Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.185
Filtrar
1.
J Phys Chem B ; 128(10): 2249-2265, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38437183

RESUMO

A novel in silico drug design procedure is described targeting the Main protease (Mpro) of the SARS-CoV-2 virus. The procedure combines molecular docking, molecular dynamics (MD), and fragment molecular orbital (FMO) calculations. The binding structure and properties of Mpro were predicted for Nelfinavir (NFV), which had been identified as a candidate compound through drug repositioning, targeting Mpro. Several poses of the Mpro and NFV complexes were generated by docking, from which four docking poses were selected by scoring with FMO energy. Then, each pose was subjected to MD simulation, 100 snapshot structures were sampled from each of the generated MD trajectories, and the structures were evaluated by FMO calculations to rank the pose based on binding energy. Several residues were found to be important in ligand recognition, including Glu47, Asp48, Glu166, Asp187, and Gln189, all of which interacted strongly with NFV. Asn142 is presumably regarded to form hydrogen bonds or CH/π interaction with NFV; however, in the present calculation, their interactions were transient. Moreover, the tert-butyl group of NFV had no interaction with Mpro. Identifying such strong and weak interactions provides candidates for maintaining and substituting ligand functional groups and important suggestions for drug discovery using drug repositioning. Besides the interaction between NFV and the amino acid residues of Mpro, the desolvation effect of the binding pocket also affected the ranking order. A similar procedure of drug design was applied to Lopinavir, and the calculated interaction energy and experimental inhibitory activity value trends were consistent. Our approach provides a new guideline for structure-based drug design starting from a candidate compound whose complex crystal structure has not been obtained.


Assuntos
COVID-19 , Proteases 3C de Coronavírus , Humanos , Ligantes , Simulação de Acoplamento Molecular , Nelfinavir/farmacologia , SARS-CoV-2 , Simulação de Dinâmica Molecular
2.
Clin Lymphoma Myeloma Leuk ; 24(5): 298-304, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38220589

RESUMO

BACKGROUND: In preclinical models, combining a GLUT4 inhibitor with an oxidative phosphorylation inhibitor shows synergistic therapeutic potential against multiple myeloma (MM). Thus, this study evaluated the safety and tolerability of repurposing metformin, a complex I inhibitor, and nelfinavir, a GLUT4 inhibitor, in combination with bortezomib for the treatment of relapsed/refractory MM that had progressed on all standard of care therapies. MATERIALS AND METHODS: This trial utilized a 3 + 3 dose escalation design with 3 dose levels planned for up to a maximum of 6 (21-day) cycles. Metformin and nelfinavir were administered for 14 of 21 days, and subQ bortezomib was administered to a portion of patients on days 1, 8, and 15. The primary objective was to determine the maximal tolerated dose, and the secondary objective was to evaluate the safety and overall response rate (ORR) of this combination. RESULTS: Nine patients were accrued with a median age of 65 (range: 42-81) and received a median of 7 prior lines of therapy (Range: 5-12). The first 3 patients received only metformin (500 mg BID) and nelfinavir (1250 mg BID) at the first dose level, with 1 patient experiencing an unconfirmed minimal response (MR) in the first cycle, 1 experiencing progressive disease after 1 cycle of treatment and 1 patient going off treatment prior to assessing response but with signs of progressive disease. Given the limited therapeutic activity, the upfront addition of bortezomib (1.3 mg/m2) was utilized for the subsequent 6 patients accrued. Three of these 6 patients went off study due to progressive disease, 1 patient achieved an unconfirmed partial response after 1 cycle of treatment but reported progressive disease in the subsequent cycle, 1 patient went off study to enter hospice, and the remaining patient experienced stable disease (SD) after receiving 6 cycles of clinical trial treatment. The study was closed before accrual to the next dose level was started. CONCLUSION: This is the first study to evaluate the safety and efficacy of this repurposed drug combination in this very difficult-to-treat population of relapsed and refractory MM. This was an overall negative study with no ORR observed. Fortunately, 1 patient experienced an SD response, allowing this combination to stabilize their disease until another novel therapy on a clinical trial was available.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Bortezomib , Metformina , Mieloma Múltiplo , Nelfinavir , Humanos , Metformina/uso terapêutico , Metformina/farmacologia , Metformina/administração & dosagem , Nelfinavir/uso terapêutico , Nelfinavir/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Bortezomib/uso terapêutico , Bortezomib/farmacologia , Bortezomib/administração & dosagem , Pessoa de Meia-Idade , Idoso , Masculino , Feminino , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Idoso de 80 Anos ou mais , Recidiva Local de Neoplasia/tratamento farmacológico
3.
J Biomol Struct Dyn ; 42(5): 2270-2281, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37139547

RESUMO

Glioblastoma, the most severe form of brain tumor and a leading cause of death within a year of diagnosis, is characterized by excessive protein synthesis and folding in the lumen of the endoplasmic reticulum (ER), leading to increased ER stress in the cells of GBM tissues. To mitigate this stress the cancer cells have intelligently adopted a plethora of response mechanisms and Unfolded Protein Response (UPR) is one of those. To bear with this exhaustive situation cells upregulate a strong protein degradation system in form of 26S proteasome and blocking of proteasomal gene synthesis may be a potential therapeutic action against GBM. Proteasomal gene synthesis is exclusively dependent on the transcription factor Nuclear respiratory factor 1 (NRF1) and its activating enzyme DNA damage inducible 1 homolog 2 (DDI2). Here in this study, we performed molecular docking against DDI2 with the 20 FDA-approved drugs and identified Alvimopan and Levocabastine as the top two compounds with the best binding score along with the standard drug Nelfinavir. MD simulation (100 ns) of these protein-ligand docked complexes reveals that the stability and compactness of Alvimopan are high in comparison with Nelfinavir. Our in-silico (Molecular docking and Molecular dynamics simulation) studies pointed out that Alvimopan may be repurposed as a DDI2 inhibitor and can be used as a potential anticancer agent for the treatment of brain tumors.Communicated by Ramaswamy H. Sarma.


Assuntos
Antineoplásicos , Ácido Aspártico Proteases , Glioblastoma , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Reposicionamento de Medicamentos , Glioblastoma/tratamento farmacológico , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Nelfinavir/farmacologia , Ácido Aspártico Proteases/antagonistas & inibidores
4.
Clin Pharmacol Ther ; 115(5): 1044-1053, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38124355

RESUMO

To inform fetal drug safety, it is important to determine or predict fetal drug exposure throughout pregnancy. The former is not possible in the first or second trimester. In contrast, at the time of birth, fetal drug exposure, relative to maternal exposure, can be estimated as Kp,uu (unbound fetal umbilical venous (UV) plasma area under the curve (AUC)/unbound maternal plasma (MP) AUC), provided the observed UV/MP values, spanning the dosing interval, are available from multiple maternal-fetal dyads. However, this fetal Kp,uu cannot be extrapolated to other drugs. To overcome the above limitations, we have used an efflux ratio-relative expression factor (ER-REF) approach to successfully predict the fetal Kp,uu of P-gp substrates. Because many drugs taken by pregnant people are also BCRP substrates, here, we extend this approach to drugs that are effluxed by both placental BCRP and P-gp or P-gp alone. To verify our predictions, we chose drugs for which UV/MP data were available at term: glyburide and imatinib (both BCRP and P-gp substrates) and nelfinavir (only P-gp substrate). First, the ER of the drugs was determined using Transwells and MDCKII cells expressing either BCRP or P-gp. Then, the ER was scaled using the proteomics-informed REF value to predict the fetal Kp,uu of the drug at term. The ER-REF predicted fetal Kp,uu of glyburide (0.43), imatinib (0.42), and nelfinavir (0.40) fell within two-fold of the corresponding in vivo fetal Kp,uu (0.44, 0.37, and 0.46, respectively). These data confirm that the ER-REF approach can successfully predict fetal drug exposure to BCRP/P-gp and P-gp substrates, at term.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Proteínas de Neoplasias , Feminino , Humanos , Gravidez , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Glibureto , Mesilato de Imatinib/metabolismo , Nelfinavir , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Placenta/metabolismo
5.
Int J Oncol ; 63(5)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37800623

RESUMO

T cell acute lymphoblastic leukemia (T­ALL), a neoplasm derived from T cell lineage­committed lymphoblasts, is characterized by genetic alterations that result in activation of oncogenic transcription factors and the NOTCH1 pathway activation. The NOTCH is a transmembrane receptor protein activated by γ­secretase. γ­secretase inhibitors (GSIs) are a NOTCH­targeted therapy for T­ALL. However, their clinical application has not been successful due to adverse events (primarily gastrointestinal toxicity), limited efficacy, and drug resistance caused by several mechanisms, including activation of the AKT/mTOR pathway. Nelfinavir is an human immunodeficiency virus 1 aspartic protease inhibitor and has been repurposed as an anticancer drug. It acts by inducing endoplasmic reticulum (ER) stress and inhibiting the AKT/mTOR pathway. Thus, it was hypothesized that nelfinavir might inhibit the NOTCH pathway via γ­secretase inhibition and blockade of aspartic protease presenilin, which would make nelfinavir effective against NOTCH­associated T­ALL. The present study assessed the efficacy of nelfinavir against T­ALL cells and investigated mechanisms of action in vitro and in preclinical treatment studies using a SCL­LMO1 transgenic mouse model. Nelfinavir blocks presenilin 1 processing and inhibits γ­secretase activity as well as the NOTCH1 pathway, thus suppressing T­ALL cell viability. Additionally, microarray analysis of nelfinavir­treated T­ALL cells showed that nelfinavir upregulated mRNA levels of CHAC1 (glutathione­specific γ­glutamylcyclotransferase 1, a negative regulator of NOTCH) and sestrin 2 (SESN2; a negative regulator of mTOR). As both factors are upregulated by ER stress, this confirmed that nelfinavir induced ER stress in T­ALL cells. Moreover, nelfinavir suppressed NOTCH1 mRNA expression in microarray analyses. These findings suggest that nelfinavir inhibited the NOTCH1 pathway by downregulating NOTCH1 mRNA expression, upregulating CHAC1 and suppressing γ­secretase via presenilin 1 inhibition and the mTOR pathway by upregulating SESN2 via ER stress induction. Further, nelfinavir exhibited therapeutic efficacy against T­ALL in an SCL­LMO1 transgenic mouse model. Collectively, these findings highlight the potential of nelfinavir as a novel therapeutic candidate for treatment of patients with T­ALL.


Assuntos
Nelfinavir , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Camundongos , Animais , Nelfinavir/farmacologia , Nelfinavir/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Presenilina-1 , Proteínas Proto-Oncogênicas c-akt/metabolismo , Secretases da Proteína Precursora do Amiloide , Serina-Treonina Quinases TOR/metabolismo , Inibidores Enzimáticos , Fatores de Transcrição , Camundongos Transgênicos , RNA Mensageiro , Receptor Notch1/genética , Receptor Notch1/metabolismo , Linhagem Celular Tumoral , Sestrinas
6.
Microbiol Spectr ; 11(3): e0431122, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37140398

RESUMO

Nelfinavir, an orally administered inhibitor of human immunodeficiency virus protease, inhibits the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro. We conducted a randomized controlled trial to evaluate the clinical efficacy and safety of nelfinavir in patients with SARS-CoV-2 infection. We included unvaccinated asymptomatic or mildly symptomatic adult patients who tested positive for SARS-CoV-2 infection within 3 days before enrollment. The patients were randomly assigned (1:1) to receive oral nelfinavir (750 mg; thrice daily for 14 days) combined with standard-of-care or standard-of-care alone. The primary endpoint was the time to viral clearance, confirmed using quantitative reverse-transcription PCR by assessors blinded to the assigned treatment. A total of 123 patients (63 in the nelfinavir group and 60 in the control group) were included. The median time to viral clearance was 8.0 (95% confidence interval [CI], 7.0 to 12.0) days in the nelfinavir group and 8.0 (95% CI, 7.0 to 10.0) days in the control group, with no significant difference between the treatment groups (hazard ratio, 0.815; 95% CI, 0.563 to 1.182; P = 0.1870). Adverse events were reported in 47 (74.6%) and 20 (33.3%) patients in the nelfinavir and control groups, respectively. The most common adverse event in the nelfinavir group was diarrhea (49.2%). Nelfinavir did not reduce the time to viral clearance in this setting. Our findings indicate that nelfinavir should not be recommended in asymptomatic or mildly symptomatic patients infected with SARS-CoV-2. The study is registered with the Japan Registry of Clinical Trials (jRCT2071200023). IMPORTANCE The anti-HIV drug nelfinavir suppresses the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro. However, its efficacy in patients with COVID-19 has not been studied. We conducted a multicenter, randomized controlled trial to evaluate the efficacy and safety of orally administered nelfinavir in patients with asymptomatic or mildly symptomatic COVID-19. Compared to standard-of-care alone, nelfinavir (750 mg, thrice daily) did not reduce the time to viral clearance, viral load, or the time to resolution of symptoms. More patients had adverse events in the nelfinavir group than in the control group (74.6% [47/63 patients] versus 33.3% [20/60 patients]). Our clinical study provides evidence that nelfinavir, despite its antiviral effects on SARS-CoV-2 in vitro, should not be recommended for the treatment of patients with COVID-19 having no or mild symptoms.


Assuntos
Fármacos Anti-HIV , COVID-19 , Adulto , Humanos , SARS-CoV-2 , Nelfinavir/efeitos adversos , Fatores de Tempo , Resultado do Tratamento
7.
Signal Transduct Target Ther ; 8(1): 169, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095086

RESUMO

Effective drugs with broad spectrum safety profile to all people are highly expected to combat COVID-19 caused by SARS-CoV-2. Here we report that nelfinavir, an FDA approved drug for the treatment of HIV infection, is effective against SARS-CoV-2 and COVID-19. Preincubation of nelfinavir could inhibit the activity of the main protease of the SARS-CoV-2 (IC50 = 8.26 µM), while its antiviral activity in Vero E6 cells against a clinical isolate of SARS-CoV-2 was determined to be 2.93 µM (EC50). In comparison with vehicle-treated animals, rhesus macaque prophylactically treated with nelfinavir had significantly lower temperature and significantly reduced virus loads in the nasal and anal swabs of the animals. At necropsy, nelfinavir-treated animals had a significant reduction of the viral replication in the lungs by nearly three orders of magnitude. A prospective clinic study with 37 enrolled treatment-naive patients at Shanghai Public Health Clinical Center, which were randomized (1:1) to nelfinavir and control groups, showed that the nelfinavir treatment could shorten the duration of viral shedding by 5.5 days (9.0 vs. 14.5 days, P = 0.055) and the duration of fever time by 3.8 days (2.8 vs. 6.6 days, P = 0.014) in mild/moderate COVID-19 patients. The antiviral efficiency and clinical benefits in rhesus macaque model and in COVID-19 patients, together with its well-established good safety profile in almost all ages and during pregnancy, indicated that nelfinavir is a highly promising medication with the potential of preventative effect for the treatment of COVID-19.


Assuntos
COVID-19 , Infecções por HIV , Gravidez , Animais , Feminino , Humanos , SARS-CoV-2 , Nelfinavir/farmacologia , Macaca mulatta , Estudos Prospectivos , China , Antivirais/farmacologia
8.
Sci Rep ; 13(1): 4411, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932175

RESUMO

Chemotherapy resistance is still a major problem in the treatment of patients with non-small-cell-lung carcinoma (NSCLC), and novel concepts for the induction of cytotoxicity in NSCLC are highly warranted. Proteotoxicity, the induction of cytotoxicity by targeting the ubiquitin proteasome system, represents an appealing innovative strategy. The combination of the proteasome inhibitor bortezomib (BTZ) and the proteotoxic stress-inducing HIV drug nelfinavir (NFV) synergistically induces proteotoxicity and shows encouraging preclinical efficacy in NSCLC. The second-generation proteasome inhibitor carfilzomib (CFZ) is superior to BTZ and overcomes BTZ resistance in multiple myeloma patients. Here, we show that CFZ together with NFV is superior to the BTZ + NFV combination in inducing endoplasmic reticulum stress and proteotoxicity through the accumulation of excess proteasomal substrate protein in NSCLC in vitro and ex vivo. Interestingly, NFV increases the intracellular availability of CFZ through inhibition of CFZ export from NSCLC cells that express multidrug resistance (MDR) protein. Combining CFZ with NFV may therefore represent a future treatment option for NSCLC, which warrants further investigation.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Mieloma Múltiplo , Humanos , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Nelfinavir/farmacologia , Nelfinavir/uso terapêutico , Inibidores de Proteassoma/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Mieloma Múltiplo/patologia , Complexo de Endopeptidases do Proteassoma , Neoplasias Pulmonares/tratamento farmacológico , Apoptose
9.
Cell Rep ; 42(1): 111906, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36640303

RESUMO

Melanin is a pigment produced from the amino acid L-tyrosine in melanosomes. The CNC-family transcription factor Nrf3 is expressed in the basal layer of the epidermis, where melanocytes reside, but its melanogenic function is unclear. Here, we show that Nrf3 regulates macropinocytosis and autophagy to coordinate melanogenesis cascade. In response to an exogenous inducer of melanin production, forskolin, Nrf3 upregulates the core melanogenic gene circuit, which includes Mitf, Tyr, Tyrp1, Pmel, and Oca2. Furthermore, Nrf3 induces the gene expression of Cln3, an autophagosome-related factor, for melanin precursor uptake by macropinocytosis. Ulk2 and Gabarapl2 are also identified as Nrf3-target autophagosome-related genes for melanosome formation. In parallel, Nrf3 prompts autolysosomal melanosome degradation for melanocyte survival. An endogenous melanogenic inducer αMSH also activates Nrf3-mediated melanin production, whereas it is suppressed by an HIV-1 protease inhibitor, nelfinavir. These findings indicate the significant role of Nrf3 in the melanogenesis and the anti-melanogenic potential of nelfinavir.


Assuntos
Melaninas , Fatores de Transcrição , Melaninas/metabolismo , Fatores de Transcrição/metabolismo , Nelfinavir/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Melanócitos/metabolismo , Melanossomas/metabolismo , Tirosina/metabolismo , Autofagia/genética , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo
10.
Biotechnol Appl Biochem ; 70(1): 439-457, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35642754

RESUMO

The main protease (Mpro) of SARS-COV-2 plays a vital role in the viral life cycle and pathogenicity. Due to its specific attributes, this 3-chymotrypsin like protease can be a reliable target for the drug design to combat COVID-19. Since the advent of COVID-19, Mpro has undergone many mutations. Here, the impact of 10 mutations based on their frequency and five more based on their proximity to the active site was investigated. For comparison purposes, the docking process was also performed against the Mpros of SARS-COV and MERS-COV. Four inhibitors with the highest docking score (11b, α-ketoamide 13b, Nelfinavir, and PF-07321332) were selected for the structure-based ligand design via fragment replacement, and around 2000 new compounds were thus obtained. After the screening of these new compounds, the pharmacokinetic properties of the best ones were predicted. In the last step, comparative molecular dynamics (MD) simulations, molecular mechanics Poisson-Boltzmann surface area calculations (MM/PBSA), and density functional theory calculations were performed. Among the 2000 newly designed compounds, three of them (NE1, NE2, and NE3), which were obtained by modifications of Nelfinavir, showed the highest affinity against all the Mpro targets. Together, NE1 compound is the best candidate for follow-up Mpro inhibition and drug development studies.


Assuntos
COVID-19 , Simulação de Dinâmica Molecular , Humanos , Simulação de Acoplamento Molecular , Teoria da Densidade Funcional , Nelfinavir/farmacologia , SARS-CoV-2 , Desenho de Fármacos , Inibidores de Proteases
11.
Nat Commun ; 13(1): 6323, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36280687

RESUMO

Statins, a family of FDA-approved cholesterol-lowering drugs that inhibit the rate-limiting enzyme of the mevalonate metabolic pathway, have demonstrated anticancer activity. Evidence shows that dipyridamole potentiates statin-induced cancer cell death by blocking a restorative feedback loop triggered by statin treatment. Leveraging this knowledge, we develop an integrative pharmacogenomics pipeline to identify compounds similar to dipyridamole at the level of drug structure, cell sensitivity and molecular perturbation. To overcome the complex polypharmacology of dipyridamole, we focus our pharmacogenomics pipeline on mevalonate pathway genes, which we name mevalonate drug-network fusion (MVA-DNF). We validate top-ranked compounds, nelfinavir and honokiol, and identify that low expression of the canonical epithelial cell marker, E-cadherin, is associated with statin-compound synergy. Analysis of remaining prioritized hits led to the validation of additional compounds, clotrimazole and vemurafenib. Thus, our computational pharmacogenomic approach identifies actionable compounds with pathway-specific activities.


Assuntos
Neoplasias da Mama , Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Feminino , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Ácido Mevalônico/metabolismo , Farmacogenética , Vemurafenib/uso terapêutico , Nelfinavir/uso terapêutico , Clotrimazol/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Caderinas , Colesterol , Dipiridamol
12.
Int J Mol Sci ; 23(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36293006

RESUMO

The human immunodeficiency virus type 1 (HIV-1) has continued to be a global concern. With the new HIV incidence, the emergence of multi-drug resistance and the untoward side effects of currently used anti-HIV drugs, there is an urgent need to discover more efficient anti-HIV drugs. Modern computational tools have played vital roles in facilitating the drug discovery process. This research focuses on a pharmacophore-based similarity search to screen 111,566,735 unique compounds in the PubChem database to discover novel HIV-1 protease inhibitors (PIs). We used an in silico approach involving a 3D-similarity search, physicochemical and ADMET evaluations, HIV protease-inhibitor prediction (IC50/percent inhibition), rigid receptor-molecular docking studies, binding free energy calculations and molecular dynamics (MD) simulations. The 10 FDA-approved HIV PIs (saquinavir, lopinavir, ritonavir, amprenavir, fosamprenavir, atazanavir, nelfinavir, darunavir, tipranavir and indinavir) were used as reference. The in silico analysis revealed that fourteen out of the twenty-eight selected optimized hit molecules were within the acceptable range of all the parameters investigated. The hit molecules demonstrated significant binding affinity to the HIV protease (PR) when compared to the reference drugs. The important amino acid residues involved in hydrogen bonding and п-п stacked interactions include ASP25, GLY27, ASP29, ASP30 and ILE50. These interactions help to stabilize the optimized hit molecules in the active binding site of the HIV-1 PR (PDB ID: 2Q5K). HPS/002 and HPS/004 have been found to be most promising in terms of IC50/percent inhibition (90.15%) of HIV-1 PR, in addition to their drug metabolism and safety profile. These hit candidates should be investigated further as possible HIV-1 PIs with improved efficacy and low toxicity through in vitro experiments and clinical trial investigations.


Assuntos
Fármacos Anti-HIV , Inibidores da Protease de HIV , HIV-1 , Humanos , Inibidores da Protease de HIV/química , Protease de HIV/química , Darunavir/farmacologia , Indinavir/química , Indinavir/metabolismo , Indinavir/farmacologia , Nelfinavir/química , Nelfinavir/metabolismo , Nelfinavir/farmacologia , Ritonavir/química , Saquinavir/metabolismo , Saquinavir/farmacologia , Lopinavir/farmacologia , Sulfato de Atazanavir/farmacologia , Simulação de Acoplamento Molecular , Fármacos Anti-HIV/farmacologia , Aminoácidos/farmacologia
13.
Molecules ; 27(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36234910

RESUMO

The recent coronavirus disease (COVID-19) outbreak in Wuhan, China, has led to millions of infections and the death of approximately one million people. No targeted therapeutics are currently available, and only a few efficient treatment options are accessible. Many researchers are investigating active compounds from natural plant sources that may inhibit COVID-19 proliferation. Flavonoids are generally present in our diet, as well as traditional medicines and are effective against various diseases. Thus, here, we reviewed the potential of flavonoids against crucial proteins involved in the coronavirus infectious cycle. The fundamentals of coronaviruses, the structures of SARS-CoV-2, and the mechanism of its entry into the host's body have also been discussed. In silico studies have been successfully employed to study the interaction of flavonoids against COVID-19 Mpro, spike protein PLpro, and other interactive sites for its possible inhibition. Recent studies showed that many flavonoids such as hesperidin, amentoflavone, rutin, diosmin, apiin, and many other flavonoids have a higher affinity with Mpro and lower binding energy than currently used drugs such as hydroxylchloroquine, nelfinavir, ritonavir, and lopinavir. Thus, these compounds can be developed as specific therapeutic agents against COVID-19, but need further in vitro and in vivo studies to validate these compounds and pave the way for drug discovery.


Assuntos
Tratamento Farmacológico da COVID-19 , Diosmina , Hesperidina , Antivirais/química , Flavonoides/química , Flavonoides/farmacologia , Humanos , Lopinavir/química , Simulação de Acoplamento Molecular , Nelfinavir , Ritonavir/química , Ritonavir/farmacologia , Rutina , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo
14.
EBioMedicine ; 82: 104177, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35843171

RESUMO

BACKGROUND: Alveolar echinococcosis (AE), which is caused by larval Echinococcus multilocularis, is one of the world's most dangerous neglected diseases. Currently, no fully effective treatments are available to cure this disease. METHODS: In vitro protoscolicidal assay along with in vivo murine models was applied in repurposing drugs against AE. Genome-wide identification and homology-based modeling were used for predicting drug targets. RNAi, enzyme assay, and RNA-Seq analyses were utilized for investigating the roles in parasite survival and validations for the drug target. FINDINGS: We identified nelfinavir as the most effective HIV protease inhibitor against larval E. multilocularis. Once-daily oral administration of nelfinavir for 28 days resulted in a remarkable reduction in parasite infection in either immune-competent or immunocompromised mice. E. multilocularis DNA damage-inducible 1 protein (EmuDdi1) is predicted as a target candidate for nelfinavir. We proved that EmuDdi1 is essential for parasite survival and protein excretion and acts as a functionally active protease for this helminth. We found nelfinavir is able to inhibit the proteolytic activity of recombinant EmuDdi1 and block the EmuDdi1-related pathways for protein export. With other evidence of drug efficacy comparison, our results suggest that inhibition of EmuDdi1 is a mechanism by which this HIV proteinase inhibitor mediates its antiparasitic action on echinococcosis. INTERPRETATION: This study demonstrates that nelfinavir is a promising candidate for treating echinococcosis. This drug repurposing study proves that the widely prescribed drug for AIDS treatment is potent in combating E. multilocularis infection and thus provides valuable insights into the development of single-drug therapy for highly prevalent co-infection between HIV and helminth diseases. FUNDING: This work was supported by the National Natural Science Foundation of China (31802179), the Natural Science Foundation of Gansu Province, China (No. 21JR7RA027), and the State Key Laboratory of Veterinary Etiological Biology (No. SKLVEB2021YQRC01).


Assuntos
Equinococose , Echinococcus multilocularis , Inibidores da Protease de HIV , Animais , Equinococose/tratamento farmacológico , Echinococcus multilocularis/genética , Inibidores Enzimáticos/farmacologia , Inibidores da Protease de HIV/farmacologia , Camundongos , Nelfinavir/farmacologia , Preparações Farmacêuticas
15.
Antiviral Res ; 202: 105311, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35390430

RESUMO

Nelfinavir is an HIV protease inhibitor that has been widely prescribed as a component of highly active antiretroviral therapy, and has been reported to exert in vitro antiviral activity against SARS-CoV-2. We here assessed the effect of Nelfinavir in a SARS-CoV-2 infection model in hamsters. Despite the fact that Nelfinavir, [50 mg/kg twice daily (BID) for four consecutive days], did not reduce viral RNA load and infectious virus titres in the lung of infected animals, treatment resulted in a substantial improvement of SARS-CoV-2-induced lung pathology. This was accompanied by a dense infiltration of neutrophils in the lung interstitium which was similarly observed in non-infected hamsters. Nelfinavir resulted also in a marked increase in activated neutrophils in the blood, as observed in non-infected animals. Although Nelfinavir treatment did not alter the expression of chemoattractant receptors or adhesion molecules on human neutrophils, in vitro migration of human neutrophils to the major human neutrophil attractant CXCL8 was augmented by this protease inhibitor. Nelfinavir appears to induce an immunomodulatory effect associated with increasing neutrophil number and functionality, which may be linked to the marked improvement in SARS-CoV-2 lung pathology independent of its lack of antiviral activity. Since Nelfinavir is no longer used for the treatment of HIV, we studied the effect of two other HIV protease inhibitors, namely the combination Lopinavir/Ritonavir (Kaletra™) in this model. This combination resulted in a similar protective effect as Nelfinavir against SARS-CoV2 induced lung pathology in hamsters.


Assuntos
Tratamento Farmacológico da COVID-19 , Infecções por HIV , Inibidores da Protease de HIV , Animais , Cricetinae , Infecções por HIV/tratamento farmacológico , Inibidores da Protease de HIV/farmacologia , Inibidores da Protease de HIV/uso terapêutico , Lopinavir/farmacologia , Lopinavir/uso terapêutico , Pulmão , Mesocricetus , Nelfinavir/farmacologia , Nelfinavir/uso terapêutico , RNA Viral , Ritonavir/uso terapêutico , SARS-CoV-2
16.
BMC Cancer ; 22(1): 410, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35421971

RESUMO

BACKGROUND: Genomic instability and chemoresistance can arise in cancer due to a unique form of plasticity: that of polyploid giant cancer cells (PGCCs). These cells form under the stress of chemotherapy and have higher than diploid chromosome content. PGCCs are able to then repopulate tumors through an asymmetric daughter cell budding process. PGCCs have been observed in ovarian cancer histology, including the deadly and common form high-grade serous ovarian carcinoma (HGSC). We previously discovered that drugs which disrupt the cellular recycling process of autophagy are uniquely efficacious in pre-clinical HGSC models. While autophagy induction has been associated with PGCCs, it has never been previously investigated if autophagy modulation interacts with the PGCC life cycle and this form of tumor cell plasticity. METHODS: CAOV3 and OVCAR3 ovarian cancer cell lines were treated with carboplatin or docetaxel to induce PGCC formation. Microscopy was used to characterize and quantify PGCCs formed by chemotherapy. Two clinically available drugs that inhibit autophagy, hydroxychloroquine and nelfinavir, and a clinically available activator of autophagy, rapamycin, were employed to test the effect of these autophagy modulators on PGCC induction and subsequent colony formation from PGCCs. Crystal violet-stained colony formation assays were used to quantify the tumor-repopulating stage of the PGCC life cycle. RESULTS: Autophagy inhibitors did not prevent PGCC formation in OVCAR3 or CAOV3 cells. Rapamycin did not induce PGCC formation on its own nor did it exacerbate PGCC formation by chemotherapy. However, hydroxychloroquine prevented efficient colony formation in CAOV3 PGCCs induced by carboplatin (27% inhibition) or docetaxel (41% inhibition), as well as in OVCAR3 cells (95% and 77%, respectively). Nelfinavir similarly prevented colony formation in CAOV3 PGCCs induced by carboplatin (64% inhibition) or docetaxel (94% inhibition) as well as in OVCAR3 cells (89% and 80%, respectively). Rapamycin surprisingly also prevented PGCC colony outgrowth (52-84% inhibition). CONCLUSIONS: While the autophagy previously observed to correlate with PGCC formation is unlikely necessary for PGCCs to form, autophagy modulating drugs severely impair the ability of HGSC PGCCs to form colonies. Clinical trials which utilize hydroxychloroquine, nelfinavir, and/or rapamycin after chemotherapy may be of future interest.


Assuntos
Apoptose , Neoplasias Ovarianas , Autofagia , Carboplatina/farmacologia , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Docetaxel/farmacologia , Feminino , Células Gigantes/patologia , Humanos , Hidroxicloroquina/farmacologia , Nelfinavir , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Poliploidia , Sirolimo/farmacologia
17.
BMJ Open ; 12(4): e055765, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35387819

RESUMO

INTRODUCTION: In locally advanced cervical cancer, nodal, local and distant relapse continue to be significant patterns of relapse. Therefore, strategies to improve the efficacy of chemoradiation are desirable such as biological pathway modifiers and immunomodulating agents. This trial will investigate the impact of nelfinavir, a protease inhibitor that targets the protein kinase B (AKT) pathway on disease-free survival (DFS). METHODS AND ANALYSIS: Radiosensitising effect of nelfinavir in locally advanced carcinoma of cervix is a single-centre, open-label, parallel-group, 1:1 randomised phase-III study. Patients aged over 18 years with a diagnosis of carcinoma cervix stage III are eligible for the study. After consenting, patients will undergo randomisation to chemoradiation and brachytherapy arm or nelfinavir with chemoradiation and brachytherapy arm. The primary aim of the study is to compare the difference in 3-year DFS between the two arms. Secondary aims are locoregional control, overall survival, toxicity and quality of life between the two arms. Pharmacokinetics of nelfinavir and its impact on tumour AKT, programmed cell death ligand 1, cluster of differentiation 4, cluster of differentiation 8 and natural killer 1.1 expression will be investigated. The overall sample size of 348 with 1 planned interim analysis achieves 80% power at a 0.05 significance level to detect a HR of 0.66 when the proportion surviving in the control arm is 0.65. The planned study duration is 8 years. ETHICS AND DISSEMINATION: The trial is approved by the Institutional Ethics Committee-I of Tata Memorial Hospital, Mumbai (reference number: IEC/0317/1543/001) and will be monitored by the data safety monitoring committee. The study results will be disseminated via peer-reviewed scientific journals, and conference presentations. Study participants will be accrued after obtaining written informed consent from them. The confidentiality and privacy of study participants will be maintained. TRIAL REGISTRATION NUMBER: The trial is registered with Clinical Trials Registry-India (CTRI/2017/08/009265) and ClinicalTrials.gov (NCT03256916).


Assuntos
Braquiterapia , Neoplasias do Colo do Útero , Adulto , Ensaios Clínicos Fase III como Assunto , Feminino , Humanos , Pessoa de Meia-Idade , Nelfinavir/uso terapêutico , Recidiva Local de Neoplasia , Proteínas Proto-Oncogênicas c-akt , Qualidade de Vida , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/terapia
18.
J Biol Chem ; 298(5): 101875, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35358511

RESUMO

Although several proteasome subunits have been shown to bind ubiquitin (Ub) chains, many ubiquitylated substrates also associate with 26S proteasomes via "shuttling factors." Unlike the well-studied yeast shuttling factors Rad23 and Dsk2, vertebrate homologs Ddi2 and Ddi1 lack a Ub-associated domain; therefore, it is unclear how they bind Ub. Here, we show that deletion of Ddi2 leads to the accumulation of Ub conjugates with K11/K48 branched chains. We found using affinity copurifications that Ddi2 binds Ub conjugates through its Ub-like domain, which is also required for Ddi2 binding to proteasomes. Furthermore, in cell extracts, adding Ub conjugates increased the amount of Ddi2 associated with proteasomes, and adding Ddi2 increased the binding of Ub conjugates to purified proteasomes. In addition, Ddi2 also contains a retroviral protease domain with undefined cellular roles. We show that blocking the endoprotease activity of Ddi2 either genetically or with the HIV protease inhibitor nelfinavir increased its binding to Ub conjugates but decreased its binding to proteasomes and reduced subsequent protein degradation by proteasomes leading to further accumulation of Ub conjugates. Finally, nelfinavir treatment required Ddi2 to induce the unfolded protein response. Thus, Ddi2 appears to function as a shuttling factor in endoplasmic reticulum-associated protein degradation and delivers K11/K48-ubiquitylated proteins to the proteasome. We conclude that the protease activity of Ddi2 influences this shuttling factor activity, promotes protein turnover, and helps prevent endoplasmic reticulum stress, which may explain nelfinavir's ability to enhance cell killing by proteasome inhibitors.


Assuntos
Nelfinavir , Complexo de Endopeptidases do Proteassoma , Animais , Mamíferos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma , Proteólise , Ubiquitina/metabolismo
19.
Drug Metab Dispos ; 50(5): 613-623, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35149540

RESUMO

Pregnant women are frequently prescribed drugs to treat chronic diseases such as human immunodeficiency virus infection, but little is known about the benefits and risks of these drugs to the fetus that are driven by fetal drug exposure. The latter can be estimated by fetal-to-maternal unbound plasma concentration at steady state (Kp,uu,fetal). For drugs that are substrates of placental efflux transporters [i.e., P-glycoprotein (P-gp) or breast cancer resistance protein (BCRP)], Kp,uu,fetal is expected to be <1. Here, we estimated the in vivo Kp,uu,fetal of selective P-gp and BCRP substrate drugs by maternal-fetal physiologically based pharmacokinetic (m-f-PBPK) modeling of umbilical vein (UV) plasma and maternal plasma (MP) concentrations obtained simultaneously at term from multiple maternal-fetal dyads. To do so, three drugs were selected: nelfinavir (P-gp substrate), efavirenz (BCRP substrate), and imatinib (P-gp/BCRP substrate). An m-f-PBPK model for each drug was developed and validated for the nonpregnant population and pregnant women using the Simcyp simulator (v20). Then, after incorporating placental passive diffusion clearance, the in vivo Kp,uu,fetal of the drug was estimated by adjusting the placental efflux clearance until the predicted UV/MP values best matched the observed data (Kp,uu,fetal) of nelfinavir = 0.41, efavirenz = 0.39, and imatinib = 0.35. Furthermore, Kp,uu,fetal of nelfinavir and efavirenz at gestational weeks (GWs) 25 and 15 were predicted to be 0.34 and 0.23 (GW25) and 0.33 and 0.27 (GW15). These Kp,uu,fetal values can be used to adjust dosing regimens of these drugs to optimize maternal-fetal drug therapy throughout pregnancy, to assess fetal benefits and risks of these dosing regimens, and to determine if these estimated in vivo Kp,uu,fetal values can be predicted from in vitro studies. SIGNIFICANCE STATEMENT: The in vivo fetal-to-maternal unbound steady-state plasma concentration ratio (Kp,uu,fetal) of nelfinavir [P-glycoprotein (P-gp) substrate], efavirenz [breast cancer resistance protein (BCRP) substrate], and imatinib (P-gp and BCRP substrate) was successfully estimated using maternal-fetal physiologically based pharmacokinetic (m-f-PBPK) modeling. These Kp,uu,fetal values can be used to adjust dosing regimens of these drugs to optimize maternal-fetal drug therapy throughout pregnancy, to assess fetal benefits and risks of these dosing regimens, and to determine if these estimated in vivo Kp,uu,fetal values can be predicted from in vitro studies.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Neoplasias da Mama , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Neoplasias da Mama/metabolismo , Feminino , Feto/metabolismo , Humanos , Mesilato de Imatinib , Modelos Biológicos , Nelfinavir/metabolismo , Proteínas de Neoplasias/metabolismo , Placenta/metabolismo , Gravidez
20.
J Biomol Struct Dyn ; 40(23): 13127-13135, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34609269

RESUMO

Nelfinavir is one of the FDA-approved HIV-1 protease inhibitors and a part of highly active anti-retroviral therapy (HAART) for the treatment of HIV-AIDS. Nelfinavir was the first HIV-1 protease inhibitor to be approved as a paediatric formulation. The application of HAART had resulted in significant improvement in the lives of AIDS patients. However, the emergence of drug resistance in HIV-1 protease has limited the use of many of these drugs including nelfinavir. A unique mutation observed frequently in patients treated with nelfinavir is D30N as it is selected exclusively by nelfinavir. The D30N mutation imparts very high resistance to nelfinavir but unlike other primary mutations does not give cross-resistance to the majority of other drugs. D30N mutation also significantly reduces cleavage activity of HIV-1 protease and affects viral fitness. Here, we have determined crystal structures of D30N HIV-1 protease in unliganded form and in complex with nelfinavir. These structures provide the rationale for reduced cleavage activity and the molecular basis of drug resistance induced by D30N mutation. The loss of coulombic interaction part of a crucial hydrogen bond between the drug and the protease is likely to play a major role in reduced affinity and resistance towards nelfinavir. The decreased catalytic activity of D30N HIV-1 protease due to altered interaction with the substrates and reduced stability of folding core may be the reason for the reduced replicative capacity of the virus harboring mutant HIV-1 protease.Communicated by Ramaswamy H. Sarma.


Assuntos
Síndrome da Imunodeficiência Adquirida , Infecções por HIV , Inibidores da Protease de HIV , Humanos , Síndrome da Imunodeficiência Adquirida/tratamento farmacológico , Farmacorresistência Viral/genética , Infecções por HIV/tratamento farmacológico , Protease de HIV/genética , Protease de HIV/química , Inibidores da Protease de HIV/química , Mutação , Nelfinavir/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...