test showed that two nanomedicines had excellent anti-proliferation effect on HCT116 cells, which shown higher level of intracellular ROS and apoptosis ratio than that of cisplatin and oxaliplatin. In addition, the superior emissive properties of BSA/Ga/HBrQ NPs and GO/Ga/HBrQ NPs allow their use for in vivo imaging showing highly effective therapy in HCT116 tumor-bearing mouse models. Conclusion: The use of biocompatible materials for the preparation of NPs against poorly biocompatible metal-organic complexes to construct drug delivery systems is a promising strategy that can further improve drug delivery and therapeutic efficacy.


Assuntos
Antineoplásicos , Portadores de Fármacos , Gálio , Grafite , Nanopartículas Metálicas , Oxiquinolina , Animais , Humanos , Camundongos , Materiais Biocompatíveis , Linhagem Celular Tumoral , Portadores de Fármacos/síntese química , Gálio/química , Grafite/química , Células HCT116 , Nanopartículas Metálicas/análise , Nanopartículas/análise , Oxiquinolina/química , Tamanho da Partícula , Soroalbumina Bovina/farmacologia , Água , Antineoplásicos/síntese química , Antineoplásicos/química
15.
ACS Nano ; 17(1): 221-229, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36525614

RESUMO

Rapid and reliable characterization of heterogeneous nanoparticle suspensions is a key technology across the nanosciences. Although approaches exist for homogeneous samples, they are often unsuitable for polydisperse suspensions, as particles of different sizes and compositions can lead to indistinguishable signals at the detector. Here, we introduce holographic nanoparticle tracking analysis, holoNTA, as a straightforward methodology that decouples size and material refractive index contributions. HoloNTA is applicable to any heterogeneous nanoparticle sample and has the sensitivity to measure the intrinsic heterogeneity of the sample. Specifically, we combined high dynamic range k-space imaging with holographic 3D single-particle tracking. This strategy enables long-term tracking by extending the imaging volume and delivers precise and accurate estimates of both scattering amplitude and diffusion coefficient of individual nanoparticles, from which particle refractive index and hydrodynamic size are determined. We specifically demonstrate, by simulations and experiments, that irrespective of localization uncertainty and size, the sizing sensitivity is improved as our extended detection volume yields considerably longer particle trajectories than previously reported by comparable technologies. As validation, we measured both homogeneous and heterogeneous suspensions of nanoparticles in the 40-250 nm size range and further monitored protein corona formation, where we identified subtle differences between the nanoparticle-protein complexes derived from avidin, bovine serum albumin, and streptavidin. We foresee that our approach will find many applications of both fundamental and applied nature where routine quantification and sizing of nanoparticles are required.


Assuntos
Nanopartículas , Refratometria , Suspensões , Tamanho da Partícula , Nanopartículas/análise , Soroalbumina Bovina
16.
Anal Bioanal Chem ; 415(1): 7-16, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36085421

RESUMO

While the exact health risks associated with nanoplastics are currently the focus of intense research, there is no doubt that humans are exposed to nanoplastics and that food could be a major source of exposure. Nanoplastics are released from plastic materials and articles used during food production, processing, storage, preparation, and serving. They are also likely to enter the food chain via contaminated water, air, and soil. However, very limited exposure data for risk assessment exists so far due to the lack of suitable analytical methods. Nanoplastic detection in food poses a great analytical challenge due to the complexity of plastics and food matrices as well as the small size and expectedly low concentration of the plastic particles. Multidetector field flow fractionation has emerged as a valuable analytical technique for nanoparticle separation over the last decades, and the first studies using the technique for analyzing nanoplastics in complex matrices are emerging. In combination with online detectors and offline analysis, multidetector field flow fractionation is a powerful platform for advanced characterization of nanoplastics in food by reducing sample complexity, which otherwise hampers the full potential of most analytical techniques. The focus of this article is to present the current state of the art of multidetector field flow fractionation for nanoplastic analysis and to discuss future trends and needs aiming at the analysis of nanoplastics in food.


Assuntos
Alimentos , Fracionamento por Campo e Fluxo , Nanopartículas , Poluentes Químicos da Água , Humanos , Fracionamento por Campo e Fluxo/métodos , Microplásticos/análise , Nanopartículas/análise , Tamanho da Partícula , Plásticos/análise , Poluentes Químicos da Água/análise , Análise de Alimentos
17.
Talanta ; 252: 123852, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36041315

RESUMO

Iron-tannic nanoparticles were used as a new adsorbent for dispersive solid phase extraction (DSPE) synergized with cloud point extraction (CPE) to enrich four tetracyclines (oxytetracycline, tetracycline, chlortetracycline, and doxycycline) prior to high-performance liquid chromatographic determination. DSPE and CPE were performed simultaneously in a one-pot co-extraction to form iron-tannic nanoparticles in-situ and pre-concentrate the tetracyclines. The parameters affecting the extraction efficiency were investigated. Using the optimal parameters, linear calibrations ranging from 2.63 to 1000 ng mL-1 were obtained, with determination coefficients greater than 0.996. The limit of detection was found to be 1.06-3.19 ng mL-1, while the limit of quantification was 2.63-10.65 ng mL-1. Precision was expressed as a relative standard deviation of less than 10%. The residues of the four tetracyclines in milk, eggs, honey, chicken liver, and chicken kidney samples were determined by the proposed method. The recoveries ranged from 79.3 to 107.1%. The results indicated that the proposed method was an alternative method for the extraction and pre-concentration of tetracyclines with high extraction and enrichment efficiency. In addition, it promoted rapidity and environmental friendliness.


Assuntos
Nanopartículas , Tetraciclinas , Tetraciclinas/análise , Cromatografia Líquida de Alta Pressão/métodos , Ferro , Extração em Fase Sólida/métodos , Antibacterianos/análise , Nanopartículas/análise
18.
Braz. J. Pharm. Sci. (Online) ; 59: e22330, 2023. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1505846

RESUMO

Abstract Donepezil-HCl is a member of the acetylcholinesterase inhibitors that is indicated for the symptomatic treatment of Alzheimer's disease (AD) and has many side effects. In this study, to reduce the side effects of Donepezil-HCl and increase the penetration of the drug through the blood-brain barrier, we aimed to design a solid lipid nanoparticle (SLN) formulation. The effects of the different formulation parameters, such as homogenization speed, sonication time, lipid and drug concentration, surfactant type and concentration, and volume of the aqueous phase, were assessed for optimization. The particle size and PDI increased with increasing lipid concentration but decreased with increasing amounts of surfactant (Tween 80) and co-surfactant (lecithin). When the homogenization rate and sonication time increased, the particle size decreased and the encapsulation efficiency increased. The optimized formulation exhibited particle size, PDI, encapsulation efficiency, and zeta potential of 87.2±0.11 nm; 0.22±0.02; 93.84±0.01 %; -17.0±0.12 mV respectively. The in vitro release investigation revealed that approximately 70% of Donepezil-HCl was cumulatively released after 24 hours. TEM analysis proved that spherical and smooth particles were obtained and formulations had no toxic effect on cells. The final optimized formulation could be a candidate for Donepezil-HCl application in Alzheimer's treatment with reduced side effects and doses for patients


Assuntos
Padrões de Referência , Pesquisa/instrumentação , Nanopartículas/análise , Donepezila/efeitos adversos , Técnicas In Vitro/métodos , Preparações Farmacêuticas/administração & dosagem , Doença de Alzheimer/patologia
19.
Small ; 18(38): e2202024, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35988130

RESUMO

Accurate determination of the size distribution of nanoparticle ensembles remains a challenge in nanotechnology-related applications due to the limitations of established methods. Here, a microstructured fiber-assisted nanoparticle tracking analysis (FaNTA) realization is introduced that breaks existing limitations through the recording of exceptionally long trajectories of rapidly diffusing polydisperse nanoparticles, resulting in excellent sizing precision and unprecedented separation capabilities of bimodal nanoparticle mixtures. An effective-single-mode antiresonant-element fiber allows to efficiently confine nanoparticles in a light-guiding microchannel and individually track them over more than 1000 frames, while aberration-free imaging is experimentally confirmed by cross-correlation analysis. Unique features of the approach are (i) the highly precise determination of the size distribution of monodisperse nanoparticle ensembles (only 7% coefficient of variation) and (ii) the accurate characterization of individual components in a bimodal mixture with very close mean diameters, both experimentally demonstrated for polymer nanospheres. The outstanding performance of the FaNTA realization can be quantified by introducing a new model for the bimodal separation index. Since FaNTA is applicable to all types of nano-objects down to sub-20 nm diameters, the method will improve the precision standard of mono- and polydisperse nanoparticle samples such as nano-plastics or extracellular vesicles.


Assuntos
Nanopartículas , Nanosferas , Microplásticos , Nanopartículas/análise , Nanotecnologia , Tamanho da Partícula , Polímeros
20.
J Hazard Mater ; 440: 129715, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35986943

RESUMO

This study investigated the effects of nanoplastics on marine organisms via trophic transfer in the food chain. We designed a three-step food chain comprising microalga (Dunaliella salina), small crustaceans (Artemia franciscana), and fish (small yellow croakers; Larimichthys polyactis) and evaluated the effects of trophic transfer in marine organisms, as well as verified the possibility of nanoplastic transfer to humans via trophic transfer. Using amine-modified nanopolystyrene (nPS-NH2) as a pollutant, we conducted both direct-exposure and trophic transfer experiments to determine how pollutants move through the food chain (D. salina → A. franciscana). Exposure of D. salina to nPS-NH2, which was adsorbed on its cell wall, resulted in transfer to A. franciscana with alteration of gut permeability. Additionally, assessment of the adverse effects of nPS-NH2 via a dietary pathway (three-step food chain) on the L. polyactis digestive system revealed that nanoplastics adsorbed to the cell wall of microalgae are gradually transferred to higher trophic level organisms, such as via food resources consumed by humans, inducing the inhibition of digestive enzyme activity (α-amylase). It indicates that human could eventually be exposed to nanoplastics and experience toxicity.


Assuntos
Crustáceos , Microalgas , Nanopartículas , Perciformes , Poluentes Químicos da Água , Aminas , Animais , Organismos Aquáticos , Cadeia Alimentar , Microplásticos , Nanopartículas/análise , Poluentes Químicos da Água/análise , alfa-Amilases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...