Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 669
Filtrar
1.
Mol Med Rep ; 29(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38131228

RESUMO

Chronic kidney disease (CKD) is a significant public health concern. Renal fibrosis is the final common pathway in the progression of kidney diseases, irrespective of the initial injury. Substantial evidence underscores the pivotal role of renal inflammation in the genesis of renal fibrosis. The presence of macrophages within normal renal tissue is significantly increased within diseased renal tissue, indicative of their crucial regulatory function in inflammation and fibrosis. Macrophages manifest a high degree of heterogeneity, exhibiting distinct phenotypic and functional traits in response to diverse stimuli within the local microenvironment in various types of kidney diseases. Broadly, macrophages are categorized into two principal groups: Classically activated, designated as M1 macrophages and alternatively activated, designated as M2 macrophages. A number of experimental models are widely used to study the underlying mechanisms driving renal inflammation and fibrosis progression. The present review delineated the phenotypic and functional attributes of macrophages present in diverse induced models, analyzing their disposition in relation to M1 and M2 polarization states.


Assuntos
Nefrite , Insuficiência Renal Crônica , Animais , Fibrose , Macrófagos/metabolismo , Insuficiência Renal Crônica/metabolismo , Nefrite/metabolismo , Inflamação/metabolismo , Modelos Animais de Doenças
2.
Int Immunopharmacol ; 127: 111372, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38118314

RESUMO

Mesangial proliferative glomerulonephritis (MsPGN) and its related rat model Thy-1 nephritis (Thy-1N) are associated with C5b-9 deposition and are characterized by proliferation of glomerular mesangial cell (GMC) and expansion of extracellular matrix (ECM) expansion, alongside overexpression of multiple growth factors. Although fibroblast growth factor 1 (FGF1), platelet-derived growth factor alpha (PDGFα), and transforming growth factor beta 1 (TGF-ß1) are well known for their proproliferative and profibrotic roles, the molecular mechanisms responsible for regulating the expression of these growth factors have not been thoroughly elucidated. In this study, we found that sublytic C5b-9 induction of sex-determining region Y-box 9 (SOX9) transactivated FGF1, PDGFα, and TGF-ß1 genes in GMCs, resulting in a significant increase in their mRNA and protein levels. Besides, sublytic C5b-9 induction of activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) phosphorylated SOX9 at serine 181 and serine 64, which enhanced SOX9's ability to transactivate FGF1, PDGFα, and TGF-ß1 genes in GMCs. Furthermore, we demonstrated that inhibiting ERK1/2 activation or silencing either ERK1/2 or SOX9 gene led to reduced SOX9 phosphorylation, decreased generation of FGF1, PDGFα, and TGF-ß1, and ameliorated glomerular injury in rat Thy-1N. Overall, these findings suggest that expression of FGF1, PDGFα, and TGF-ß1 is promoted by ERK1/2-mediated phosphorylation of SOX9, which may provide a valuable insight into the pathogenesis of MsPGN and offer a potential target for the development of novel treatment strategies for MsPGN.


Assuntos
Fator 1 de Crescimento de Fibroblastos , Nefrite , Ratos , Animais , Fator 1 de Crescimento de Fibroblastos/genética , Fator 1 de Crescimento de Fibroblastos/metabolismo , Fosforilação , Ratos Sprague-Dawley , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Sistema de Sinalização das MAP Quinases , Nefrite/metabolismo , Serina/metabolismo
3.
Int Immunopharmacol ; 124(Pt B): 110970, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37748221

RESUMO

Rat Thy-1 nephritis (Thy-1N) is an experimental model for studying human mesangioproliferative glomerulonephritis (MsPGN), and its pathological features are glomerular mesangial cell (GMC) proliferation and extracellular matrix (ECM) accumulation. Although we have confirmed that renal lesions of Thy-1N rats are sublytic C5b-9-dependent, and ECM accumulation is related to tissue inhibitor of matrix metalloproteinase (TIMP) inhibiting matrix metalloproteinase (MMP) activity, whether sublytic C5b-9 can induce TIMP production by GMC in Thy-1N rat and the underlying mechanism remains unclear. In the study, we proved that the expressions of TIMP3, krϋppel-like transcription factor 5 (KLF5) and tumor necrosis factor receptor-associated factor 6 (TRAF6) were simultaneously up-regulated both in the renal tissues of Thy-1N rats (in vivo) and in the GMC exposed to sublytic C5b-9 (in vitro). Further mechanism exploration discovered that KLF5 and TRAF6 as two upstream molecules could induce TIMP3 gene transcription through binding to the same region i.e., -1801nt to -1554nt (GGGGAGGGGC) and -228nt to -46nt (GCCCCGCCCC) of TIMP3 promoter. In the process, TRAF6 mediated KLF5 K63-linked ubiquitination at K99 and K100 enhancing KLF5 nuclear localization and binding to TIMP3 promoter, augmenting its gene activation. Furthermore, the experiments in vivo exhibited that silencing KLF5, TRAF6 or TIMP3 gene could markedly lessen renal KLF5 K63-linked ubiquitination or TIMP3 induction, ECM accumulation and other pathological changes of Thy-1N rats. Besides, the positive expressions of above-mentioned these proteins and ECM accumulation and their correlation in the renal tissues of MsPGN patients were also demonstrated. Overall, our findings implicate that KLF5 and TRAF6 play a promoting role in sublytic C5b-9-triggered TIMP3 gene transcription and expression, which might provide a novel mechanistic insight into rat Thy-1N and human MsPGN.


Assuntos
Células Mesangiais , Nefrite , Humanos , Ratos , Animais , Células Mesangiais/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Nefrite/metabolismo , Ubiquitinação , Metaloproteinases da Matriz/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Inibidor Tecidual de Metaloproteinase-3/genética , Inibidor Tecidual de Metaloproteinase-3/metabolismo
4.
Nat Commun ; 14(1): 4297, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463911

RESUMO

Renal inflammation and fibrosis are the common pathways leading to progressive chronic kidney disease (CKD). We previously identified hematopoietic cell kinase (HCK) as upregulated in human chronic allograft injury promoting kidney fibrosis; however, the cellular source and molecular mechanisms are unclear. Here, using immunostaining and single cell sequencing data, we show that HCK expression is highly enriched in pro-inflammatory macrophages in diseased kidneys. HCK-knockout (KO) or HCK-inhibitor decreases macrophage M1-like pro-inflammatory polarization, proliferation, and migration in RAW264.7 cells and bone marrow-derived macrophages (BMDM). We identify an interaction between HCK and ATG2A and CBL, two autophagy-related proteins, inhibiting autophagy flux in macrophages. In vivo, both global or myeloid cell specific HCK-KO attenuates renal inflammation and fibrosis with reduces macrophage numbers, pro-inflammatory polarization and migration into unilateral ureteral obstruction (UUO) kidneys and unilateral ischemia reperfusion injury (IRI) models. Finally, we developed a selective boron containing HCK inhibitor which can reduce macrophage pro-inflammatory activity, proliferation, and migration in vitro, and attenuate kidney fibrosis in the UUO mice. The current study elucidates mechanisms downstream of HCK regulating macrophage activation and polarization via autophagy in CKD and identifies that selective HCK inhibitors could be potentially developed as a new therapy for renal fibrosis.


Assuntos
Nefrite , Insuficiência Renal Crônica , Obstrução Ureteral , Animais , Humanos , Camundongos , Autofagia , Fibrose , Inflamação/patologia , Rim/metabolismo , Ativação de Macrófagos , Camundongos Endogâmicos C57BL , Nefrite/metabolismo , Proteínas Proto-Oncogênicas c-hck/metabolismo , Insuficiência Renal Crônica/patologia , Obstrução Ureteral/metabolismo
5.
Clin Invest Med ; 46(2): E18-22, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37379165

RESUMO

PURPOSE: To compare uric acid levels in children with Henoch-Schonlein purpura (HSP)without nephritis and with renal damage, and at different pathological grades. METHODS: A total of 451 children were enrolled in this study, including 64 with HSP without nephritis and 387 HSP with kidney damage. Age, gender, uric acid, urea, creatinine and cystatin C levels were reviewed. Pathological findings of those with renal impairment were also reviewed. RESULTS: Among the HSP children with renal damage, 44 were grade I, 167 were grade II and 176 were grade III. There were significant differences in age, uric acid, urea, creatinine and cystatin C levels between the two groups (p<0.05, all). Correlation analysis showed that uric acid levels in children with HSP without nephritis were positively correlated with urea and creatinine levels (p<0.05). Uric acid levels in HSP children with renal damage was positively correlated with age, urea, creatinine and cystatin C levels (p<0.05, all). Regression analysis found that, without adding any correction factors, there were significant differences in uric acid levels between the two groups; however, after adjusting for pathological grade, there was no longer a significant difference. CONCLUSIONS: There were significant differences of uric acid levels in children with HSP without nephritis and with renal impairment. Uric acid levels in the renal impairment group were significantly higher than that in the HSP without nephritis group. Uric acid levels were related to only the presence or absence of renal damage, not to the pathological grade.


Assuntos
Vasculite por IgA , Nefrite , Ácido Úrico , Criança , Feminino , Humanos , Masculino , Creatinina/metabolismo , Cistatina C/metabolismo , Vasculite por IgA/epidemiologia , Vasculite por IgA/metabolismo , Vasculite por IgA/patologia , Nefrite/epidemiologia , Nefrite/metabolismo , Nefrite/patologia , Medição de Risco , Ureia/metabolismo , Ácido Úrico/metabolismo
6.
Int Immunopharmacol ; 121: 110362, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37311356

RESUMO

Prolonged renal inflammation contributes to fibrosis, which may eventually lead to irreversible chronic kidney disease. Our previous work demonstrated that LIM and cysteine-rich domain 1 (LMCD1) are associated with renal interstitial fibrosis in a 21-day unilateral ureteral obstruction (21UUO) mouse model. Interestingly, based on the gene expression omnibus database, we found that LMCD1 is enhanced in the mouse kidney as early as 5, 7, and 10 days following unilateral ureteral obstruction (UUO), suggesting that LMCD1 may exert its function in an earlier phase. To validate this conjecture, a 7UUO mouse model and a tumor necrosis factor-α (TNF-α)-stimulated HK-2 cell model were established, followed by injection of adenovirus vectors carrying short hairpin RNA targeting LMCD1. LMCD1 silencing ameliorated renal collagen deposition and reduced the expression of profibrotic factors in the 7UUO model. LMCD1 silencing alleviated tubulointerstitial inflammation by mitigating F4/80+ cell infiltration, monocyte chemoattractant protein-1 release and nuclear factor-κB activation. In addition, LMCD1 silencing suppressed NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation and nuclear factor of activated T cells 1 (NFATc1) nuclear translocation. Consistent results were obtained in TNF-α-stimulated HK-2 cells in vitro. Mechanistically, the transcriptional coactivator LMCD1 cooperates with the transcription factor NFATc1 to increase NLRP3 expression. Collectively, these findings suggest that LMCD1 participates in tubulointerstitial inflammation via an LMCD1-NFATc1/NLRP3 mechanism. LMCD1 may therefore become a potential target for the control of renal inflammation and fibrosis.


Assuntos
Nefrite , Insuficiência Renal Crônica , Obstrução Ureteral , Animais , Camundongos , Fibrose , Inflamassomos/metabolismo , Inflamação/metabolismo , Rim/patologia , Camundongos Endogâmicos C57BL , Nefrite/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Insuficiência Renal Crônica/patologia , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
7.
J Pharmacol Exp Ther ; 386(1): 56-69, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37142440

RESUMO

Kidney fibrosis is considered the essential pathophysiological process for the progression of chronic kidney disease (CKD) toward renal failure. 20-Hydroxyeicosatetraenoic acid (20-HETE) has crucial roles in modulating the vascular response in the kidney and the progression of albuminuria. However, the roles of 20-HETE in kidney fibrosis are largely unexplored. In the current research, we hypothesized that if 20-HETE has important roles in the progression of kidney fibrosis, 20-HETE synthesis inhibitors might be effective against kidney fibrosis. To verify our hypothesis, this study investigated the effect of a novel and selective 20-HETE synthesis inhibitor, TP0472993, on the development of kidney fibrosis after folic acid- and obstructive-induced nephropathy in mice. Chronic treatment with TP0472993 at doses of 0.3 and 3 mg/kg twice a day attenuated the degree of kidney fibrosis in the folic acid nephropathy and the unilateral ureteral obstruction (UUO) mice, as demonstrated by reductions in Masson's trichrome staining and the renal collagen content. In addition, TP0472993 reduced renal inflammation, as demonstrated by markedly reducing interleukin-1ß (IL-1ß) and tumor necrosis factor alpha (TNF-α) levels in the renal tissue. Chronic treatment with TP0472993 also reduced the activity of extracellular signal-regulated kinase 1/2 (ERK1/2) and signal transducer and activator of transcription 3 (STAT3) in the kidney of UUO mice. Our observations indicate that inhibition of 20-HETE production with TP0472993 suppresses the kidney fibrosis progression via a reduction in the ERK1/2 and STAT3 signaling pathway, suggesting that 20-HETE synthesis inhibitors might be a novel treatment option against CKD. SIGNIFICANCE STATEMENT: In this study, we demonstrate that the pharmacological blockade of 20-hydroxyeicosatetraenoic acid (20-HETE) synthesis using TP0472993 suppresses the progression of kidney fibrosis after folic acid- and obstructive-induced nephropathy in mice, indicating that 20-HETE might have key roles in the pathogenesis of kidney fibrosis. TP0472993 has the potential to be a novel therapeutic approach against chronic kidney disease.


Assuntos
Nefropatias , Nefrite , Insuficiência Renal Crônica , Obstrução Ureteral , Camundongos , Animais , Nefropatias/tratamento farmacológico , Nefropatias/prevenção & controle , Rim , Nefrite/metabolismo , Obstrução Ureteral/tratamento farmacológico , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia , Insuficiência Renal Crônica/complicações , Fibrose , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
8.
Biomed Pharmacother ; 161: 114484, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36921530

RESUMO

A low-salt diet may activate the renin-angiotensin-aldosterone system (RAAS) and is often applied simultaneously with RAAS inhibitors, especially for treatment of proteinuric nephritis. To explore the effect of a low-salt diet combined with angiotensin receptor blockers (ARB) on kidney function, the proteinuric nephritis model was induced by single intravenous injection of doxorubicin, and then the SD rats were administrated with candesartan intraperitoneal injection and fed with different salt diets. Rats with low-salt plus candesartan, not either alone, experienced acute kidney injury (AKI) at day 7 and could not self-restore when extending the experiment time from 7 days to 21 days, unless switching low-salt to normal-salt. Among three nitric oxide synthetases (NOS), endothelial NOS (eNOS) was obviously elevated and PI3K-Akt-eNOS signal pathway was activated. NG-Nitro-L-Arginine Methyl Ester (L-NAME), an eNOS inhibitor, reversed the decreased blood pressure and recovered the kidney dysfunction induced by low-salt with candesartan. The increased TUNEL-positive cells, Bax/Bcl-2 and cleaved-caspase3 protein abundance was ameliorated by L-NAME in vivo. In vitro, sodium nitroprusside, a nitric oxide donor, can also increase Bax/Bcl-2 and cleaved-caspase3 protein level in HK-2 cell. Thus, low-salt diet combined with candesartan in nephritis rats led to AKI, and the mechanism involved the increase of eNOS/NO, which linked to the decrease of blood pressure and the increase of apoptosis. This study provides practical guidance for salt intake in cases of RAS inhibitor usage clinically.


Assuntos
Injúria Renal Aguda , Nefrite , Ratos , Animais , Rim , NG-Nitroarginina Metil Éster/farmacologia , Dieta Hipossódica , Óxido Nítrico/metabolismo , Antagonistas de Receptores de Angiotensina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteína X Associada a bcl-2/metabolismo , Ratos Sprague-Dawley , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Pressão Sanguínea , Óxido Nítrico Sintase/metabolismo , Cloreto de Sódio , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Nefrite/metabolismo
9.
Am J Physiol Renal Physiol ; 323(4): F411-F424, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35979968

RESUMO

While angiotensin-converting enzyme (ACE) regulates blood pressure by producing angiotensin II as part of the renin-angiotensin system, we recently reported that elevated ACE in neutrophils promotes an effective immune response and increases resistance to infection. Here, we investigate if such neutrophils protect against renal injury in immune complex (IC)-mediated crescentic glomerulonephritis (GN) through complement. Nephrotoxic serum nephritis (NTN) was induced in wild-type and NeuACE mice that overexpress ACE in neutrophils. Glomerular injury of NTN in NeuACE mice was attenuated with much less proteinuria, milder histological injury, and reduced IC deposits, but presented with more glomerular neutrophils in the early stage of the disease. There were no significant defects in T and B cell functions in NeuACE mice. NeuACE neutrophils exhibited enhanced IC uptake with elevated surface expression of FcγRII/III and complement receptor CR1/2. IC uptake in neutrophils was enhanced by NeuACE serum containing elevated complement C3b. Given no significant complement activation by ACE, this suggests that neutrophil ACE indirectly preactivates C3 and that the C3b-CR1/2 axis and elevated FcγRII/III play a central role in IC elimination by neutrophils, resulting in reduced glomerular injury. The present study identified a novel renoprotective role of ACE in glomerulonephritis; elevated neutrophilic ACE promotes elimination of locally formed ICs in glomeruli via C3b-CR1/2 and FcγRII/III, ameliorating glomerular injury.NEW & NOTEWORTHY We studied immune complex (IC)-mediated crescentic glomerulonephritis in NeuACE mice that overexpress ACE only in neutrophils. Such mice show no significant defects in humoral immunity but strongly resist nephrotoxic serum nephritis (less proteinuria, milder histological damage, reduced IC deposits, and more glomerular neutrophils). NeuACE neutrophils enhanced IC uptake via increased surface expression of CR1/2 and FcgRII/III, as well as elevated serum complement C3b. These results suggest neutrophil ACE as a novel approach to reducing glomerulonephritis.


Assuntos
Glomerulonefrite , Nefrite , Angiotensina II/metabolismo , Animais , Complexo Antígeno-Anticorpo/metabolismo , Complemento C3b/metabolismo , Glomerulonefrite/metabolismo , Camundongos , Nefrite/metabolismo , Neutrófilos/metabolismo , Proteinúria/metabolismo
10.
Am J Physiol Renal Physiol ; 323(2): F107-F119, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35658715

RESUMO

Damage-associated molecular patterns secreted from activated kidney cells initiate the inflammatory response, a critical step in the development of sepsis-induced acute kidney injury (AKI). However, the underlying mechanism remains to be clarified. Here, we established a mouse model of sepsis-induced AKI through intraperitoneal injection of lipopolysaccharide (LPS) and demonstrated that LPS induced dramatical upregulation of C-C motif chemokine ligand 2 (CCL2) at both the mRNA and protein levels in the kidney, which was mainly expressed by tubular epithelial cells (TECs), especially by proximal TECs. Proximal tubule-specific ablation of CCL2 reduced LPS-induced macrophage infiltration, proinflammatory cytokine expression, and attenuated AKI. In vitro, using a Transwell migration assay, we found that deficiency of CCL2 in TECs decreased macrophage migration ability. However, myeloid-specific depletion of CCL2 could not protect the kidneys from the aforementioned effects. Mechanistically, LPS activated Toll-like receptor (TLR)2 signaling in TECs, which induced activation of its downstream effector NF-κB. Blockade of TLR2 signaling or inhibition of NF-κB activation in TECs significantly suppressed LPS-induced CCL2 expression. Furthermore, chromatin immunoprecipitation analyses confirmed a direct binding of NF-κB p65 in the CCL2 promoter region, and LPS increased the binding of NF-κB p65 to the CCL2 promoter, suggesting that TLR2/NF-κB p65 regulates CCL2 expression in TECs. Together, these results demonstrate that endogenous CCL2 released from proximal TECs, not from myeloid cells, was responsible for sepsis-induced kidney inflammation and AKI. Specifically targeting tubular TLR2/NF-κB/CCL2 signaling may be a potential therapeutic strategy for the prevention or attenuation of septic AKI.NEW & NOTEWORTHY This study provides a mechanistic insight into how C-C motif chemokine ligand 2 (CCL2) is upregulated in renal tubular epithelial cells (TECs) and contributes to kidney dysfunction during sepsis. The data reveal that lipopolysaccharide induces CCL2 expression through the Toll-like receptor 2/NF-κB signaling pathway in TECs. Endogenous CCL2 released from TECs, not from myeloid cells, is responsible for sepsis-induced kidney inflammation and acute kidney injury.


Assuntos
Injúria Renal Aguda , Nefrite , Sepse , Injúria Renal Aguda/genética , Animais , Quimiocina CCL2/metabolismo , Quimiocinas/metabolismo , Células Epiteliais/metabolismo , Ligantes , Lipopolissacarídeos/farmacologia , Camundongos , NF-kappa B/metabolismo , Nefrite/metabolismo , Sepse/complicações , Sepse/metabolismo , Receptor 2 Toll-Like/metabolismo
11.
Circ Res ; 131(1): 59-73, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35574842

RESUMO

BACKGROUND: Chronic renal inflammation has been widely recognized as a major promoter of several forms of high blood pressure including salt-sensitive hypertension. In diabetes, IL (interleukin)-6 induces salt sensitivity through a dysregulation of the epithelial sodium channel. However, the origin of this inflammatory process and the molecular events that culminates with an abnormal regulation of epithelial sodium channel and salt sensitivity in diabetes are largely unknown. METHODS: Both in vitro and in vivo approaches were used to investigate the molecular and cellular contributors to the renal inflammation associated with diabetic kidney disease and how these inflammatory components interact to develop salt sensitivity in db/db mice. RESULTS: Thirty-four-week-old db/db mice display significantly higher levels of IL-1ß in renal tubules compared with nondiabetic db/+ mice. Specific suppression of IL-1ß in renal tubules prevented salt sensitivity in db/db mice. A primary culture of renal tubular epithelial cells from wild-type mice releases significant levels of IL-1ß when exposed to a high glucose environment. Coculture of tubular epithelial cells and bone marrow-derived macrophages revealed that tubular epithelial cell-derived IL-1ß promotes the polarization of macrophages towards a proinflammatory phenotype resulting in IL-6 secretion. To evaluate whether macrophages are the cellular target of IL-1ß in vivo, diabetic db/db mice were transplanted with the bone marrow of IL-1R1 (IL-1 receptor type 1) knockout mice. db/db mice harboring an IL-1 receptor type 1 knockout bone marrow remained salt resistant, display lower renal inflammation and lower expression and activity of epithelial sodium channel compared with db/db transplanted with a wild-type bone marrow. CONCLUSIONS: Renal tubular epithelial cell-derived IL-1ß polarizes renal macrophages towards a proinflammatory phenotype that promotes salt sensitivity through the accumulation of renal IL-6. When tubular IL-1ß synthesis is suppressed or in db/db mice in which immune cells lack the IL-1R1, macrophage polarization is blunted resulting in no salt-sensitive hypertension.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Hipertensão , Nefrite , Animais , Diabetes Mellitus/metabolismo , Nefropatias Diabéticas/genética , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Inflamação/metabolismo , Interleucina-6/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nefrite/metabolismo , Receptores de Interleucina-1/metabolismo , Cloreto de Sódio na Dieta/toxicidade
12.
Int J Mol Sci ; 23(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35563296

RESUMO

Renal inflammation is an initial pathological process during progressive renal injury regardless of the initial cause. Macrophage migration inhibitory factor (MIF) is a truly proinflammatory stress mediator that is highly expressed in a variety of both inflammatory cells and intrinsic kidney cells. MIF is released from the diseased kidney immediately upon stimulation to trigger renal inflammation by activating macrophages and T cells, and promoting the production of proinflammatory cytokines, chemokines, and stress molecules via signaling pathways involving the CD74/CD44 and chemokine receptors CXCR2, CXCR4, and CXCR7 signaling. In addition, MIF can function as a stress molecule to counter-regulate the immunosuppressive effect of glucocorticoid in renal inflammation. Given the critical position of MIF in the upstream inflammatory cascade, this review focuses on the regulatory role and molecular mechanisms of MIF in kidney diseases. The therapeutic potential of targeting MIF signaling to treat kidney diseases is also discussed.


Assuntos
Fatores Inibidores da Migração de Macrófagos , Nefrite , Feminino , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Inflamação , Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Masculino , Nefrite/metabolismo , Receptores de Interleucina-8B , Transdução de Sinais , Estresse Fisiológico/fisiologia
13.
PLoS One ; 17(2): e0264136, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35176122

RESUMO

Current research on hypertension utilizes more than fifty animal models that rely mainly on stable increases in systolic blood pressure. In experimental hypertension, grading or scoring of glomerulopathy in the majority of studies is based on a wide range of opinion-based histological changes that do not necessarily comply with lesional descriptors for glomerular injury that are well-established in clinical pathology. Here, we provide a critical appraisal of experimental hypertensive glomerulopathy with the same approach used to assess hypertensive glomerulopathy in humans. Four hypertensive models with varying pathogenesis were analyzed-chronic angiotensin II infused mice, mice expressing active human renin in the liver (TTRhRen), spontaneously hypertensive rats (SHR), and Goldblatt two-kidney one-clip rats (2K1C). Analysis of glomerulopathy utilized the same criteria applied in humans-hyalinosis, focal segmental glomerulosclerosis (FSGS), ischemic, hypertrophic and solidified glomeruli, or global glomerulosclerosis (GGS). Data from animal models were compared to human reference values. Kidneys in TTRhRen mice, SHR and the nonclipped kidneys in 2K1C rats had no sign of hyalinosis, FSGS or GGS. Glomerulopathy in these groups was limited to variations in mesangial and capillary compartment volumes, with mild increases in collagen deposition. Histopathology in angiotensin II infused mice corresponded to mesangioproliferative glomerulonephritis, but not hypertensive glomerulosclerosis. The number of nephrons was significantly reduced in TTRhRen mice and SHR, but did not correlate with severity of glomerulopathy. The most substantial human-like glomerulosclerotic lesions, including FSGS, ischemic obsolescent glomeruli and GGS, were found in the clipped kidneys of 2K1C rats. The comparison of affected kidneys to healthy control in animals produces lesion values that are numerically impressive but correspond to mild damage if compared to humans. Animal studies should be standardized by employing the criteria and classifications established in human pathology to make experimental and human data fully comparable for comprehensive analysis and model improvements.


Assuntos
Angiotensina II/toxicidade , Modelos Animais de Doenças , Glomerulosclerose Segmentar e Focal/patologia , Hipertensão Renal/patologia , Hipertensão/complicações , Nefrite/patologia , Nefroesclerose/patologia , Animais , Glomerulosclerose Segmentar e Focal/etiologia , Glomerulosclerose Segmentar e Focal/metabolismo , Humanos , Hipertensão/induzido quimicamente , Hipertensão Renal/etiologia , Hipertensão Renal/metabolismo , Masculino , Nefrite/etiologia , Nefrite/metabolismo , Nefroesclerose/etiologia , Nefroesclerose/metabolismo , Ratos , Ratos Endogâmicos SHR , Vasoconstritores/toxicidade
14.
J Am Soc Nephrol ; 33(1): 88-107, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34686544

RESUMO

BACKGROUND: Kidneys with chronic inflammation develop tertiary lymphoid structures (TLSs). Infectious pyelonephritis is characterized by renal pelvis (RP) inflammation. However, the pathologic features of TLSs, including their formation and association with non-infectious nephritis, are unclear. METHODS: RPs from humans and mice that were healthy or had non-infectious chronic nephritis were analyzed for TLS development, and the mechanism of TLS formation investigated using urothelium or lymphoid structure cultures. RESULTS: Regardless of infection, TLSs in the RP, termed urinary tract-associated lymphoid structures (UTALSs), formed in humans and mice with chronic nephritis. Moreover, urine played a unique role in UTALS formation. Specifically, we identified urinary IFN-γ as a candidate factor affecting urothelial barrier integrity because it alters occludin expression. In a nephritis mouse model, urine leaked from the lumen of the RP into the parenchyma. In addition, urine immunologically stimulated UTALS-forming cells via cytokine (IFN-γ, TNF-α) and chemokine (CXCL9, CXCL13) production. CXCL9 and CXCL13 were expressed in UTALS stromal cells and urine stimulation specifically induced CXCL13 in cultured fibroblasts. Characteristically, type XVII collagen (BP180), a candidate autoantigen of bullous pemphigoid, was ectopically localized in the urothelium covering UTALSs and associated with UTALS development by stimulating CXCL9 or IL-22 induction via the TNF-α/FOS/JUN pathway. Notably, UTALS development indices were positively correlated with chronic nephritis development. CONCLUSIONS: TLS formation in the RP is possible and altered urine-urothelium barrier-based UTALS formation may represent a novel mechanism underlying the pathogenesis of chronic nephritis, regardless of urinary tract infection.


Assuntos
Pelve Renal/patologia , Nefrite/etiologia , Nefrite/patologia , Estruturas Linfoides Terciárias/patologia , Urotélio/patologia , Adulto , Idoso , Animais , Estudos de Casos e Controles , Doença Crônica , Modelos Animais de Doenças , Feminino , Humanos , Pelve Renal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Nefrite/metabolismo , Urina , Urotélio/metabolismo
15.
J Cardiovasc Pharmacol ; 79(1): e116-e121, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34654783

RESUMO

ABSTRACT: Catalpol is an iridoid glycoside obtained from Rehmannia glutinosa, which in previous studies showed various pharmacological properties, including anti-inflammatory, antioxidant, antidiabetic, antitumor, and dopaminergic neurons protecting effects. Here, we examined the effect of catalpol on renal injury induced by angiotensin II (Ang II) and further to explore its latent molecular mechanisms. We used an in vivo model of Ang II-induced renal injury mice; catalpol (25, 50, and 100 mg/kg) was administered for 28 days. Mouse glomerular mesangial cells (SV40 MES 13), rat kidney interstitial fibroblasts cells (NRK-49F), and human proximal tubular epithelial cells (HK-2) were induced by Ang II (10 µM) in the presence or absence of catalpol (1, 5, and 10 µM) and incubated for 48 hours in vitro. In our study, periodic acid-Schiff and Masson staining of renal tissue showed that catalpol reduced Ang II-induced renal injury in a concentration-dependent manner. The positive expressions of collagen IV and TGF-ß1 were observed to decrease sharply after catalpol treatment. In renal tissue, the levels of pro-inflammatory cytokines tumor necrosis factor α and interleukin 6 were evidently decreased after catalpol intervention. Catalpol can relieve Ang II-induced renal injury by inactivating NF-κB and TGF-ß1/Smads signaling pathways. Therefore, catalpol may act as a potential drug to treat Ang II-induced renal injury.


Assuntos
Anti-Inflamatórios/farmacologia , Glucosídeos Iridoides/farmacologia , Rim/efeitos dos fármacos , NF-kappa B/metabolismo , Nefrite/prevenção & controle , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Angiotensina II , Animais , Linhagem Celular , Modelos Animais de Doenças , Fibrose , Humanos , Mediadores da Inflamação/metabolismo , Rim/metabolismo , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nefrite/induzido quimicamente , Nefrite/metabolismo , Nefrite/patologia , Ratos , Transdução de Sinais
16.
Mol Med Rep ; 25(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34738620

RESUMO

Chronic hypertension can lead to kidney damage, known as hypertensive nephropathy or hypertensive nephrosclerosis. Further understanding of the molecular mechanisms via which hypertensive nephropathy develops is essential for effective diagnosis and treatment. The present study investigated the mechanisms by which endothelial progenitor cells (EPCs) repair primary rat kidney cells (PRKs). ELISA, Cell Counting Kit­8 and flow cytometry assays were used to analyze the effects of EPCs or EPC­MVs on the oxidative stress, inflammation, cell proliferation, apoptosis and cycle of PRKs induced by AngII. A PRK injury model was established using angiotensin II (Ang II). After Ang II induction, PRK proliferation was decreased, apoptosis was increased and the cell cycle was blocked at the G1 phase before entering the S phase. It was found that the levels of reactive oxygen species and malondialdehyde were increased, while the levels of glutathione peroxidase and superoxide dismutase were decreased. Moreover, the levels of the inflammatory cytokines IL­1ß, IL­6 and TNF­α were significantly increased. Thus, Ang II damaged PRKs by stimulating oxidative stress and promoting the inflammatory response. However, when PRKs were co­cultured with EPCs, the damage induced by Ang II was significantly reduced. The current study collected the microvesicles (MVs) secreted by EPCs and co­cultured them with Ang II­induced PRKs, and identified that EPC­MVs retained their protective effect on PRKs. In conclusion, EPCs protect PRKs from Ang II­induced damage via secreted MVs.


Assuntos
Micropartículas Derivadas de Células/fisiologia , Células Progenitoras Endoteliais/metabolismo , Rim/lesões , Angiotensina II/efeitos adversos , Angiotensina II/farmacologia , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Micropartículas Derivadas de Células/metabolismo , Citocinas/metabolismo , Células Progenitoras Endoteliais/fisiologia , Hipertensão Renal/metabolismo , Hipertensão Renal/fisiopatologia , Rim/metabolismo , Masculino , Nefrite/metabolismo , Nefrite/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Cultura Primária de Células , Ratos , Ratos Endogâmicos WKY , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
17.
Mol Med ; 27(1): 147, 2021 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-34773993

RESUMO

BACKGROUND: Patients with salt-sensitive hypertension are often accompanied with severe renal damage and accelerate to end-stage renal disease, which currently lacks effective treatment. Fibroblast growth factor 21 (FGF21) has been shown to suppress nephropathy in both type 1 and type 2 diabetes mice. Here, we aimed to investigate the therapeutic effect of FGF21 in salt-sensitive hypertension-induced nephropathy. METHODS: Changes of FGF21 expression in deoxycorticosterone acetate (DOCA)-salt-induced hypertensive mice were detected. The influence of FGF21 knockout in mice on DOCA-salt-induced nephropathy were determined. Recombinant human FGF21 (rhFGF21) was intraperitoneally injected into DOCA-salt-induced nephropathy mice, and then the inflammatory factors, oxidative stress levels and kidney injury-related indicators were observed. In vitro, human renal tubular epithelial cells (HK-2) were challenged by palmitate acid (PA) with or without FGF21, and then changes in inflammation and oxidative stress indicators were tested. RESULTS: We observed significant elevation in circulating levels and renal expression of FGF21 in DOCA-salt-induced hypertensive mice. We found that deletion of FGF21 in mice aggravated DOCA-salt-induced nephropathy. Supplementation with rhFGF21 reversed DOCA-salt-induced kidney injury. Mechanically, rhFGF21 induced AMPK activation in DOCA-salt-treated mice and PA-stimulated HK-2 cells, which inhibited NF-κB-regulated inflammation and Nrf2-mediated oxidative stress and thus, is important for rhFGF21 protection against DOCA-salt-induced nephropathy. CONCLUSION: These findings indicated that rhFGF21 could be a promising pharmacological strategy for the treatment of salt-sensitive hypertension-induced nephropathy.


Assuntos
Fatores de Crescimento de Fibroblastos , Hipertensão Renal , Nefrite , Animais , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Linhagem Celular , Acetato de Desoxicorticosterona , Fatores de Crescimento de Fibroblastos/sangue , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/uso terapêutico , Humanos , Hipertensão Renal/induzido quimicamente , Hipertensão Renal/tratamento farmacológico , Hipertensão Renal/metabolismo , Hipertensão Renal/patologia , Interleucina-6/metabolismo , Rim/metabolismo , Rim/patologia , Masculino , Camundongos Endogâmicos C57BL , Nefrite/induzido quimicamente , Nefrite/tratamento farmacológico , Nefrite/metabolismo , Nefrite/patologia , Estresse Oxidativo , Proteínas Recombinantes/uso terapêutico , Cloreto de Sódio na Dieta , Fator de Necrose Tumoral alfa/metabolismo
18.
J Am Soc Nephrol ; 32(10): 2445-2453, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34599036

RESUMO

BACKGROUND: Renal denervation (RDN) is an invasive intervention to treat drug-resistant arterial hypertension. Its therapeutic value is contentious. Here we examined the effects of RDN on inflammatory and infectious kidney disease models in mice. METHODS: Mice were unilaterally or bilaterally denervated, or sham operated, then three disease models were induced: nephrotoxic nephritis (NTN, a model for crescentic GN), pyelonephritis, and acute endotoxemic kidney injury (as a model for septic kidney injury). Analytical methods included measurement of renal glomerular filtration, proteinuria, flow cytometry of renal immune cells, immunofluorescence microscopy, and three-dimensional imaging of optically cleared kidney tissue by light-sheet fluorescence microscopy followed by algorithmic analysis. RESULTS: Unilateral RDN increased glomerular filtration in denervated kidneys, but decreased it in the contralateral kidneys. In the NTN model, more nephritogenic antibodies were deposited in glomeruli of denervated kidneys, resulting in stronger inflammation and injury in denervated compared with contralateral nondenervated kidneys. Also, intravenously injected LPS increased neutrophil influx and inflammation in the denervated kidneys, both after unilateral and bilateral RDN. When we induced pyelonephritis in bilaterally denervated mice, both kidneys contained less bacteria and neutrophils. In unilaterally denervated mice, pyelonephritis was attenuated and intrarenal neutrophil numbers were lower in the denervated kidneys. The nondenervated contralateral kidneys harbored more bacteria, even compared with sham-operated mice, and showed the strongest influx of neutrophils. CONCLUSIONS: Our data suggest that the increased perfusion and filtration in denervated kidneys can profoundly influence concomitant inflammatory diseases. Renal deposition of circulating nephritic material is higher, and hence antibody- and endotoxin-induced kidney injury was aggravated in mice. Pyelonephritis was attenuated in denervated murine kidneys, because the higher glomerular filtration facilitated better flushing of bacteria with the urine, at the expense of contralateral, nondenervated kidneys after unilateral denervation.


Assuntos
Injúria Renal Aguda/etiologia , Injúria Renal Aguda/fisiopatologia , Denervação Autônoma/efeitos adversos , Vasoespasmo Coronário/cirurgia , Hipertensão/cirurgia , Nefrite/patologia , Animais , Bactérias/isolamento & purificação , Endotoxemia/complicações , Feminino , Taxa de Filtração Glomerular , Imunoglobulina G/metabolismo , Rim/irrigação sanguínea , Lipopolissacarídeos , Camundongos , Nefrite/imunologia , Nefrite/metabolismo , Neutrófilos/patologia , Proteinúria/etiologia , Pielonefrite/microbiologia , Pielonefrite/patologia , Pielonefrite/fisiopatologia , Artéria Renal/lesões , Artéria Renal/cirurgia
19.
Life Sci ; 287: 120058, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34673118

RESUMO

AIMS: We aimed to determine whether resistance training (RT) regulates renal renin-angiotensin system (RAS) components and inflammatory mediators in diabetic rats. MAIN METHODS: Male Wistar rats (3 months old) were randomly assigned into four groups: non-trained (NT), trained (T), non-trained + diabetes (NTD) and trained +diabetes (TD). Diabetes was induced by streptozotocin (50 mg/kg, Sigma Chemical Co., St. Louis, MO, USA), before RT protocol. Trained rats performed RT protocol on a 110-cm ladder (8 ladder climbs, once/day, 5 days/week, 8 weeks), carrying a load corresponding to 50-80% of maximum carrying capacity. Blood glucose, albuminuria and urinary volume were measured. Renal levels of angiotensin peptides (angiotensin I, II and 1-7), inflammatory markers, and also the activities of angiotensin-converting enzyme (ACE) and ACE2 were determined. KEY FINDINGS: Blood glucose and urinary volume were elevated in diabetic animals, and RT decreased albuminuria, renal Ang I and Ang II levels in diabetic rats. RT shifted the balance of renal RAS toward ACE2/Ang 1-7 axis in TD group, and mitigated the high levels of interleukin (IL)-10, IL-1ß and cytokine-induced neutrophil chemoattractant 1 (CINC) in the context of diabetes. Strong positive correlations were found between albuminuria and Ang II, IL-10 and IL-1ß. On the other hand, intrarenal Ang 1-7 levels were negatively correlated with IL-10 and IL-1ß levels. SIGNIFICANCE: RT improved kidney function by modulating intrarenal RAS toward ACE2/Ang 1-7 axis and inflammatory cytokines. RT represents a reasonable strategy to improve the renal complications induced by diabetes, counteracting nephropathy-associated maladaptive responses.


Assuntos
Angiotensina I/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Diabetes Mellitus Experimental/metabolismo , Nefrite/metabolismo , Fragmentos de Peptídeos/metabolismo , Sistema Renina-Angiotensina/fisiologia , Treinamento Resistido/métodos , Animais , Diabetes Mellitus Experimental/terapia , Rim/metabolismo , Masculino , Nefrite/terapia , Ratos , Ratos Wistar
20.
Biomed Pharmacother ; 144: 112267, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34624679

RESUMO

Studies have shown that ursolic acid (UA) and empagliflozin (EM) exert therapeutic effects in the treatment of diabetic nephropathy (DN), but both drugs have disadvantages. This study explores the effect of combining these drugs compared to that of either monotherapy. A diabetic rat model was established by feeding a high-fat diet (HFD) with high-sugar content and administering a low dose of streptozotocin (STZ) via intraperitoneal injection. UA (50 mg/kg/day, po), EM (10 mg/kg/day, po) or both were administered for 8 weeks. The development of DN was determined by observing increases in urine protein, serum creatinine, urea nitrogen, and uric acid and abnormal changes in kidney morphology. UA and EM either alone or in combination can alleviate the increases in blood glucose, glycosylated haemoglobin, blood lipid levels, inflammatory factors (TNF-α, IL-1ß, IL-6), oxidation factors (SOD, MDA, GSH, CAT, NO), renal fibrosis and pro-fibrosis factors (FN, E-cad, MMP-9, TIMP-1, SMA-α, TGF-ß1, SMAD, MAPK). The treatments could also ameliorate DN by preventing the abnormal proliferation of glomerular mesangial cells under high-glucose conditions, aberrant apoptosis and excessive production of reactive oxygen species (ROS). In addition, UA reduces the increase in LDL-L, reverses abnormal bladder morphology and mitigates the increase in colony count caused by EM, and the combination treatment can overcome the disadvantages of the slow hypoglycaemic effect of UA. In short, UA combined with empagliflozin is more effective than either monotherapy in the treatment of DN and can cancel the adverse effects of each other. The protective effect of this regimen on the kidney may be related to reducing inflammation, oxidative stress and renal fibrosis.


Assuntos
Anti-Inflamatórios/farmacologia , Antifibróticos/farmacologia , Antioxidantes/farmacologia , Compostos Benzidrílicos/farmacologia , Nefropatias Diabéticas/tratamento farmacológico , Glucosídeos/farmacologia , Rim/efeitos dos fármacos , Nefrite/prevenção & controle , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Triterpenos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Quimioterapia Combinada , Fibrose , Mediadores da Inflamação/metabolismo , Rim/metabolismo , Rim/patologia , Masculino , Nefrite/metabolismo , Nefrite/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Ácido Ursólico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...