Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Res ; 232: 88-102, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33676036

RESUMO

The symbiotic relationships shared between humans and their gastrointestinal parasites present opportunities to discover novel therapies for inflammatory diseases. A prime example of this phenomenon is the interaction of humans and roundworms such as the hookworm, Necator americanus. Epidemiological observations, animal studies and clinical trials using experimental human hookworm infection show that hookworms can suppress inflammation in a safe and well-tolerated way, and that the key to their immunomodulatory properties lies within their secreted proteome. Herein we describe the identification of 2 netrin domain-containing proteins from the N. americanus secretome, and explore their potential in treating intestinal inflammation in mouse models of ulcerative colitis. One of these proteins, subsequently named Na-AIP-1, was effective at suppressing disease when administered prophylactically in the acute TNBS-induced model of colitis. This protective effect was validated in the more robust CD4 T cell transfer model of chronic colitis, where prophylactic Na-AIP-1 reduced T-cell-dependent type-1 cytokine responses in the intestine and the associated intestinal pathology. Mechanistic studies revealed that depletion of CD11c+ cells abrogated the protective anticolitic effect of Na-AIP-1. Next generation sequencing of colon tissue in the T-cell transfer model of colitis revealed that Na-AIP-1 induced a transcriptomic profile associated with the downregulation of metabolic and signaling pathways involved in type-1 inflammation, notably TNF. Finally, co-culture of Na-AIP-1 with a human monocyte-derived M1 macrophage cell line resulted in significantly reduced secretion of TNF. Na-AIP-1 is now a candidate for clinical development as a novel therapeutic for the treatment of human inflammatory bowel diseases.


Assuntos
Anti-Inflamatórios/administração & dosagem , Linfócitos T CD4-Positivos/imunologia , Colite Ulcerativa/prevenção & controle , Proteínas de Helminto/administração & dosagem , Necator americanus/química , Netrinas/administração & dosagem , Animais , Linfócitos T CD4-Positivos/transplante , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/imunologia , Modelos Animais de Doenças , Feminino , Proteínas de Helminto/química , Proteínas de Helminto/genética , Infecções por Uncinaria/metabolismo , Humanos , Masculino , Inibidores de Metaloproteinases de Matriz/química , Camundongos Endogâmicos C57BL , Camundongos Knockout , Netrinas/análise , Proteínas Recombinantes/administração & dosagem
2.
PLoS Negl Trop Dis ; 11(12): e0005971, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29216182

RESUMO

Necator americanus, a haematophagous hookworm parasite, infects ~10% of the world's population and is considered to be a significant public health risk. Its lifecycle has distinct stages, permitting its successful transit from the skin via the lungs (L3) to the intestinal tract (L4 maturing to adult). It has been hypothesised that the L3 larval sheath, which is shed during percutaneous infection (exsheathment), diverts the immune system to allow successful infection and reinfection in endemic areas. However, the physicochemical properties of the L3 larval cuticle and sheath, which are in direct contact with the skin and its immune defences, are unknown. In the present study, we controlled exsheathment, to characterise the sheath and underlying cuticle surfaces in situ, using atomic force microscopy (AFM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). AFM revealed previously unseen surface area enhancing nano-annuli exclusive to the sheath surface and confirmed greater adhesion forces exist between cationic surfaces and the sheath, when compared to the emergent L3 cuticle. Furthermore, ToF-SIMS elucidated different chemistries between the surfaces of the cuticle and sheath which could be of biological significance. For example, the phosphatidylglycerol rich cuticle surface may support the onward migration of a lubricated infective stage, while the anionic and potentially immunologically active heparan sulphate rich deposited sheath could result in the diversion of immune defences to an inanimate antigenic nidus. We propose that our initial studies into the surface analysis of this hookworm provides a timely insight into the physicochemical properties of a globally important human pathogen at its infective stage and anticipate that the development and application of this analytical methodology will support translation of these findings into a biological context.


Assuntos
Larva/anatomia & histologia , Larva/química , Necator americanus/anatomia & histologia , Necator americanus/química , Animais , Antígenos de Helmintos/química , Espectrometria de Massas , Análise Multivariada
3.
Biochem J ; 471(3): 403-14, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26318523

RESUMO

Fatty acid and retinol-binding proteins (FARs) comprise a family of unusual α-helix rich lipid-binding proteins found exclusively in nematodes. They are secreted into host tissues by parasites of plants, animals and humans. The structure of a FAR protein from the free-living nematode Caenorhabditis elegans is available, but this protein [C. elegans FAR-7 (Ce-FAR-7)] is from a subfamily of FARs that does not appear to be important at the host/parasite interface. We have therefore examined [Necator americanus FAR-1 (Na-FAR-1)] from the blood-feeding intestinal parasite of humans, N. americanus. The 3D structure of Na-FAR-1 in its ligand-free and ligand-bound forms, determined by NMR (nuclear magnetic resonance) spectroscopy and X-ray crystallography respectively, reveals an α-helical fold similar to Ce-FAR-7, but Na-FAR-1 possesses a larger and more complex internal ligand-binding cavity and an additional C-terminal α-helix. Titration of apo-Na-FAR-1 with oleic acid, analysed by NMR chemical shift perturbation, reveals that at least four distinct protein-ligand complexes can be formed. Na-FAR-1 and possibly other FARs may have a wider repertoire for hydrophobic ligand binding, as confirmed in the present study by our finding that a range of neutral and polar lipids co-purify with the bacterially expressed recombinant protein. Finally, we show by immunohistochemistry that Na-FAR-1 is present in adult worms with a tissue distribution indicative of possible roles in nutrient acquisition by the parasite and in reproduction in the male.


Assuntos
Interações Hospedeiro-Parasita , Necator americanus/metabolismo , Necatoríase/metabolismo , Proteínas de Ligação ao Retinol/metabolismo , Animais , Sítios de Ligação , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/patogenicidade , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Ligantes , Necator americanus/química , Necator americanus/patogenicidade , Necatoríase/parasitologia , Reprodução , Proteínas de Ligação ao Retinol/química
4.
Int J Biochem Cell Biol ; 50: 146-55, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24631931

RESUMO

Hookworm activation-associated secreted proteins can be structurally classified into at least three different groups. The hallmark feature of Group 1 activation-associated secreted proteins is a prominent equatorial groove, which is inferred to form a ligand binding site. Furthermore, a conserved tandem histidine motif is located in the centre of the groove and believed to provide or support a yet to be determined catalytic activity. Here, we report three-dimensional crystal structures of Na-ASP-2, an L3-secreted activation-associated secreted protein from the human hookworm Necator americanus, which demonstrate transition metal binding ability of the conserved tandem histidine motif. We further identified moderate phosphohydrolase activity of recombinant Na-ASP-2, which relates to the tandem histidine motif. By panning a random 12-mer peptide phage library, we identified a peptide with high similarity to the human calcium-activated potassium channel SK3, and confirm binding of the synthetic peptide to recombinant Na-ASP-2 by differential scanning fluorimetry. Potential binding modes of the peptide to Na-ASP-2 were studied by molecular dynamics simulations which clearly identify a preferred topology of the Na-ASP-2:SK3 peptide complex.


Assuntos
Antígenos de Helmintos/química , Proteínas de Helminto/química , Necator americanus/metabolismo , Necatoríase/parasitologia , Vacinas/química , Animais , Antígenos de Helmintos/imunologia , Antígenos de Helmintos/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Proteínas de Helminto/imunologia , Proteínas de Helminto/metabolismo , Modelos Moleculares , Necator americanus/química , Necator americanus/isolamento & purificação , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/metabolismo , Estrutura Terciária de Proteína , Vacinas/imunologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-22750878

RESUMO

Na-FAR-1 is an unusual α-helix-rich fatty acid- and retinol-binding protein from Necator americanus, a blood-feeding intestinal parasitic nematode of humans. It belongs to the FAR protein family, which is unique to nematodes; no structural information is available to date for FAR proteins from parasites. Crystals were obtained with two different morphologies that corresponded to different space groups. Crystal form 1 exhibited space group P432 (unit-cell parameters a = b = c = 120.80 Å, α = ß = γ = 90°) and diffracted to 2.5 Šresolution, whereas crystal form 2 exhibited space group F23 (unit-cell parameters a = b = c = 240.38 Å, α = ß = γ = 90°) and diffracted to 3.2 Šresolution. Crystal form 2 showed signs of significant twinning.


Assuntos
Proteínas de Ligação a Ácido Graxo/química , Proteínas de Helminto/química , Necator americanus/química , Animais , Cristalização
6.
Acta Crystallogr D Biol Crystallogr ; 67(Pt 5): 455-62, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21543848

RESUMO

Major proteins secreted by the infective larval stage hookworms upon host entry include Ancylostoma secreted proteins (ASPs), which are characterized by one or two CAP (cysteine-rich secretory protein/antigen 5/pathogenesis related-1) domains. The CAP domain has been reported in diverse phylogenetically unrelated proteins, but has no confirmed function. The first structure of a two-CAP-domain protein, Na-ASP-1, from the major human hookworm parasite Necator americanus was refined to a resolution limit of 2.2 Å. The structure was solved by molecular replacement (MR) using Na-ASP-2, a one-CAP-domain ASP, as the search model. The correct MR solution could only be obtained by truncating the polyalanine model of Na-ASP-2 and removing several loops. The structure reveals two CAP domains linked by an extended loop. Overall, the carboxyl-terminal CAP domain is more similar to Na-ASP-2 than to the amino-terminal CAP domain. A large central cavity extends from the amino-terminal CAP domain to the carboxyl-terminal CAP domain, encompassing the putative CAP-binding cavity. The putative CAP-binding cavity is a characteristic cavity in the carboxyl-terminal CAP domain that contains a His and Glu pair. These residues are conserved in all single-CAP-domain proteins, but are absent in the amino-terminal CAP domain. The conserved His residues are oriented such that they appear to be capable of directly coordinating a zinc ion as observed for CAP proteins from reptile venoms. This first structure of a two-CAP-domain ASP can serve as a template for homology modeling of other two-CAP-domain proteins.


Assuntos
Proteínas de Helminto/química , Necator americanus/química , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Infecções por Uncinaria/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
7.
Artigo em Inglês | MEDLINE | ID: mdl-20124715

RESUMO

Human hookworms are among the most pathogenic soil-transmitted helminths. These parasitic nematodes have co-evolved with the host and are able to maintain a high worm burden for decades without killing the human host. However, it is possible to develop vaccines against laboratory-challenge hookworm infections using either irradiated third-state infective larvae (L3) or enzymes from the adult parasites. In an effort to control hookworm infection globally, the Human Hookworm Vaccine Initiative, a product-development partnership with the Sabin Vaccine Institute to develop new control tools including vaccines, has identified a battery of protein antigens, including surface-associated antigens (SAAs) from L3. SAA proteins are characterized by a 13 kDa conserved domain of unknown function. SAA proteins are found on the surface of infective L3 stages (and some adult stages) of different nematode parasites, suggesting that they may play important roles in these organisms. The atomic structures and function of SAA proteins remain undetermined and in an effort to remedy this situation recombinant Na-SAA-2 from the most prevalent human hookworm parasite Necator americanus has been expressed, purified and crystallized. Useful X-ray data have been collected to 2.3 A resolution from a crystal that belonged to the monoclinic space group C2 with unit-cell parameters a = 73.88, b = 35.58, c = 42.75 A, beta = 116.1 degrees .


Assuntos
Antígenos de Helmintos/química , Necator americanus/química , Sequência de Aminoácidos , Animais , Antígenos de Helmintos/genética , Cristalografia por Raios X , Humanos , Dados de Sequência Molecular , Necator americanus/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Difração de Raios X
8.
Artigo em Inglês | MEDLINE | ID: mdl-16511050

RESUMO

Human hookworm infection is a major cause of anemia and malnutrition in the developing world. In an effort to control hookworm infection, the Human Hookworm Vaccine Initiative has identified candidate vaccine antigens from the infective larval stage (L3) of the parasite, including a family of pathogenesis-related-1 (PR-1) proteins known as the ancylostoma-secreted proteins (ASPs). The functions of the ASPs are unknown. In addition, it is unclear why some ASPs have one while others have multiple PR-1 domains. There are no known structures of a multi-domain ASP and in an effort to remedy this situation, recombinant Na-ASP-1 has been expressed, purified and crystallized. Na-ASP-1 is a 406-amino-acid multi-domain ASP from the prevalent human hookworm parasite Necator americanus. Useful X-ray data to 2.2 A have been collected from a crystal that belongs to the monoclinic space group P2(1) with unit-cell parameters a = 67.7, b = 74.27, c = 84.60 A, beta = 112.12 degrees. An initial molecular-replacement solution has been obtained with one monomer in the asymmetric unit.


Assuntos
Antígenos de Helmintos/química , Necator americanus/química , Animais , Antígenos de Helmintos/genética , Antígenos de Helmintos/isolamento & purificação , Clonagem Molecular , Cristalização/métodos , Humanos , Reação em Cadeia da Polimerase , Proteínas Recombinantes , Difração de Raios X
9.
Int J Parasitol ; 32(2): 145-58, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11812491

RESUMO

The complete mitochondrial genome sequences were determined for two species of human hookworms, Ancylostoma duodenale (13,721 bp) and Necator americanus (13,604 bp). The circular hookworm genomes are amongst the smallest reported to date for any metazoan organism. Their relatively small size relates mainly to a reduced length in the AT-rich region. Both hookworm genomes encode 12 protein, two ribosomal RNA and 22 transfer RNA genes, but lack the ATP synthetase subunit 8 gene, which is consistent with three other species of Secernentea studied to date. All genes are transcribed in the same direction and have a nucleotide composition high in A and T, but low in G and C. The AT bias had a significant effect on both the codon usage pattern and amino acid composition of proteins. For both hookworm species, genes were arranged in the same order as for Caenorhabditis elegans, except for the presence of a non-coding region between genes nad3 and nad5. In A. duodenale, this non-coding region is predicted to form a stem-and-loop structure which is not present in N. americanus. The mitochondrial genome structure for both hookworms differs from Ascaris suum only in the location of the AT-rich region, whereas there are substantial differences when compared with Onchocerca volvulus, including four gene or gene-block translocations and the positions of some transfer RNA genes and the AT-rich region. Based on genome organisation and amino acid sequence identity, A. duodenale and N. americanus were more closely related to C. elegans than to A. suum or O. volvulus (all secernentean nematodes), consistent with a previous phylogenetic study using ribosomal DNA sequence data. Determination of the complete mitochondrial genome sequences for two human hookworms (the first members of the order Strongylida ever sequenced) provides a foundation for studying the systematics, population genetics and ecology of these and other nematodes of socio-economic importance.


Assuntos
Ancylostoma/genética , DNA Mitocondrial/genética , Necator americanus/genética , Sequência de Aminoácidos , Ancylostoma/química , Animais , Sequência de Bases , Códon , DNA Mitocondrial/química , Humanos , Mitocôndrias/genética , Dados de Sequência Molecular , Necator americanus/química , Conformação de Ácido Nucleico , Reação em Cadeia da Polimerase , RNA Ribossômico/química , RNA Ribossômico/genética , RNA de Transferência/química , RNA de Transferência/genética , RNA não Traduzido/química , RNA não Traduzido/genética , Homologia de Sequência de Aminoácidos
10.
J Parasitol ; 87(3): 619-25, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11426727

RESUMO

A phage display library was made starting from a cDNA library from the hematophagous human parasite Necator americanus. The cDNA library was transferred by polymerase chain reaction (PCR) cloning into phage display vectors (phagemids), using specially designed primers such that proteins would be expressed as fusions with the C-terminal part of the phage coat protein pVI. The vectors used are multicloning site variants of the original pDONG vectors described by Jespers et al. (1995). Electroporation of the ligation mixtures into electrocompetent Escherichia coli TGI cells yielded 3 x 10(8) pG6A, 1.9 x 10(8) pG6B, and 1 x 10(8) pG6C transfectants for N. americanus. The final libraries consisted of a mix of equal numbers of insert-containing phages from the A, B, and C libraries. Selection of phages for binding to human collagen was performed. Four rounds of panning on human collagens I and III resulted in a significant enrichment of collagen-binding phages from the N. americanus libraries. PCR analysis revealed various insert lengths; however, sequence determination indicated that all phages contained the same protein, albeit with different poly-A tail lengths. The encoded protein itself is a 135-amino acid protein (15 kDa), with no apparent homology to any other known protein. Next the protein was recloned into E. coli using the pET-15b-vector. Upon isopropyl-1-thio-beta-D-galactopyranoside induction, the recombinant protein, rNecH1, could be recovered by urea treatment from inclusion bodies. The rNecH1 protein binds to different collagens: human I > rat I > human III = calf skin I in a specific, dose-dependent, and saturable manner.


Assuntos
Integrinas/isolamento & purificação , Necator americanus/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Bovinos , Clonagem Molecular , Colágeno/metabolismo , DNA Complementar/química , DNA de Helmintos/química , Ensaio de Imunoadsorção Enzimática , Expressão Gênica , Humanos , Integrinas/química , Integrinas/genética , Dados de Sequência Molecular , Necator americanus/genética , Biblioteca de Peptídeos , Reação em Cadeia da Polimerase , Ratos , Receptores de Colágeno
11.
Parasitology ; 120 ( Pt 2): 171-84, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10726278

RESUMO

Hookworms are gut-dwelling, blood-feeding nematodes that infect hundreds of millions of people, particularly in the tropics. As part of a program aiming to define novel drug targets and vaccine candidates for human parasitic nematodes, genes expressed in adults of the human hookworm Necator americanus were surveyed by the expressed sequence tag approach. In total 161 new hookworm genes were identified. For the majority of these, a function could be assigned by homology. The dataset includes proteases, protease inhibitors, a lipid binding protein, C-type lectins, an anti-bacterial factor, globins and other genes of interest from a drug or vaccine development viewpoint. Three different classes of small, secreted proteins were identified that may be involved in the host-parasite interaction, including potential potassium channel blocking peptides. One third of the genes were novel. These included highly expressed, secreted (glyco)proteins which may be part of the excretory-secretory products of these important pathogens. Of particular interest are a family of 9 genes with similarity to the immunomodulatory protein, neutrophil inhibitory factor, that may play a role in establishing an immunocompromised niche for this successful parasite.


Assuntos
Desenho de Fármacos , Etiquetas de Sequências Expressas , Proteínas de Membrana , Necator americanus/genética , Necatoríase/tratamento farmacológico , Sequência de Aminoácidos , Animais , Sequência de Bases , Análise por Conglomerados , Primers do DNA/química , Biblioteca Gênica , Glicoproteínas/química , Glicoproteínas/genética , Proteínas de Helminto/química , Proteínas de Helminto/genética , Humanos , Dados de Sequência Molecular , Necator americanus/química , Fármacos Neuroprotetores/química , Filogenia , Reação em Cadeia da Polimerase/veterinária , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...