Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.450
Filtrar
1.
J Helminthol ; 98: e39, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38726571

RESUMO

During nematode surveys of natural vegetation in forests of La Cima de Copey de Dota, San José, San José province, Costa Rica, a Xenocriconemella species closely resembling X. macrodora and related species was found. Integrative taxonomical approaches demonstrated that it is a new species described herein as X. costaricense sp. nov. The new species is parthenogenetic (only females have been detected) and characterised by a short body (276-404 µm); lip region with two annuli, not offset, not separated from body contour; first lip annulus partially covering the second lip annulus. Stylet thin, very long (113-133 µm) and flexible, occupying 30.5-47.8% of body length. Excretory pore located from one or two annuli anterior to one or two annuli posterior to level of stylet knobs, at 42 (37-45) µm from anterior end. Female genital tract monodelphic, prodelphic, outstretched, and occupying 35-45% of body length, with vagina slightly ventrally curved (14-18 µm long). Anus located 6-11 annuli from the tail terminus. Tail conoid and bluntly rounded terminus, the last 2-3 annuli oriented dorsally. Results of molecular characterisation and phylogenetic analyses of D2-D3 expansion segments of 28S rRNA, ITS, and partial 18S rRNA, as well as cytochrome oxidase c subunit 1 gene sequences further characterised the new species and clearly separated it from X. macrodora and other related species (X. iberica, X. paraiberica, and X. pradense).


Assuntos
Filogenia , Animais , Costa Rica , Feminino , Masculino , Nematoides/classificação , Nematoides/anatomia & histologia , Nematoides/genética , DNA Ribossômico/genética , RNA Ribossômico 28S/genética , DNA de Helmintos/genética , Florestas , Análise de Sequência de DNA
2.
Curr Protoc ; 4(5): e1035, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38727641

RESUMO

Nematodes are naturally infected by the fungal-related pathogen microsporidia. These ubiquitous eukaryotic parasites are poorly understood, despite infecting most types of animals. Identifying novel species of microsporidia and studying them in an animal model can expedite our understanding of their infection biology and evolution. Nematodes present an excellent avenue for pursuing such work, as they are abundant in the environment and many species are easily culturable in the laboratory. The protocols presented here describe how to isolate bacterivorous nematodes from rotting substrates, screen them for microsporidia infection, and molecularly identify the nematode and microsporidia species. Additionally, we detail how to remove environmental contaminants and generate a spore preparation of microsporidia from infected samples. We also discuss potential pitfalls and provide suggestions on how to mitigate them. These protocols allow for the identification of novel microsporidia species, which can serve as an excellent starting point for genomic analysis, determination of host specificity, and infection characterization. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Gathering samples Support Protocol 1: Generating 10× and 40× Escherichia coli OP50 and seeding NGM plates Basic Protocol 2: Microsporidia screening, testing for Caenorhabditis elegans susceptibility, and sample freezing Basic Protocol 3: DNA extraction, PCR amplification, and sequencing to identify nematode and microsporidia species Basic Protocol 4: Removal of contaminating microbes and preparation of microsporidia spores Support Protocol 2: Bleach-synchronizing nematodes.


Assuntos
Microsporídios , Nematoides , Animais , Microsporídios/isolamento & purificação , Microsporídios/genética , Microsporídios/classificação , Microsporídios/patogenicidade , Nematoides/microbiologia , Nematoides/genética , Caenorhabditis elegans/microbiologia , DNA Fúngico/genética , Reação em Cadeia da Polimerase , Microsporidiose/microbiologia , Esporos Fúngicos/isolamento & purificação
3.
Sci Adv ; 10(15): eadk6062, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38598624

RESUMO

Experimental genetics in a nematode reveals a key role for developmental plasticity in the evolution of nutritional diversity.


Assuntos
Duplicação Gênica , Nematoides , Animais , Genes de Troca , Evolução Molecular , Nematoides/genética , Genoma , Filogenia
4.
J Helminthol ; 98: e32, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38618914

RESUMO

Two new species of the genus Sectonema found in northern Iran are characterized, including morphological descriptions and molecular (18S-, 28S-rDNA) analyses. Sectonema tehranense sp. nov. is distinguished by its 7.22 - 8.53 mm long body, lip region offset by constriction and 24 - 31 µm wide with perioral lobes and abundant setae- or cilia-like projections covering the oral field, mural tooth 15.5 - 17 µm long at its ventral side, neck 1091 - 1478 µm long, pharyngeal expansion occupying 61 - 71% of the total neck length, female genital system diovarian, uterus simple and 3.9 - 4.2 times the corresponding body diameter long, transverse vulva (V = 49 - 59), tail short and rounded (44 - 65 µm, c = 99 - 162, c' = 0.6 - 0.8), spicules 111 - 127 µm long, and 7 - 10 spaced ventromedian supplements with hiatus. Sectonema noshahrense sp. nov. displays a 4.07 - 4.73 mm long body, lip region offset by constriction and 23 - 25 µm wide with perioral lobes and abundant setae- or cilia-like projections covering the oral field, odontostyle 14 - 14.5 µm long, neck 722 - 822 µm long, pharyngeal expansion occupying 66 - 68% of the total neck length, female genital system diovarian, uterus simple and 2.4 - 2.7 times the corresponding body diameter long, transverse vulva (V = 54 - 55), tail convex conoid (39 - 47 µm, c = 91 - 111, c' = 0.8 - 0.9), spicules 82 µm long, and seven spaced ventromedian supplements with hiatus. Molecular analyses confirm a maximally supported (Epacrolaimus + Metaporcelaimus + Sectonema) clade and a tentative biogeographical pattern, with sequences of Indolamayan taxa forming a clade separated from those of Palearctic ones. Parallel or convergent evolution processes might be involved in the phylogeny of the species currently classified under Sectonema. This genus is certainly more heterogeneous than previously assumed.


Assuntos
Helmintos , Nematoides , Feminino , Animais , Irã (Geográfico) , Citoesqueleto , DNA Ribossômico/genética , Nematoides/genética
5.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673861

RESUMO

Plant-parasitic nematodes (PPNs) are among the most serious phytopathogens and cause widespread and serious damage in major crops. In this study, using a genome mining method, we identified nonribosomal peptide synthetase (NRPS)-like enzymes in genomes of plant-parasitic nematodes, which are conserved with two consecutive reducing domains at the N-terminus (A-T-R1-R2) and homologous to fungal NRPS-like ATRR. We experimentally investigated the roles of the NRPS-like enzyme (MiATRR) in nematode (Meloidogyne incognita) parasitism. Heterologous expression of Miatrr in Saccharomyces cerevisiae can overcome the growth inhibition caused by high concentrations of glycine betaine. RT-qPCR detection shows that Miatrr is significantly upregulated at the early parasitic life stage (J2s in plants) of M. incognita. Host-derived Miatrr RNA interference (RNAi) in Arabidopsis thaliana can significantly decrease the number of galls and egg masses of M. incognita, as well as retard development and reduce the body size of the nematode. Although exogenous glycine betaine and choline have no obvious impact on the survival of free-living M. incognita J2s (pre-parasitic J2s), they impact the performance of the nematode in planta, especially in Miatrr-RNAi plants. Following application of exogenous glycine betaine and choline in the rhizosphere soil of A. thaliana, the numbers of galls and egg masses were obviously reduced by glycine betaine but increased by choline. Based on the knowledge about the function of fungal NRPS-like ATRR and the roles of glycine betaine in host plants and nematodes, we suggest that MiATRR is involved in nematode-plant interaction by acting as a glycine betaine reductase, converting glycine betaine to choline. This may be a universal strategy in plant-parasitic nematodes utilizing NRPS-like ATRR to promote their parasitism on host plants.


Assuntos
Arabidopsis , Betaína , Peptídeo Sintases , Tylenchoidea , Betaína/metabolismo , Animais , Tylenchoidea/metabolismo , Tylenchoidea/genética , Arabidopsis/parasitologia , Arabidopsis/metabolismo , Arabidopsis/genética , Peptídeo Sintases/metabolismo , Peptídeo Sintases/genética , Interações Hospedeiro-Parasita , Doenças das Plantas/parasitologia , Proteínas de Helminto/metabolismo , Proteínas de Helminto/genética , Nematoides/metabolismo , Nematoides/genética
6.
PLoS One ; 19(4): e0298905, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578734

RESUMO

Nematodes are keystone actors of soil, freshwater and marine ecosystems, but the complexity of morphological identification has limited broad-scale monitoring of nematode biodiversity. DNA metabarcoding is increasingly used to assess nematode diversity but requires universal primers with high taxonomic coverage and high taxonomic resolution. Several primers have been proposed for the metabarcoding of nematode diversity, many of which target the 18S rRNA gene. In silico analyses have a great potential to assess key parameters of primers, including taxonomic coverage, resolution and specificity. Based on a recently-available reference database, we tested in silico the performance of fourteen commonly used and one newly optimized primer for nematode metabarcoding. Most primers showed very good coverage, amplifying most of the sequences in the reference database, while four markers showed limited coverage. All primers showed good taxonomic resolution. Resolution was particularly good if the aim was the identification of higher-level taxa, such as genera or families. Overall, species-level resolution was higher for primers amplifying long fragments. None of the primers was highly specific for nematodes as, despite some variation, they all amplified a large number of other eukaryotes. Differences in performance across primers highlight the complexity of the choice of markers appropriate for the metabarcoding of nematodes, which depends on a trade-off between taxonomic resolution and the length of amplified fragments. Our in silico analyses provide new insights for the identification of the most appropriate primers, depending on the study goals and the origin of DNA samples. This represents an essential step to design and optimize metabarcoding studies assessing nematode diversity.


Assuntos
Ecossistema , Nematoides , Humanos , Animais , DNA Ribossômico/genética , Código de Barras de DNA Taxonômico , Nematoides/genética , RNA Ribossômico 18S/genética , Biodiversidade
7.
BMC Genomics ; 25(1): 341, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575858

RESUMO

BACKGROUND: Parasitic nematodes, significant pathogens for humans, animals, and plants, depend on diverse organ systems for intra-host survival. Understanding the cellular diversity and molecular variations underlying these functions holds promise for developing novel therapeutics, with specific emphasis on the neuromuscular system's functional diversity. The nematode intestine, crucial for anthelmintic therapies, exhibits diverse cellular phenotypes, and unraveling this diversity at the single-cell level is essential for advancing knowledge in anthelmintic research across various organ systems. RESULTS: Here, using novel single-cell transcriptomics datasets, we delineate cellular diversity within the intestine of adult female Ascaris suum, a parasitic nematode species that infects animals and people. Gene transcripts expressed in individual nuclei of untreated intestinal cells resolved three phenotypic clusters, while lower stringency resolved additional subclusters and more potential diversity. Clusters 1 and 3 phenotypes displayed variable congruence with scRNA phenotypes of C. elegans intestinal cells, whereas the A. suum cluster 2 phenotype was markedly unique. Distinct functional pathway enrichment characterized each A. suum intestinal cell cluster. Cluster 2 was distinctly enriched for Clade III-associated genes, suggesting it evolved within clade III nematodes. Clusters also demonstrated differential transcriptional responsiveness to nematode intestinal toxic treatments, with Cluster 2 displaying the least responses to short-term intra-pseudocoelomic nematode intestinal toxin treatments. CONCLUSIONS: This investigation presents advances in knowledge related to biological differences among major cell populations of adult A. suum intestinal cells. For the first time, diverse nematode intestinal cell populations were characterized, and associated biological markers of these cells were identified to support tracking of constituent cells under experimental conditions. These advances will promote better understanding of this and other parasitic nematodes of global importance, and will help to guide future anthelmintic treatments.


Assuntos
Anti-Helmínticos , Nematoides , Humanos , Animais , Caenorhabditis elegans , Intestinos , Nematoides/genética , Perfilação da Expressão Gênica , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico
8.
J Helminthol ; 98: e26, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509862

RESUMO

Grapevine fanleaf virus (GFLV) is one of the most severe virus diseases of grapevines, causing fanleaf degeneration that is transmitted by Xiphinema index. This paper aims to isolate Xiphinema species from Tunisian vineyard soil samples and assess their ability to acquire and transmit GFLV under natural and controlled conditions. Based on morphological and morphometric analyses, Tunisian dagger nematodes were identified as X. index and Xiphinema italiae. These results were confirmed with molecular identification tools using species-specific polymerase chain reaction primers. The total RNA of GFLV was extracted from specimens of Xiphinema and amplified based on real-time polymerase chain reaction using virus-specific primers. Our results showed that X. index could acquire and transmit the viral particles of GFLV. This nepovirus was not detected in X. italiae, under natural conditions; however, under controlled conditions, this nematode was able to successfully acquire and transmit the viral particles of GFLV.


Assuntos
Nematoides , Nepovirus , Animais , RNA Viral/genética , Nematoides/genética , Nepovirus/genética , Vetores de Doenças , Doenças das Plantas
9.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542075

RESUMO

This research investigated the factors associated with the quantitative detection of Paratrichodorus allius in soil using droplet digital PCR (ddPCR). Small-sized nematodes exhibited significantly lower DNA quantities compared to their medium and large counterparts. Soil pre-treatments (room temperature drying and 37 °C oven-drying) demonstrated no substantial impact on ddPCR detection, and soil storage (0-3 months at 4 °C) exhibited negligible alterations in DNA quantities. A commercial DNA purification kit improved the resulting quality of ddPCR, albeit at the cost of a notable reduction in DNA quantity. Upon assessing the impact of inhibitors from soil extracts, a higher inhibitor concentration (5%) influenced ddPCR amplification efficiency. Incorporating bovine serum albumin (BSA) (0.2 µg/µL or 0.4 µg/µL) into the ddPCR setup mitigated the issue. In brief, while ddPCR exhibits minimal sensitivity to soil pre-treatments and storage, higher concentrations of PCR inhibitors and the DNA purification process can influence the results. Despite ddPCR's capability to detect nematodes of all sizes, quantification may not precisely reflect soil population. Incorporating BSA into the ddPCR setup enhances both detection and quantification capacities. This study represents the first comprehensive investigation of its kind for plant-parasitic nematodes, providing crucial insights for application of ddPCR in nematode diagnosis directly from the soil DNA.


Assuntos
Nematoides , Solo , Animais , Reação em Cadeia da Polimerase/métodos , Nematoides/genética , DNA/genética
10.
Mol Ecol ; 33(9): e17331, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38533629

RESUMO

Marine sediments cover 70% of the Earth's surface, and harbour diverse bacterial communities critical for marine biogeochemical processes, which affect climate change, biodiversity and ecosystem functioning. Nematodes, the most abundant and species-rich metazoan organisms in marine sediments, in turn, affect benthic bacterial communities and bacterial-mediated ecological processes, but the underlying mechanisms by which they affect biogeochemical cycles remain poorly understood. Here, we demonstrate using a metatranscriptomic approach that nematodes alter the taxonomic and functional profiles of benthic bacterial communities. We found particularly strong stimulation of nitrogen-fixing and methane-oxidizing bacteria in the presence of nematodes, as well as increased functional activity associated with methane metabolism and degradation of various carbon compounds. This study provides empirical evidence that the presence of nematodes results in taxonomic and functional shifts in active bacterial communities, indicating that nematodes may play an important role in benthic ecosystem processes.


Assuntos
Bactérias , Ecossistema , Sedimentos Geológicos , Nematoides , Animais , Nematoides/microbiologia , Nematoides/genética , Bactérias/genética , Bactérias/classificação , Sedimentos Geológicos/microbiologia , Biodiversidade , Transcriptoma , Microbiota/genética , Metano/metabolismo
11.
Methods Mol Biol ; 2756: 247-255, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427297

RESUMO

DGGE (denaturing gradient gel electrophoresis) is a nucleic acid separation technique applied to the evaluation of microbial biodiversity. This technique is quite rapid and cheap compared to other types of analysis. Here we describe the comparison of nematode communities inhabiting different ecosystems. After an ecologically representative sampling collection and the nematode extraction from soil, nematodes are centrifuged in Eppendorf tubes to facilitate DNA extraction. DNA from the whole community of each type of soil is extracted, amplified with primers for 18 S rDNA and used in DGGE analysis. The profiles of DGGE can be analyzed with appropriate software, and biodiversity indices can be estimated.


Assuntos
Ecossistema , Nematoides , Animais , Biodiversidade , DNA Ribossômico/genética , Reação em Cadeia da Polimerase/métodos , Nematoides/genética , Solo , Eletroforese em Gel de Poliacrilamida , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Microbiologia do Solo
12.
Genetics ; 227(1)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38431281

RESUMO

Auanema freiburgense is a nematode with males, females, and selfing hermaphrodites. When XO males mate with XX females, they typically produce a low proportion of XO offspring because they eliminate nullo-X spermatids. This process ensures that most sperm carry an X chromosome, increasing the likelihood of X chromosome transmission compared to random segregation. This occurs because of an unequal distribution of essential cellular organelles during sperm formation, likely dependent on the X chromosome. Some sperm components are selectively segregated into the X chromosome's daughter cell, while others are discarded with the nullo-X daughter cell. Intriguingly, the interbreeding of 2 A. freiburgense strains results in hybrid males capable of producing viable nullo-X sperm. Consequently, when these hybrid males mate with females, they yield a high percentage of male offspring. To uncover the genetic basis of nullo-spermatid elimination and X chromosome drive, we generated a genome assembly for A. freiburgense and genotyped the intercrossed lines. This analysis identified a quantitative trait locus spanning several X chromosome genes linked to the non-Mendelian inheritance patterns observed in A. freiburgense. This finding provides valuable clues to the underlying factors involved in asymmetric organelle partitioning during male meiotic division and thus non-Mendelian transmission of the X chromosome and sex ratios.


Assuntos
Segregação de Cromossomos , Locos de Características Quantitativas , Cromossomo X , Animais , Cromossomo X/genética , Masculino , Feminino , Nematoides/genética
13.
Genetics ; 227(1)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38513719

RESUMO

Comparative approaches have revealed both divergent and convergent paths to achieving shared developmental outcomes. Thus, only through assembling multiple case studies can we understand biological principles. Yet, despite appreciating the conservation-or lack thereof-of developmental networks, the conservation of epigenetic mechanisms regulating these networks is poorly understood. The nematode Pristionchus pacificus has emerged as a model system of plasticity and epigenetic regulation as it exhibits a bacterivorous or omnivorous morph depending on its environment. Here, we determined the "epigenetic toolkit" available to P. pacificus as a resource for future functional work on plasticity, and as a comparison with Caenorhabditis elegans to investigate the conservation of epigenetic mechanisms. Broadly, we observed a similar cast of genes with putative epigenetic function between C. elegans and P. pacificus. However, we also found striking differences. Most notably, the histone methyltransferase complex PRC2 appears to be missing in P. pacificus. We described the deletion/pseudogenization of the PRC2 genes mes-2 and mes-6 and concluded that both were lost in the last common ancestor of P. pacificus and a related species P. arcanus. Interestingly, we observed the enzymatic product of PRC2 (H3K27me3) by mass spectrometry and immunofluorescence, suggesting that a currently unknown methyltransferase has been co-opted for heterochromatin silencing. Altogether, we have provided an inventory of epigenetic genes in P. pacificus to compare with C. elegans. This inventory will enable reverse-genetic experiments related to plasticity and has revealed the first loss of PRC2 in a multicellular organism.


Assuntos
Caenorhabditis elegans , Epigênese Genética , Evolução Molecular , Animais , Caenorhabditis elegans/genética , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Histona Metiltransferases/metabolismo , Histona Metiltransferases/genética , Nematoides/genética , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo
14.
Evol Dev ; 26(2): e12471, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38356318

RESUMO

Disentangling the evolution of the molecular processes and genetic networks that facilitate the emergence of morphological novelties is one of the main objectives in evolutionary developmental biology. Here, we investigated the evolutionary history of a gene regulatory network controlling the development of novel tooth-like feeding structures in diplogastrid nematodes. Focusing on NHR-1 and NHR-40, the two transcription factors that regulate the morphogenesis of these feeding structures in Pristionchus pacificus, we sought to determine whether they have a similar function in Caenorhabditis elegans, an outgroup species to the Diplogastridae which has typical "rhabditid" flaps instead of teeth. Contrary to our initial expectations, we found that they do not have a similar function. While both receptors are co-expressed in the tissues that produce the feeding structures in the two nematodes, genetic inactivation of either receptor had no impact on feeding-structure morphogenesis in C. elegans. Transcriptomic experiments revealed that NHR-1 and NHR-40 have highly species-specific regulatory targets. These results suggest two possible evolutionary scenarios: either the genetic module responsible for feeding-structure morphogenesis in Diplogastridae already existed in the last common ancestor of C. elegans and P. pacificus, and subsequently disintegrated in the former as NHR-1 and NHR-40 acquired new targets, or it evolved in conjunction with teeth in Diplogastridae. These findings indicate that feeding-structure morphogenesis is regulated by different genetic programs in P. pacificus and C. elegans, hinting at developmental systems drift during the flap-to-tooth transformation. Further research in other "rhabditid" species is needed to fully reconstruct the developmental genetic changes which facilitated the evolution of novel feeding structures in Diplogastridae.


Assuntos
Nematoides , Dente , Animais , Caenorhabditis elegans/genética , Redes Reguladoras de Genes , Nematoides/anatomia & histologia , Nematoides/genética , Morfogênese
15.
Vet Parasitol ; 327: 110146, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382381

RESUMO

The faecal egg count reduction test (FECRT) is the most widely used method to assess treatment efficacy against gastrointestinal nematodes (GIN). Information on genera composition of the GIN community is not available with this test and it is commonly obtained by identifying cultured third-stage larvae (L3) or through molecular assays in the post-treatment survey, but results provided are usually only qualitative or semi-quantitative. The updated WAAVP guidelines now recommend assessing anthelmintic efficacy for each GIN genus/species separately (genus-specific FECRT), but this approach is poorly employed in Europe and in goats especially. For this reason, four FECRT trials were conducted using oxfendazole and eprinomectin in two Italian goat farms. Samples were processed individually using the McMaster technique and then pooled to create two samples from faeces of 5 animals each. Pooled samples were analysed using the McMaster and cultured for seven days at 26°C to obtain L3s. The genus-specific FECRT was based on larval identification, integrating coproculture and FEC results. Larvae were identified as Haemonchus, Trichostrongylus, Teladorsagia, Oesophagostomum / Chabertia and Bunostomum. Molecular assays (a multiplex real-time PCR and two end-point PCRs) were also implemented on pooled samples to support the morphological identification. The Spearmann Rho test confirmed a high correlation between the two approaches (Rho = 0.941 and Rho = 0.914 respectively for Haemonchus and Trichostrongylus, the two most common genera). Both oxfendazole and eprinomectin were effective in one farm, while none in the other farm (FECR = 75.9% and 73.3% respectively). In the second farm, the genus-specific FECRT highlighted a different response to treatment among genera: oxfendazole lacked efficacy against both Haemonchus and Trichostrongylus spp., eprinomectin only against Haemonchus, while all other genera were susceptible to both drugs. This study brings new attention on the importance of adopting a genus-specific approach to identify and quantify differences in susceptibility to anthelmintics among genera in goats, providing support for FECRT interpretation, anthelmintic resistance evaluation and evidence-based GIN control.


Assuntos
Anti-Helmínticos , Haemonchus , Ivermectina/análogos & derivados , Nematoides , Animais , Cabras , Óvulo , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Nematoides/genética , Haemonchus/genética , Trichostrongylus , Fezes , Contagem de Ovos de Parasitas/veterinária , Resistência a Medicamentos
16.
Toxins (Basel) ; 16(2)2024 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-38393187

RESUMO

Entomopathogenic nematodes from the genus Steinernema (Nematoda: Steinernematidae) are capable of causing the rapid killing of insect hosts, facilitated by their association with symbiotic Gram-negative bacteria in the genus Xenorhabdus (Enterobacterales: Morganellaceae), positioning them as interesting candidate tools for the control of insect pests. In spite of this, only a limited number of species from this bacterial genus have been identified from their nematode hosts and their insecticidal properties documented. This study aimed to perform the genome sequence analysis of fourteen Xenorhabdus strains that were isolated from Steinernema nematodes in Argentina. All of the strains were found to be able of killing 7th instar larvae of Galleria mellonella (L.) (Lepidoptera: Pyralidae). Their sequenced genomes harbour 110 putative insecticidal proteins including Tc, Txp, Mcf, Pra/Prb and App homologs, plus other virulence factors such as putative nematocidal proteins, chitinases and secondary metabolite gene clusters for the synthesis of different bioactive compounds. Maximum-likelihood phylogenetic analysis plus average nucleotide identity calculations strongly suggested that three strains should be considered novel species. The species name for strains PSL and Reich (same species according to % ANI) is proposed as Xenorhabdus littoralis sp. nov., whereas strain 12 is proposed as Xenorhabdus santafensis sp. nov. In this work, we present a dual insight into the biocidal potential and diversity of the Xenorhabdus genus, demonstrated by different numbers of putative insecticidal genes and biosynthetic gene clusters, along with a fresh exploration of the species within this genus.


Assuntos
Mariposas , Nematoides , Xenorhabdus , Animais , Xenorhabdus/genética , Filogenia , Argentina , Nematoides/genética , Mariposas/genética , Análise de Sequência , Simbiose
17.
G3 (Bethesda) ; 14(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38301266

RESUMO

Genetic studies of nematodes have been dominated by Caenorhabditis elegans as a model species. A lack of genomic resources has limited the expansion of genetic research to other groups of nematodes. Here, we report a draft genome assembly of a mermithid nematode, Mermis nigrescens. Mermithidae are insect parasitic nematodes with hosts including a wide range of terrestrial arthropods. We sequenced, assembled, and annotated the whole genome of M. nigrescens using nanopore long reads and 10X Chromium link reads. The assembly is 524 Mb in size consisting of 867 scaffolds. The N50 value is 2.42 Mb, and half of the assembly is in the 30 longest scaffolds. The assembly BUSCO score from the eukaryotic database (eukaryota_odb10) indicates that the genome is 86.7% complete and 5.1% partial. The genome has a high level of heterozygosity (6.6%) with a repeat content of 83.98%. mRNA-seq reads from different sized nematodes (≤2 cm, 3.5-7 cm, and >7 cm body length) representing different developmental stages were also generated and used for the genome annotation. Using ab initio and evidence-based gene model predictions, 12,313 protein-coding genes and 24,186 mRNAs were annotated. These genomic resources will help researchers investigate the various aspects of the biology and host-parasite interactions of mermithid nematodes.


Assuntos
Mermithoidea , Nematoides , Animais , Mermithoidea/genética , Nematoides/genética , Genômica , Caenorhabditis elegans/genética , Genoma , Anotação de Sequência Molecular
18.
Parasit Vectors ; 17(1): 77, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378676

RESUMO

BACKGROUND: Nematodes of the Ascarididae, Ancylostomatidae and Onchocercidae families are parasites of human and veterinary importance causing infections with high prevalence worldwide. Molecular tools have significantly improved the diagnosis of these helminthiases, but the selection of genetic markers for PCR or metabarcoding purposes is often challenging because of the resolution these may show. METHODS: Nuclear 18S rRNA, internal transcribed spacers 1 (ITS-1) and 2 (ITS-2), mitochondrial gene cytochrome oxidase 1 (cox1) and mitochondrial rRNA genes 12S and 16S loci were studied for 30 species of the mentioned families. Accordingly, their phylogenetic interspecies resolution, pairwise nucleotide p-distances and sequence availability in GenBank were analyzed. RESULTS: The 18S rRNA showed the least interspecies resolution since separate species of the Ascaris, Mansonella, Toxocara or Ancylostoma genus were intermixed in phylogenetic trees as opposed to the ITS-1, ITS-2, cox1, 12S and 16S loci. Moreover, pairwise nucleotide p-distances were significantly different in the 18S compared to the other loci, with an average of 99.1 ± 0.1%, 99.8 ± 0.1% and 98.8 ± 0.9% for the Ascarididae, Ancylostomatidae and Onchocercidae families, respectively. However, ITS-1 and ITS-2 average pairwise nucleotide p-distances in the three families ranged from 72.7% to 87.3%, and the cox1, 12S and 16S ranged from 86.4% to 90.4%. Additionally, 2491 cox1 sequences were retrieved from the 30 analyzed species in GenBank, whereas 212, 1082, 994, 428 and 143 sequences could be obtained from the 18S, ITS-1, ITS-2, 12S and 16S markers, respectively. CONCLUSIONS: The use of the cox1 gene is recommended because of the high interspecies resolution and the large number of sequences available in databases. Importantly, confirmation of the identity of an unknown specimen should always be complemented with the careful morphological examination of worms and the analysis of other markers used for specific parasitic groups.


Assuntos
Nematoides , Sarcocystis , Sarcocistose , Humanos , Animais , RNA Ribossômico 18S/genética , Sarcocistose/veterinária , Filogenia , Nematoides/genética , Nucleotídeos
19.
Genes (Basel) ; 15(2)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38397178

RESUMO

Gastrointestinal nematodes (GINs) can be a major constraint and global challenge to the sheep industry. These nematodes infect the small intestine and abomasum of grazing sheep, causing symptoms such as weight loss, diarrhea, hypoproteinemia, and anemia, which can lead to death. The use of anthelmintics to treat infected animals has led to GIN resistance, and excessive use of these drugs has resulted in residue traced in food and the environment. Resistance to GINs can be measured using multiple traits, including fecal egg count (FEC), Faffa Malan Chart scores, hematocrit, packed cell volume, eosinophilia, immunoglobulin (Ig), and dagginess scores. Genetic variation among animals exists, and understanding these differences can help identify genomic regions associated with resistance to GINs in sheep. Genes playing important roles in the immune system were identified in several studies in this review, such as the CFI and MUC15 genes. Results from several studies showed overlapping quantitative trait loci (QTLs) associated with multiple traits measuring resistance to GINs, mainly FEC. The discovery of genomic regions, positional candidate genes, and QTLs associated with resistance to GINs can help increase and accelerate genetic gains in sheep breeding programs and reveal the genetic basis and biological mechanisms underlying this trait.


Assuntos
Nematoides , Infecções por Nematoides , Parasitos , Animais , Ovinos/genética , Infecções por Nematoides/genética , Infecções por Nematoides/veterinária , Nematoides/genética , Locos de Características Quantitativas , Genômica
20.
J Helminthol ; 98: e14, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38305043

RESUMO

A new species of the genus Acromoldavicus is described from coastal sand dunes and sandy soil in the southeast of the Iberian Peninsula. Acromoldavicus xerophilus n. sp. is characterized by its 557-700 µm body length, cuticle tessellated, lip region with three pairs of expanded lips bearing a large labial expansion, primary axils bearing guard processes with two different morphology, secondary axils lacking guard processes, stoma short and tubular with prostegostom bearing prominent rhabdia directed towards the stoma lumen, female reproductive system monodelphic-prodelphic, post-vulval sac 0.6-0.9 times body diameter, rectum very large, female tail short with biacute terminus and males unknown. The description, light micrographs, scanning electron microscope images, illustrations, and molecular analyses are provided. Molecular analyses (based on 18S and 28S rDNA) revealed its relationship with some species of the genera Cephalobus (18S tree), Nothacrobeles, Paracrobeles, and Spinocephalus (28S tree). Keys to species identification of this genus are also included.


Assuntos
Nematoides , Rabditídios , Masculino , Animais , Nematoides/genética , Europa (Continente) , Solo , Microscopia , Árvores , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...