Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(49): 20628-20632, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34843644

RESUMO

DNA-wrapped carbon nanotubes have been explored increasingly as sensitive near-infrared fluorescence probes for biomolecules. However, notably missing in previous studies is an inquiry on stereoselective interactions between DNA-wrapped carbon nanotubes and biomolecules. Here, enantiopure (+) and (-)(6,5), and (-)(8,3) as well as achiral (11,0) carbon nanotubes wrapped with specific resolving DNA sequences are used to demonstrate their stereoselective detection of amino acid enantiomers. Furthermore, stereoselective sensing abilities are found to be retained by dispersions containing a multitude of chiral nanotube structures. The fluorescence response profiles of six different DNA-wrapped carbon nanotube dispersions to nine standard amino acids, and their enantiomers, demonstrate that DNA-wrapped carbon nanotubes are exquisitely sensitive to the stereoconfiguration and side-chain functionality of amino acids in a manner that is dependent on both DNA sequence and nanotube chirality. Implications of our findings are discussed in the context of developing a machine learning-aided multiplexed biosensing scheme called a molecular perceptron.


Assuntos
Aminoácidos/química , DNA/química , Nanotubos de Carbono/química , Luz , Luminescência , Medições Luminescentes , Nanotubos de Carbono/efeitos da radiação , Estereoisomerismo
2.
ACS Appl Mater Interfaces ; 13(41): 48423-48432, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34613688

RESUMO

Rapid volumetric in vivo visualization of circulating microparticles can facilitate new biomedical applications, such as blood flow characterization or targeted drug delivery. However, existing imaging modalities generally lack the sensitivity to detect the weak signals generated by individual micrometer-sized particles distributed across millimeter- to centimeter-scale depths in living mammalian tissues. Also, the temporal resolution is typically insufficient to track the particles in an entire three-dimensional region. Herein, we introduce a new type of monodisperse (4 µm) silica-core microparticle coated with a shell formed by a multilayered structure of carbon nanotubes (CNT) and gold nanoparticles (AuNP) to provide strong optoacoustic (OA) absorption-based contrast. We capitalize on the unique advantages of a state-of-the-art high-frame-rate OA tomography system to visualize and track the motion of these core-shell particles individually and volumetrically as they flow throughout the mouse brain vasculature. The feasibility of localizing individual solid particles smaller than red blood cells opens new opportunities for mapping the blood flow velocity, enhancing the resolution and visibility of OA images, and developing new biosensing assays.


Assuntos
Meios de Contraste/química , Nanopartículas Metálicas/química , Microplásticos/química , Nanotubos de Carbono/química , Animais , Encéfalo/diagnóstico por imagem , Meios de Contraste/efeitos da radiação , Feminino , Ouro/química , Ouro/efeitos da radiação , Raios Infravermelhos , Nanopartículas Metálicas/efeitos da radiação , Camundongos Nus , Microplásticos/efeitos da radiação , Nanotubos de Carbono/efeitos da radiação , Técnicas Fotoacústicas/métodos , Polietilenos/química , Polietilenos/efeitos da radiação , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/efeitos da radiação , Tomografia Computadorizada por Raios X/métodos
3.
ACS Appl Mater Interfaces ; 13(28): 32790-32798, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34232024

RESUMO

Cell sheet engineering represents a new era of precise and efficient regenerative medicine, but its efficacy is limited by the elaborative preparation and the weak mechanics. Herein, a near-infrared (NIR)-triggered dynamic wrinkling biointerface was designed for rapid acquisition of practical cell sheets. The biocompatible NIR can initiate the photothermal-mechanical linkage cascade to efficiently dissolve the collagen supporting layer and release the high-quality cell sheets. The interfacial shear force generates with the dynamic wrinkling, playing an active role in accelerating the cell sheet release. High-quality and self-supporting cell sheets can be harvested within a few minutes, demonstrating a new paradigm of photothermal-mechanical manipulation. The transplantable cell sheets with outstanding physiological and mechanical performances were proven to promote wound healing in skin regeneration. This method may open a completely new front in thermal and mechanical responsive cascade to harvest cell sheets, facilitating their wide applications in regenerative medicine.


Assuntos
Técnicas de Cultura de Células/métodos , Colágeno Tipo I/química , Fibroblastos/metabolismo , Mioblastos/metabolismo , Medicina Regenerativa/métodos , Cicatrização/fisiologia , Resinas Acrílicas/química , Resinas Acrílicas/efeitos da radiação , Animais , Linhagem Celular , Dimetilpolisiloxanos/química , Dimetilpolisiloxanos/efeitos da radiação , Fibroblastos/transplante , Calefação , Raios Infravermelhos , Camundongos , Mioblastos/transplante , Nanotubos de Carbono/química , Nanotubos de Carbono/efeitos da radiação , Transição de Fase , Poliestirenos/química , Poliestirenos/efeitos da radiação , Estudo de Prova de Conceito , Transplante de Pele
4.
Nanomedicine ; 29: 102272, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32730980

RESUMO

Carbon nanotubes (CN) have been studied to treat spinal cord injuries because of its electrical properties and nanometric dimensions. This work aims to develop a photopolymerizable hydrogel containing CN functionalized with an anti-inflammatory molecule to be used in situ on spinal cord injuries. The CN functionalization step was done using the drug (formononetin). The nanocomposites were characterized by morphological analysis, FTIR, Raman Spectroscopy, thermal analysis and cytotoxicity assays (MTT and HET-CAM). The nanocomposites were incorporated into gelatin methacryloyl hydrogel and exposed to UV light for photopolymerization. The volume of the formulation and the UV exposition time were also analyzed. The CN characterization showed that formononetin acted as a functionalization agent. The functionalized CN showed safe characteristics and can be incorporated in photocrosslinkable formulation. The UV exposition time for the formulation photopolymerization was compatible with the cell viability and also occurred in the injury site.


Assuntos
Isoflavonas/farmacologia , Nanocompostos/química , Nanotubos de Carbono/química , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Sobrevivência Celular/efeitos dos fármacos , Embrião de Galinha , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/farmacologia , Reagentes de Ligações Cruzadas/efeitos da radiação , Gelatina/química , Gelatina/farmacologia , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Isoflavonas/química , Nanocompostos/efeitos da radiação , Nanotubos de Carbono/efeitos da radiação , Ratos , Análise Espectral Raman , Raios Ultravioleta
5.
Molecules ; 25(13)2020 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-32605124

RESUMO

Multiwall carbon nanotube (CNT)-filled high density polyethylene (HDPE) nanocomposites were prepared by extrusion and considered for their suitability in the offshore sheathing applications. Transmission electron microscopy was conducted to analyse dispersion after bulk extrusion. Monolithic and nanocomposite samples were subjected to accelerated weathering and photodegradation (carbonyl and vinyl indices) characterisations, which consisted of heat, moisture (seawater) and UV light, intended to imitate the offshore conditions. The effects of accelerated weathering on mechanical properties (tensile strength and elastic modulus) of the nanocomposites were analysed. CNT addition in HDPE produced environmentally resilient nanocomposites with improved mechanical properties. The energy utilised to extrude nanocomposites was also less than the energy used to extrude monolithic HDPE samples. The results support the mass substitution of CNT-filled HDPE nanocomposites in high-end offshore applications.


Assuntos
Nanocompostos/química , Nanotubos de Carbono/química , Polietileno/química , Módulo de Elasticidade/efeitos dos fármacos , Módulo de Elasticidade/efeitos da radiação , Temperatura Alta/efeitos adversos , Teste de Materiais , Microscopia Eletrônica de Transmissão , Nanocompostos/efeitos da radiação , Nanotubos de Carbono/efeitos da radiação , Polietileno/efeitos da radiação , Água do Mar/efeitos adversos , Resistência à Tração/efeitos dos fármacos , Resistência à Tração/efeitos da radiação , Raios Ultravioleta/efeitos adversos
6.
Ultrasound Med Biol ; 46(9): 2322-2334, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32522457

RESUMO

Sonodynamic therapy (SDT) has established a novel route for treating solid cancers. Low-intensity ultrasound irradiation accompanied by a sonosensitizer has revealed remarkable advantages for cancer therapy such as targeted uptake, access to deeper tumors, insignificant side effects and invasiveness, compared with other therapeutic methods. In this study, we scrutinized synthesis and characterization of a polypyrrole-coated multi-walled carbon nanotubes composite (PPy@MWCNTs). PPy@MWCNTs can absorb ultrasound irradiation by both of its components, and it was introduced as a new sonosensitizer. The composite was characterized by field emission scanning electron microscopy (FESEM), and its ability to temperature elevation was explored. FESEM images revealed that PPy@MWCNTs comprised nanotubes of 36.3 ± 5.1 nm in diameter with up to several micrometer in length. Ultrasound irradiation at 1 MHz and 1.0 W cm-2 for 60 s in four steps led to an efficient SDT in vitro (16.3 ± 2.8°C temperature increment for 250 µg mL-1 of PPy@MWCNTs), in C540 (B16/F10) cell line and a melanoma tumor model in male balb/c mice. In vitro examinations revealed that PPy@MWCNTs represented a concentration-dependent cytotoxicity on multi-step ultrasound irradiation (a cell viability of 8.9% for 250 µg mL-1 of PPy@MWCNTs). Histologic analyses and tumor volume decrement after 10 d revealed detrimental SDT effects of PPy@MWCNTs on tumors (75% necrosis and 50% decrement in tumor volume). Thermal effects and reactive oxygen species generation were the reasons of the working function of PPy@MWCNTs in SDT.


Assuntos
Melanoma/terapia , Nanotubos de Carbono/efeitos da radiação , Polímeros/efeitos da radiação , Pirróis/efeitos da radiação , Neoplasias Cutâneas/terapia , Terapia por Ultrassom , Ondas Ultrassônicas , Animais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Células Tumorais Cultivadas
7.
Life Sci ; 248: 117460, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32092331

RESUMO

AIM: This study determined the optimum gamma irradiation dosage to sterilize sodium hyaluronate (HY), single-walled carbon nanotubes (SWCNT), multi-walled carbon nanotubes (MWCNT) and CNT functionalized with HY (HY-SWCNT and HY-MWCNT), evaluated the structural integrity of the materials and assessed whether sterilized materials kept biological properties without affecting renal function. MAIN METHODS: Materials were submitted to dosages of 100 gγ to 30 Kgγ and plated onto agar mediums for colony forming units (CFUs) counting. Sterilized samples were inoculated with 107Bacillus clausii, submitted again to gamma irradiation, and plated in agar mediums for CFUs counting. Scanning electron microscope was used for structural evaluation of sterilized materials. Tooth sockets of rats were treated with sterilized materials for bone formation assessment and renal function of the animals was analyzed. KEY FINDINGS: The optimum gamma dosage for sterilization was 250 gγ for HY and 2.5 Kgγ for the other materials without meaningful structural changes. Sterilized materials significantly increased bone formation (p < 0.05) and they did not compromise renal function and structure. SIGNIFICANCE: Gamma irradiation efficiently sterilized HY, SWCNT, MWCNT, HY-SWCNT and HY-MWCNT without affecting structural aspects while maintaining their desirable biological properties.


Assuntos
Materiais Dentários/efeitos da radiação , Raios gama , Ácido Hialurônico/efeitos da radiação , Nanotubos de Carbono/efeitos da radiação , Osteogênese/efeitos dos fármacos , Alvéolo Dental/efeitos dos fármacos , Animais , Bacillus clausii/efeitos da radiação , Contagem de Colônia Microbiana , Materiais Dentários/química , Materiais Dentários/farmacologia , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Testes de Função Renal , Masculino , Dente Molar/cirurgia , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Ratos , Ratos Wistar , Esterilização/métodos , Extração Dentária/métodos , Alvéolo Dental/microbiologia , Alvéolo Dental/fisiologia , Alvéolo Dental/cirurgia , Cicatrização/efeitos dos fármacos
8.
J Hazard Mater ; 390: 122050, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32007859

RESUMO

In this paper, in-situ fabrication of tungsten oxide (WO3) on carbon nano-tube (CNT) was performed via sol-gel/hydrothermal method to prepare WO3/CNT nanocomposites and then coupled with visible light and ultrasound (US) irradiations for sono-photocatalytic removal of tetracycline (TTC) and pharmaceutical wastewater treatment. The as-prepared catalysts were characterized by FT-IR, XRD, TEM, UV-VIS DRS, FESEM, EDS, TGA, BET, BJH, EIS, and EDX techniques. The characterization tests, indicated successful incorporation of CTNs into the WO3 framework and efficient reduction of charge carries recombination rate after modifying with CNT. The investigation of experimental parameters verified that 60 mg/L TTC could be perfectly degraded at optimum operational parameters (WO3/CNT: 0.7 g/L, pH: 9.0, US power: 250 W/m2, and light intensity: 120 W/m2 over 60 min treatment. Trapping experiments results verified that HO radicals and h+ were the main oxidative species in degradation of TTC. The as-prepared photocatalysts could be reused after six successive cycles with an approximately 8.8 % reduction in removal efficiency. Investigation of the effect of real pharmaceutical wastewater revealed that this system is able to eliminate 83.7 and 90.6 % of TOC and COD, respectively after 220 min of reaction time. Some compounds with lower toxic impact and molecular weight, compared to raw pharmaceutical wastewater, were detected after treatment by sono-photocatalysis process. The biodegradability of real pharmaceutical wastewater was improved significantly after treatment by WO3/CNT sono-photocatalysis.


Assuntos
Antibacterianos/química , Luz , Nanotubos de Carbono/efeitos da radiação , Óxidos/efeitos da radiação , Tetraciclina/química , Tungstênio/efeitos da radiação , Ondas Ultrassônicas , Poluentes Químicos da Água/química , Catálise , Indústria Farmacêutica , Resíduos Industriais , Nanocompostos/química , Nanocompostos/efeitos da radiação , Nanotubos de Carbono/química , Óxidos/química , Processos Fotoquímicos , Tungstênio/química , Águas Residuárias , Purificação da Água/métodos
9.
Artigo em Inglês | MEDLINE | ID: mdl-31484371

RESUMO

A novel graphite-phase carbon nitride (g-C3N4)/bismuth ferrite (BiFeO3)/carbon nanotubes (CNTs) ternary magnetic composite (CNBT) was prepared by a hydrothermal synthesis. Using this material, Cr(VI) and methylene blue (MB) were removed from wastewater through synergistic adsorption and photocatalysis. The effects of pH, time, and pollutant concentration on the photocatalytic performance of CNBT, as well as possible interactions between Cr(VI) and MB species were analyzed. The obtained results showed that CNTs could effectively reduce the recombination rate of electron-hole pairs during the photocatalytic reaction of the g-C3N4/BiFeO3 composite, thereby improving its photocatalytic performance, while the presence of MB increased the reduction rate of Cr(VI). After 5 h of the simultaneous adsorption and photocatalysis by CNBT, the removal rates of Cr(VI) and MB were 93% and 98%, respectively. This study provides a new theoretical basis and technical guidance for the combined application of photocatalysis and adsorption in the treatment of wastewaters containing mixed pollutants.


Assuntos
Bismuto/química , Cromo/química , Compostos Férricos/química , Grafite/química , Azul de Metileno/química , Nanocompostos/química , Nanotubos de Carbono/química , Compostos de Nitrogênio/química , Raios Ultravioleta , Poluentes Químicos da Água/química , Adsorção , Catálise , Compostos Férricos/efeitos da radiação , Grafite/efeitos da radiação , Nanocompostos/efeitos da radiação , Nanotubos de Carbono/efeitos da radiação , Compostos de Nitrogênio/efeitos da radiação , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Poluentes Químicos da Água/efeitos da radiação
10.
Contrast Media Mol Imaging ; 2019: 5080267, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31182936

RESUMO

The optical imaging plays an increasing role in preclinical studies, particularly in cancer biology. The combined ultrasound and optical imaging, named photoacoustic imaging (PAI), is an emerging hybrid technique for real-time molecular imaging in preclinical research and recently expanding into clinical setting. PAI can be performed using endogenous contrast, particularly from oxygenated and deoxygenated hemoglobin and melanin, or exogenous contrast agents, sometimes targeted for specific biomarkers, providing comprehensive morphofunctional and molecular information on tumor microenvironment. Overall, PAI has revealed notable opportunities to improve knowledge on tumor pathophysiology and on the biological mechanisms underlying therapy. The aim of this review is to introduce the principles of PAI and to provide a brief overview of current PAI applications in preclinical research, highlighting also on recent advances in clinical translation for cancer diagnosis, staging, and therapy.


Assuntos
Neoplasias/diagnóstico , Técnicas Fotoacústicas/métodos , Nanomedicina Teranóstica/tendências , Absorção de Radiação , Animais , Biomarcadores Tumorais/efeitos da radiação , Sistemas Computacionais , Meios de Contraste/efeitos da radiação , Detecção Precoce de Câncer/métodos , Desenho de Equipamento , Hemoglobinas/efeitos da radiação , Humanos , Verde de Indocianina/efeitos da radiação , Lasers , Substâncias Macromoleculares/efeitos da radiação , Melaninas/efeitos da radiação , Nanopartículas Metálicas/efeitos da radiação , Nanotubos de Carbono/efeitos da radiação , Neoplasias/metabolismo , Neoplasias/terapia , Neoplasias Experimentais/química , Neoplasias Experimentais/diagnóstico por imagem , Técnicas Fotoacústicas/instrumentação , Pontos Quânticos/efeitos da radiação , Espalhamento de Radiação , Nanomedicina Teranóstica/métodos , Transdutores
11.
Talanta ; 192: 255-262, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30348387

RESUMO

In this work, sample preparation of carbon nanotubes (CNTs) for further determination of inorganic contaminants was investigated using a microwave-assisted wet digestion single reaction chamber system (MAWD-SRC). Analytes (Al, As, Ca, Cd, Co, Cr, Fe, La, Mg, Mo, Ni, Pb and Zn) were determined in CNTs by inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS, except for Al, Ca, Fe and Mg). Method parameters were evaluated, as the mass of CNT (25-300 mg), the temperature (220-270 °C) and the time (35-75 min) of irradiation program. The accuracy was evaluated by using a certified reference material (CRM) of CNT and also by comparison of the results with those obtained using neutron activation analysis (NAA) and high resolution continuum source graphite furnace atomic absorption spectrometry with direct solid sampling (DSS-HR-CS-GF AAS). Quantitative recoveries for all elements were obtained using 275 mg of CNTs, 6 mL of 14.4 mol L-1 HNO3 and 0.5 mL of 30% H2O2 with an irradiation program of 65 min (35 min at 270 °C). No statistical difference was observed between the results obtained after the decomposition of CNTs by MAWD-SRC with those obtained by NAA and DSS-HR-CS-GF AAS. No difference was also observed for the results using the proposed method and the values for the CRM of CNT. The use of MAWD-SRC showed good performance for CNTs digestion using relatively high sample mass (up to 275 mg), contributing to low limits of quantification (LOQs) and overcoming the current limitations of sample preparation. To the best knowledge of the authors, this work reports the highest sample mass feasible to be decomposed using wet digestion for CNTs among the methods proposed in literature.


Assuntos
Espectrometria de Massas/métodos , Metais/análise , Nanotubos de Carbono/análise , Espectrofotometria/métodos , Arsênio/análise , Limite de Detecção , Micro-Ondas , Nanotubos de Carbono/química , Nanotubos de Carbono/efeitos da radiação , Temperatura
12.
Chembiochem ; 19(24): 2522-2541, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30247795

RESUMO

Near-infrared (NIR) fluorescent materials are considered to be the most promising labeling reagents for sensitive determination and biological imaging due to the advantages of lower background noise, deeper penetrating capacity, and less destructive effects on the biomatrix over those of UV and visible fluorophores. In the past decade, advances in biomedical fluorescence imaging in the NIR region have focused on the traditional NIR window (NIR-I; λ=700-900 nm), and have recently been extended to the second NIR window (NIR-II; λ=1000-1700 nm). In vivo NIR-II fluorescence imaging outperforms imaging in the NIR-I window as a result of further reduced absorption, tissue autofluorescence, and scattering. In this review, the applications of four types of NIR-II fluorescent materials, organic fluorophores, quantum dots, rare-earth compounds, and single-walled carbon nanotubes, are summarized and future trends are discussed. Some methods to enhance the NIR-II fluorescence quantum yield are also proposed.


Assuntos
Corantes Fluorescentes/química , Animais , Linhagem Celular Tumoral , Fluorescência , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/efeitos da radiação , Humanos , Raios Infravermelhos , Metais Terras Raras/química , Metais Terras Raras/efeitos da radiação , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Nanotubos de Carbono/química , Nanotubos de Carbono/efeitos da radiação , Imagem Óptica/métodos , Pontos Quânticos/química , Pontos Quânticos/efeitos da radiação
13.
Environ Sci Pollut Res Int ; 24(29): 23309-23320, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28836094

RESUMO

In this work, visible light-responsive carbon nanotubes (CNTs)/Bi4VO8Cl composite photocatalysts have been prepared by a facile in situ hydrothermal method and characterized by various techniques. The photocatalytic properties of the photocatalysts are evaluated by the degradation of refractory azo-dye methyl orange (MO), hexavalent chromium Cr(VI), and bisphenol A (BPA) in water under visible light irradiation. It is found that the as-prepared composite with 4 wt% CNTs shows an optimal photocatalytic performance, and its photocatalytic activity is 30% higher than that of pure Bi4VO8Cl. The enhanced photocatalytic activity is ascribed to the synergetic effects induced by increased light absorption, increased adsorption efficiency for pollutant, and suppressed recombination rate of photogenerated charge carriers. Furthermore, efficient removals of Cr(VI), bisphenol A (BPA), and combined contamination of Cr(VI) and BPA over CNTs/Bi4VO8Cl composite further confirm that the degradation of organic pollutants is a photocatalytic mechanism rather than photosensitization of dye. Of particular importance is that removal efficiency of single pollutant can be promoted by the coexistence of the Cr(VI) and organics. The mechanism of synergetic promotion is discussed and attributed to the accelerated separation of charge carriers resulted from their simultaneously being captured by pollutants. Moreover, the CNTs/Bi4VO8Cl composite exhibits good stability and recycling performance in the photocatalytic degradation process. Therefore, the composite photocatalysts developed in the present work are expected to have the potential in purification of complex wastewater. Graphical abstract The separation of photogenerated charge carriers and adsorbing capacity as well as visible light absorption ability of Bi4VO8Cl are significantly promoted by coupling with carbon nanotubes. Simultaneous removal of Cr(VI) and organic pollutants can be achieved by CNTs/Bi4VO8Cl composite photocatalysts under visible light irradiation.


Assuntos
Bismuto/química , Cromo/química , Luz , Nanotubos de Carbono/química , Vanadatos/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Compostos Azo/química , Compostos Azo/efeitos da radiação , Compostos Benzidrílicos/química , Compostos Benzidrílicos/efeitos da radiação , Catálise , Cromo/efeitos da radiação , Nanotubos de Carbono/efeitos da radiação , Oxirredução , Fenóis/química , Fenóis/efeitos da radiação , Propriedades de Superfície , Poluentes Químicos da Água/efeitos da radiação
14.
Biotechnol Bioeng ; 114(10): 2390-2399, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28627734

RESUMO

Exposure of cells and nanoparticles to near-infrared nanosecond pulsed laser light can lead to efficient intracellular delivery of molecules while maintaining high cell viability by a photoacoustic phenomenon known as transient nanoparticle energy transduction (TNET). Here, we examined the influence of cytoskeletal mechanics and plasma membrane fluidity on intracellular uptake of molecules and loss of cell viability due to TNET. We found that destabilization of actin filaments using latrunculin A led to greater uptake of molecules and less viability loss caused by TNET. Stabilization of actin filaments using jasplakinolide had no significant effect on uptake or viability loss caused by TNET. To study the role of plasma membrane fluidity, we increased fluidity by depletion of membrane cholesterol using methyl-ß-cyclodextrin and decreased fluidity by enrichment of the membrane with cholesterol using water-soluble cholesterol. Neither of these membrane fluidity changes significantly altered cellular uptake or viability loss caused by TNET. We conclude that weakening mechanical integrity of the cytoskeleton can increase intracellular uptake and decrease loss of cell viability, while plasma membrane fluidity does not appear to play a significant role in uptake or viability loss caused by TNET. The positive effects of cytoskeletal weakening may be due to an enhanced ability of the cell to recover from the effects of TNET and maintain viability. Biotechnol. Bioeng. 2017;114: 2390-2399. © 2017 Wiley Periodicals, Inc.


Assuntos
Citoesqueleto/fisiologia , Eletroporação/métodos , Mecanotransdução Celular/fisiologia , Fluidez de Membrana/fisiologia , Nanotubos de Carbono/química , Técnicas Fotoacústicas/métodos , Linhagem Celular , Sobrevivência Celular/efeitos da radiação , Citoesqueleto/efeitos da radiação , Relação Dose-Resposta à Radiação , Humanos , Lasers , Mecanotransdução Celular/efeitos da radiação , Fluidez de Membrana/efeitos da radiação , Nanotubos de Carbono/efeitos da radiação , Doses de Radiação
15.
Environ Res ; 155: 1-6, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28167266

RESUMO

The carbon nanotubes (CNT) present in the wastewater subjected to treatment will possess altered physico-chemical properties. The changed properties will result in the unknown behavior of CNT in the environment after disposal; and it is expected to differ from their pristine analogues. In the present paper the effect of sorption of dissolved organic matter with fulvic acids (FA) as representatives onto UV and/or H2O2 treated CNT was tested. Both kinetics and mechanism of sorption was estimated. The chemical adsorption was a rate limiting step and a pseudo-second order kinetics described the sorption of FA onto UV and/or H2O2 treated CNT. The treating increased affinity towards FA and treating by UV and H2O2 simultaneously possessed greater impact on k2 than UV and H2O2 separately. The greatest effect on CNT sorption capacity revealed H2O2. The sorption mechanism was described by Temkin (CNT-H2O2) and Dubinin-Radushkevich model. The increase in CNT surface disorder caused by UV and/or H2O2 treatment favored sorption of FA via π-π interactions (exfoliated surface and disordered CNT walls). FA sorption occurred between aromatic rings of FA and CNT and hydrogen bonds formed with the oxygen functional groups. The results indicate that UV and/or H2O2 treatment affected the sorption capacity and affinity of CNT towards FA.


Assuntos
Benzopiranos/química , Peróxido de Hidrogênio/química , Nanotubos de Carbono , Raios Ultravioleta , Poluentes Químicos da Água , Adsorção , Nanotubos de Carbono/química , Nanotubos de Carbono/efeitos da radiação , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/efeitos da radiação
16.
J Colloid Interface Sci ; 484: 135-145, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27599382

RESUMO

Herein we present a successful strategy for enhancement of photothermal efficiency of hydroxyapatite (HAP) by its conjugation with carbon nanotubes (CNTs) and graphene nanosheets (GR). Owing to excellent biocompatibility with human body and its non-toxicity, implementation of HAP based nanomaterials in photothermal therapy (PTT) provides non-replaceable benefits over PTE agents. Therefore, in this report, it has been experimentally exploited that the photothermal effect (PTE) of HAP has significantly improved by its assembly with CNTs and GR. It is found that the type of carbon nanomaterial used to conjugate with HAP has influence on its PTE in such a way that the photothermal efficiency of GR-HAP was higher than CNTs-COOH-HAP under exposure to 980nm near-infrared (NIR) laser. The temperature attained by aqueous dispersions of both CNTs-COOH-HAP and GR-HAP after illuminating to NIR radiations for 7min was found to be above 50°C, which is beyond the temperature tolerance of cancer cells. So that the rise in temperature shown by both CNTs-COOH-HAP and GR-HAP is enough to induce the death of tumoral or cancerous cells. Overall, this approach in modality of HAP with CNTs and GR provide a great potential for development of future nontoxic PTE agents.


Assuntos
Durapatita/química , Grafite/química , Nanoestruturas/química , Nanotubos de Carbono/química , Durapatita/efeitos da radiação , Grafite/efeitos da radiação , Humanos , Raios Infravermelhos , Lasers , Nanoestruturas/efeitos da radiação , Nanoestruturas/ultraestrutura , Nanotubos de Carbono/efeitos da radiação , Nanotubos de Carbono/ultraestrutura , Processos Fotoquímicos , Soluções , Temperatura
17.
Environ Sci Pollut Res Int ; 23(21): 21395-21406, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27502566

RESUMO

The photocatalytic treatment of gaseous benzene under visible light irradiation was developed using electrospun carbon nanotube/titanium dioxide (CNT/TiO2) nanofibers as visible light active photocatalysts. The CNT/TiO2 nanofibers were fabricated by electrospinning CNT/poly(vinyl pyrrolidone) (PVP) solution followed by the removal of PVP by calcination at 450 °C. The molar ratio of CNT/TiO2 was fixed at 0.05:1 by weight, and the quantity of CNT/TiO2 loaded in PVP solution varied between 30 and 60 % wt. CNT/TiO2 nanofibers have high specific surface area (116 m2/g), significantly higher than that of TiO2 nanofibers (44 m2/g). The photocatalytic performance of the CNT/TiO2 nanofibers was investigated by decolorization of 1 × 10-5 M methylene blue (MB) dye (in water solution) and degradation of 100 ppm gaseous benzene under visible light irradiation. The 50-CNT/TiO2 nanofibers (calcined CNT/TiO2 nanofibers fabricated from a spinning solution of 50 % wt CNT/TiO2 based on PVP) had higher MB degradation efficiency (58 %) than did other CNT/TiO2 nanofibers and pristine TiO2 nanofibers (15 %) under visible light irradiation. The photocatalytic degradation of gaseous benzene under visible light irradiation on filters made of 50-CNT/TiO2 nanofibers was carried out in a simulated air purifier system. Similar to MB results, the degradation efficiency of gaseous benzene by 50-CNT/TiO2 nanofibers (52 %) was higher than by other CNT/TiO2 nanofibers and pristine TiO2 nanofibers (18 %). The synergistic effects of the larger surface area and lower band gap energy of CNT/TiO2 nanofibers were presented as strong adsorption ability and greater visible light adsorption. The CNT/TiO2 nanofiber prepared in this study has potential for use in air purifiers to improve air treatment efficiency with less energy.


Assuntos
Poluentes Atmosféricos/análise , Benzeno/análise , Luz , Nanofibras/química , Nanotubos de Carbono/química , Titânio/química , Adsorção , Filtros de Ar , Catálise , Azul de Metileno/análise , Nanofibras/efeitos da radiação , Nanotubos de Carbono/efeitos da radiação , Propriedades de Superfície , Titânio/efeitos da radiação
18.
J Nanosci Nanotechnol ; 16(4): 4224-32, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27451790

RESUMO

We studied the dispersity of multi-walled carbon nanotubes (MWNTs) combined with different metal- lic particles (Ni and Fe). An ultrasonic-assisted water-bath dispersion process was used to dis- perse the metal-coated MWNTs in different solutions and the dispersity was measured using an ultraviolet-visible spectrophotometer. The dispersity and morphology of the MWNTs were characterized using field-emission scanning electron microscopy (FE-SEM) together with digital image processing technology. Effects of dispersant type (sodium dodecyl benzene sulfonate (SDBS), oleic acid, and polymer (TNEDIS)) and surfactant dosage on the dispersity of the metal-coated MWNTs were investigated under controlled and uncontrolled temperatures and results were compared with those from the untreated MWNTs. The results showed that the negative effects of temperature on the ultrasonic dispersion process could be eliminated through a temperature-controlled system. Moreover, the TNEDIS, SDBS, and oleic acid were arranged in the descending order of the dispersion effect degree. The untreated MWNTs, Ni-coated MWNTs, and Fe-coated MWNTs were arranged in the descending degree of dispersity order. Since the metal coating makes the MWNTs harder and more fragile, the metal-coated MWNTs are more likely to fracture during the ultrasonic dispersion process.


Assuntos
Temperatura Alta , Metais/química , Nanotubos de Carbono/química , Nanotubos de Carbono/efeitos da radiação , Sonicação/métodos , Tensoativos/química , Adsorção/efeitos da radiação , Coloides/química , Coloides/efeitos da radiação , Cristalização/métodos , Ondas de Choque de Alta Energia , Teste de Materiais , Nanotubos de Carbono/ultraestrutura
19.
J Biomed Nanotechnol ; 12(4): 619-29, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27301189

RESUMO

Cancer is the leading cause of human death worldwide. Although many scientists work to fight this disease, multiple drug resistance is a predominant obstacle for effective cancer therapy. In drug-resistant MCF-7/ADR cells, the acidic organelles with lower pH value than normal one can cause the protonation of anthracycline drugs, inducing drug accumulation in these organelles. In this study, single-walled carbon nanotubes with polyethylene glycol phospholipids surface modification (PEGylated SWNTs) were utilized as near infrared-activated drug carriers for doxorubicin (DOX) delivery against MCF-7/ADR cells. Our results showed that a concentration-dependent temperature increase was observed in a solution of PEGylated SWNTs with 808 nm laser irradiation, whereas a water solution showed no significant changes in temperature under a thermal camera using the same irradiation dose. Interestingly, PEGylated DOX-SWNTs enhanced the nuclear accumulation of DOX with 808 nm irradiation whereas free DOX or PEGylated DOX-SWNTs revealed discrete red spots in MCF-7/ADR cells by confocal microscopic observation. Cell viability of PEGylated DOX-SWNTs-treated cells was also significantly decreased after 808 nm laser irradiation. Thus, photothermally activated PEGylated SWNTs can be a potential nanocarrier to deliver DOX into cancer cells and successfully overcome drug-resistant behavior in MCF-7/ADR breast cancer cells.


Assuntos
Preparações de Ação Retardada/síntese química , Doxorrubicina/administração & dosagem , Nanocápsulas/administração & dosagem , Nanotubos de Carbono/química , Nanotubos de Carbono/efeitos da radiação , Neoplasias Experimentais/tratamento farmacológico , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/química , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/efeitos da radiação , Difusão , Doxorrubicina/química , Resistencia a Medicamentos Antineoplásicos , Endossomos/química , Endossomos/efeitos da radiação , Humanos , Raios Infravermelhos , Lisossomos/química , Lisossomos/efeitos da radiação , Células MCF-7 , Nanocápsulas/química , Nanocápsulas/efeitos da radiação , Neoplasias Experimentais/patologia , Fotoquimioterapia/métodos , Resultado do Tratamento
20.
Chemosphere ; 155: 471-478, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27145421

RESUMO

Ibuprofen (IBP) is one kind of non-steroidal anti-inflammatory drugs (NSAIDs), which are classified as Pharmaceuticals and Personal Care Products (PPCPs). IBP possesses bioactive property and the substantial use of IBP results in a harmful impact on bioreceptors even in small concentrations. Accordingly, the treatment of these wastewaters is important before discharging them into the ecosystem. The photodegradation of IBP with TiO2 co-doped with functionalized CNTs (CNT-COOH and CNT-COCl) and urea, named as N-doping CNT/TiO2, irradiated with visible light of 410 nm was investigated in this study. The titanium tetrachloride was used as the precursor of Ti. The N-doping CNT-COCl/TiO2 photocatalysts exhibited a better crystalline structure and smaller crystal size than the N-doping CNT-COOH/TiO2 photocatalyst. It might largely ascribe to strong binding between acyl chloride functional group and TiO2. About 85.0%-86.0% of IBP was degraded with N-doping CNT/TiO2 within 120 min at natural condition, which obeyed the pseudo first order reaction and the rate constant was 4.45 × 10(-3)-1.22 × 10(-2) min(-1) and 5.03 × 10(-3)-1.47 × 10(-2) min(-1) for N-doping CNT-COOH/TiO2 and N-doping CNT-COCl/TiO2, respectively. The best IBP degradation of 87.9%-89.0% was found at pH 5, which indicated superoxide radicals (O2(-)) played a key role. The optimal pH was majorly dominated by the nature of IBP and N-doping CNT/TiO2. A successful synergy effect of TiO2 and dopants was exhibited and this mainly attributed to the strong binding strength by functional group of acyl chloride (COCl) and carboxylic acid (COOH). In summary, IBP could be effectively photodegraded by the fabricated N-doping CNT/TiO2 photocatalysts.


Assuntos
Anti-Inflamatórios não Esteroides/metabolismo , Ibuprofeno/metabolismo , Luz , Nanotubos de Carbono/química , Titânio/farmacologia , Ureia/farmacologia , Anti-Inflamatórios não Esteroides/química , Catálise , Concentração de Íons de Hidrogênio , Ibuprofeno/química , Nanotubos de Carbono/efeitos da radiação , Fotólise , Titânio/química , Ureia/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...