Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(38): e2206147119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36095192

RESUMO

The neocortex, the center for higher brain function, first emerged in mammals and has become massively expanded and folded in humans, constituting almost half the volume of the human brain. Primary microcephaly, a developmental disorder in which the brain is smaller than normal at birth, results mainly from there being fewer neurons in the neocortex because of defects in neural progenitor cells (NPCs). Outer radial glia (oRGs), NPCs that are abundant in gyrencephalic species but rare in lissencephalic species, are thought to play key roles in the expansion and folding of the neocortex. However, how oRGs expand, whether they are necessary for neocortical folding, and whether defects in oRGs cause microcephaly remain important questions in the study of brain development, evolution, and disease. Here, we show that oRG expansion in mice, ferrets, and human cerebral organoids requires cyclin-dependent kinase 6 (CDK6), the mutation of which causes primary microcephaly via an unknown mechanism. In a mouse model in which increased Hedgehog signaling expands oRGs and intermediate progenitor cells and induces neocortical folding, CDK6 loss selectively decreased oRGs and abolished neocortical folding. Remarkably, this function of CDK6 in oRG expansion did not require its kinase activity, was not shared by the highly similar CDK4 and CDK2, and was disrupted by the mutation causing microcephaly. Therefore, our results indicate that CDK6 is conserved to promote oRG expansion, that oRGs are necessary for neocortical folding, and that defects in oRG expansion may cause primary microcephaly.


Assuntos
Quinase 6 Dependente de Ciclina , Células Ependimogliais , Microcefalia , Neocórtex , Animais , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Células Ependimogliais/citologia , Células Ependimogliais/enzimologia , Furões , Proteínas Hedgehog/metabolismo , Humanos , Camundongos , Microcefalia/genética , Neocórtex/anormalidades , Neocórtex/enzimologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/enzimologia , Organoides/embriologia
2.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34161264

RESUMO

Osmotic equilibrium and membrane potential in animal cells depend on concentration gradients of sodium (Na+) and potassium (K+) ions across the plasma membrane, a function catalyzed by the Na+,K+-ATPase α-subunit. Here, we describe ATP1A3 variants encoding dysfunctional α3-subunits in children affected by polymicrogyria, a developmental malformation of the cerebral cortex characterized by abnormal folding and laminar organization. To gain cell-biological insights into the spatiotemporal dynamics of prenatal ATP1A3 expression, we built an ATP1A3 transcriptional atlas of fetal cortical development using mRNA in situ hybridization and transcriptomic profiling of ∼125,000 individual cells with single-cell RNA sequencing (Drop-seq) from 11 areas of the midgestational human neocortex. We found that fetal expression of ATP1A3 is most abundant to a subset of excitatory neurons carrying transcriptional signatures of the developing subplate, yet also maintains expression in nonneuronal cell populations. Moving forward a year in human development, we profiled ∼52,000 nuclei from four areas of an infant neocortex and show that ATP1A3 expression persists throughout early postnatal development, most predominantly in inhibitory neurons, including parvalbumin interneurons in the frontal cortex. Finally, we discovered the heteromeric Na+,K+-ATPase pump complex may form nonredundant cell-type-specific α-ß isoform combinations, including α3-ß1 in excitatory neurons and α3-ß2 in inhibitory neurons. Together, the developmental malformation phenotype of affected individuals and single-cell ATP1A3 expression patterns point to a key role for α3 in human cortex development, as well as a cell-type basis for pre- and postnatal ATP1A3-associated diseases.


Assuntos
Encéfalo/embriologia , Encéfalo/enzimologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Adulto , Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Criança , Feminino , Feto/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Lactente , Recém-Nascido , Interneurônios/metabolismo , Imageamento por Ressonância Magnética , Masculino , Mutação/genética , Neocórtex/embriologia , Neocórtex/enzimologia , Neurônios/metabolismo , Parvalbuminas/metabolismo , Fenótipo , Polimicrogiria/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Célula Única , ATPase Trocadora de Sódio-Potássio/genética
3.
Neurochem Res ; 46(8): 2112-2130, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34008120

RESUMO

Carbamazepine (CBZ) is an anticonvulsant drug that usually is used for the treatment of seizures. The anti-epileptic and the anti-epileptogenic effect of exercise has been reported, as well. This study was aimed to evaluate the synergic effect of combined therapy of exercise and CBZ in epileptic rats, as well as the alternation of the GABA pathway as a possible involved mechanism. The seizure was induced by pentylenetetrazol (PTZ) injection. Animals were divided into sham, seizure, exercise (EX), CBZ (25, 50 and 75), EX + CBZ (25, 50 and 75). Treadmill forced running for 30 min has been considered as the exercise 5 days per week for four weeks. CBZ was injected in doses of 25, 50 and 75 mg/kg, half an hour before seizure induction and 5 h after doing exercise in the animals forced to exercise. Seizure severity reduced and latency increased in the EX + CBZ (25) and EX + CBZ (50) groups compared to the seizure group. The distribution of GAD65 in both hippocampal CA1 and CA3 areas increased in the EX + CBZ (75) group. GABAA receptor α1 was up-regulated in the CA3 area of the EX + CBZ (75) group. The distribution of GAD65 in the cortical area increased in EX, EX + CBZ (50), CBZ (75) and EX + CBZ (75) groups. GABAA receptor α1 was up-regulated in the neocortex of EX + CBZ (50), CBZ (75) and EX + CBZ (75) groups. Our findings suggested that exercise has improved the efficacy of CBZ and reduced the anti-epileptic dose. The enhancement of GABA signaling might be involved in the synergistic effect of exercise and CBZ.


Assuntos
Anticonvulsivantes/uso terapêutico , Carbamazepina/uso terapêutico , Epilepsia/tratamento farmacológico , Epilepsia/terapia , Condicionamento Físico Animal/fisiologia , Animais , Região CA1 Hipocampal/enzimologia , Região CA1 Hipocampal/metabolismo , Região CA3 Hipocampal/enzimologia , Região CA3 Hipocampal/metabolismo , Epilepsia/induzido quimicamente , Glutamato Descarboxilase/metabolismo , Masculino , Neocórtex/enzimologia , Neocórtex/metabolismo , Pentilenotetrazol , Ratos Wistar , Receptores de GABA-A/metabolismo
4.
Cell Rep ; 34(8): 108780, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33626347

RESUMO

CHD8 (chromodomain helicase DNA-binding protein 8) is a chromatin remodeler associated with autism spectrum disorders. Homozygous Chd8 deletion in mice leads to embryonic lethality, making it difficult to assess whether CHD8 regulates brain development and whether CHD8 haploinsufficiency-related macrocephaly reflects normal CHD8 functions. Here, we report that homozygous conditional knockout of Chd8 restricted to neocortical glutamatergic neurons causes apoptosis-dependent near-complete elimination of neocortical structures. These mice, however, display normal survival and hyperactivity, anxiolytic-like behavior, and increased social interaction. They also show largely normal auditory function and moderately impaired visual and motor functions but enhanced whisker-related somatosensory function. These changes accompany thalamic hyperactivity, revealed by 15.2-Tesla fMRI, and increased intrinsic excitability and decreased inhibitory synaptic transmission in thalamic ventral posterior medial (VPM) neurons involved in somatosensation. These results suggest that excitatory neuronal CHD8 critically regulates neocortical development through anti-apoptotic mechanisms, neocortical elimination distinctly affects cognitive behaviors and sensory-motor functions in mice, and Chd8 haploinsufficiency-related macrocephaly might represent compensatory responses.


Assuntos
Comportamento Animal , Cognição , Proteínas de Ligação a DNA/metabolismo , Atividade Motora , Neocórtex/enzimologia , Neurônios/metabolismo , Núcleos Ventrais do Tálamo/metabolismo , Vibrissas/inervação , Animais , Apoptose , Mapeamento Encefálico , Proteínas de Ligação a DNA/genética , Feminino , Genótipo , Ácido Glutâmico/metabolismo , Imageamento por Ressonância Magnética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neocórtex/patologia , Neocórtex/fisiopatologia , Neurônios/patologia , Fenótipo , Córtex Sensório-Motor/metabolismo , Córtex Sensório-Motor/fisiopatologia , Comportamento Social , Transmissão Sináptica , Núcleos Ventrais do Tálamo/diagnóstico por imagem , Núcleos Ventrais do Tálamo/fisiopatologia
5.
J Clin Invest ; 130(3): 1431-1445, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31794431

RESUMO

Epigenetic integrity is critical for many eukaryotic cellular processes. An important question is how different epigenetic regulators control development and influence disease. Lysine acetyltransferase 8 (KAT8) is critical for acetylation of histone H4 at lysine 16 (H4K16), an evolutionarily conserved epigenetic mark. It is unclear what roles KAT8 plays in cerebral development and human disease. Here, we report that cerebrum-specific knockout mice displayed cerebral hypoplasia in the neocortex and hippocampus, along with improper neural stem and progenitor cell (NSPC) development. Mutant cerebrocortical neuroepithelia exhibited faulty proliferation, aberrant neurogenesis, massive apoptosis, and scant H4K16 propionylation. Mutant NSPCs formed poor neurospheres, and pharmacological KAT8 inhibition abolished neurosphere formation. Moreover, we describe KAT8 variants in 9 patients with intellectual disability, seizures, autism, dysmorphisms, and other anomalies. The variants altered chromobarrel and catalytic domains of KAT8, thereby impairing nucleosomal H4K16 acetylation. Valproate was effective for treating epilepsy in at least 2 of the individuals. This study uncovers a critical role of KAT8 in cerebral and NSPC development, identifies 9 individuals with KAT8 variants, and links deficient H4K16 acylation directly to intellectual disability, epilepsy, and other developmental anomalies.


Assuntos
Hipocampo/enzimologia , Histona Acetiltransferases/metabolismo , Deficiência Intelectual/enzimologia , Neocórtex/enzimologia , Células-Tronco Neurais/enzimologia , Acetilação , Animais , Células HEK293 , Hipocampo/patologia , Histona Acetiltransferases/genética , Humanos , Deficiência Intelectual/patologia , Camundongos , Camundongos Knockout , Neocórtex/patologia , Células-Tronco Neurais/patologia , Nucleossomos/genética , Nucleossomos/metabolismo
6.
Mol Brain ; 12(1): 67, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31319858

RESUMO

LIMK1 and LIMK2 are key downstream targets to mediate the effects of the Rho family small GTPases and p21-activated kinases (PAK) in the regulation of the actin cytoskeleton. LIMKs are also critical for synaptic transmission, plasticity and memory formation. Changes in LIMK signaling are associated with several neurodevelopmental and neurodegenerative diseases, including autism, intellectual disability and Alzheimer's disease. However, the role of LIMK signaling in brain development remains unknown. In this study, we used LIMK1 KO and LIMK2 KO mice to investigate the role of LIMK signaling in the cerebral cortical development. We found that these KO mice are reduced in the number of pyramidal neurons in upper cortical layers and this reduction is accompanied by a smaller pool of neural progenitor cells and impaired neuronal migration. These results are similar to those found in PAK1 KO mice and suggest that LIMK-dependent actin regulation may play a key role in mediating the effects of PAK1 and Rho signaling in the regulation of cortical development.


Assuntos
Movimento Celular , Quinases Lim/metabolismo , Neocórtex/embriologia , Neocórtex/enzimologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Animais , Biomarcadores/metabolismo , Bromodesoxiuridina/metabolismo , Ciclo Celular , Proliferação de Células , Camundongos Knockout , Células Piramidais/metabolismo
7.
Sci Rep ; 8(1): 13119, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30177812

RESUMO

Calpain hyperactivation is implicated in late-stages of neurodegenerative diseases including Alzheimer's disease (AD). However, calpains are also critical for synaptic function and plasticity, and hence memory formation and learning. Since synaptic deficits appear early in AD pathogenesis prior to appearance of overt disease symptoms, we examined if localized dysregulation of calpain-1 and/or 2 contributes to early synaptic dysfunction in AD. Increased activity of synaptosomal calpain-2, but not calpain-1 was observed in presymptomatic 1 month old APPswe/PS1ΔE9 mice (a mouse model of AD) which have no evident pathological or behavioural hallmarks of AD and persisted up to 10 months of age. However, total cellular levels of calpain-2 remained unaffected. Moreover, synaptosomal calpain-2 was hyperactivated in frontal neocortical tissue samples of post-mortem brains of AD-dementia subjects and correlated significantly with decline in tests for cognitive and memory functions, and increase in levels of ß-amyloid deposits in brain. We conclude that isoform-specific hyperactivation of calpain-2, but not calpain-1 occurs at the synapse early in the pathogenesis of AD potentially contributing to the deregulation of synaptic signaling in AD. Our findings would be important in paving the way for potential therapeutic strategies for amelioration of cognitive deficits observed in ageing-related dementia disorders like AD.


Assuntos
Doença de Alzheimer/genética , Calpaína/genética , Transtornos da Memória/genética , Placa Amiloide/genética , Sinapses/enzimologia , Doença de Alzheimer/enzimologia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Doenças Assintomáticas , Autopsia , Calpaína/metabolismo , Estudos de Casos e Controles , Modelos Animais de Doenças , Humanos , Testes de Inteligência , Masculino , Transtornos da Memória/enzimologia , Transtornos da Memória/patologia , Camundongos , Camundongos Transgênicos , Neocórtex/enzimologia , Neocórtex/patologia , Plasticidade Neuronal , Neurônios/metabolismo , Neurônios/patologia , Placa Amiloide/enzimologia , Placa Amiloide/patologia , Cultura Primária de Células , Sinapses/patologia , Transmissão Sináptica , Sinaptossomos/metabolismo , Sinaptossomos/patologia
9.
Cereb Cortex ; 27(2): 1253-1269, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-26733533

RESUMO

During the development of the mammalian neocortex, the generation of neurons by neural progenitors and their migration to the final position are closely coordinated. The highly polarized radial glial cells (RGCs) serve both as progenitor cells to generate neurons and as support for the migration of these neurons. After their generation, neurons transiently assume a multipolar morphology before they polarize and begin their migration along the RGCs. Here, we show that Rap1 GTPases perform essential functions for cortical organization as master regulators of cell polarity. Conditional deletion of Rap1 GTPases leads to a complete loss of cortical lamination. In RGCs, Rap1 GTPases are required to maintain their polarized organization. In newborn neurons, the loss of Rap1 GTPases prevents the formation of axons and leading processes and thereby interferes with radial migration. Taken together, the loss of RGC and neuronal polarity results in the disruption of cortical organization.


Assuntos
Polaridade Celular/fisiologia , Neocórtex/crescimento & desenvolvimento , Neurogênese/fisiologia , Proteínas rap1 de Ligação ao GTP/metabolismo , Animais , Movimento Celular/fisiologia , Células Ependimogliais/fisiologia , Camundongos , Neocórtex/citologia , Neocórtex/enzimologia , Neuroglia/citologia , Neurônios/citologia , Transdução de Sinais/fisiologia
10.
Neurobiol Aging ; 48: 83-92, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27644077

RESUMO

Impaired clearance of amyloid-ß peptide (Aß) has been postulated to significantly contribute to the amyloid accumulation typical of Alzheimer's disease. Among the enzymes known to degrade Aß in vivo are endothelin-converting enzyme (ECE)-1, ECE-2, and neprilysin (NEP), and evidence suggests that they regulate independent pools of Aß that may be functionally significant. To better understand the differential regulation of Aß concentration by its physiological degrading enzymes, we characterized the cell and region-specific expression pattern of ECE-1, ECE-2, and NEP by in situ hybridization and immunohistochemistry in brain areas relevant to Alzheimer's disease. In contrast to the broader distribution of ECE-1, ECE-2 and NEP were found enriched in GABAergic neurons. ECE-2 was majorly expressed by somatostatin-expressing interneurons and was active in isolated synaptosomes. NEP messenger RNA was found mainly in parvalbumin-expressing interneurons, with NEP protein localized to perisomatic parvalbuminergic synapses. The identification of somatostatinergic and parvalbuminergic synapses as hubs for Aß degradation is consistent with the possibility that Aß may have a physiological function related to the regulation of inhibitory signaling.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Enzimas Conversoras de Endotelina/metabolismo , Neurônios GABAérgicos/enzimologia , Hipocampo/citologia , Hipocampo/enzimologia , Neocórtex/citologia , Neocórtex/enzimologia , Neprilisina/metabolismo , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/fisiologia , Animais , Enzimas Conversoras de Endotelina/genética , Enzimas Conversoras de Endotelina/fisiologia , Expressão Gênica , Camundongos Transgênicos , Neprilisina/genética , Neprilisina/fisiologia , RNA Mensageiro/metabolismo , Sinapses/enzimologia
11.
J Neurophysiol ; 116(2): 431-7, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27146981

RESUMO

Spontaneous propagation of spiking within the local neocortical circuits of mature primary sensory areas is highly nonrandom, engaging specific sets of interconnected and functionally related neurons. These spontaneous activations promise insight into neocortical structure and function, but their properties in the first 2 wk of perinatal development are incompletely characterized. Previously, we have found that there is a minimal numerical sample, on the order of 400 cells, necessary to fully capture mature neocortical circuit dynamics. Therefore we maximized our numerical sample by using two-photon calcium imaging to observe spontaneous activity in populations of up to 1,062 neurons spanning multiple columns and layers in 52 acute coronal slices of mouse neocortex at each day from postnatal day (PND) 3 to PND 15. Slices contained either primary auditory cortex (A1) or somatosensory barrel field (S1BF), which allowed us to compare sensory modalities with markedly different developmental timelines. Between PND 3 and PND 8, populations in both areas exhibited activations of anatomically compact subgroups on the order of dozens of cells. Between PND 9 and PND 13, the spatiotemporal structure of the activity diversified to include spatially distributed activations encompassing hundreds of cells. Sparse activations covering the entire field of view dominated in slices taken on or after PND 14. These and other findings demonstrate that the developmental progression of spontaneous activations from active local modules in the first postnatal week to sparse, intermingled groups of neurons at the beginning of the third postnatal week generalizes across primary sensory areas, consistent with an intrinsic developmental trajectory independent of sensory input.


Assuntos
Vias Aferentes/fisiologia , Neocórtex/enzimologia , Neocórtex/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Feminino , Técnicas In Vitro , Modelos Logísticos , Masculino , Camundongos , Modelos Neurológicos , Estatísticas não Paramétricas
12.
Brain Struct Funct ; 221(4): 2147-62, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-25850901

RESUMO

Cytochrome b 5 reductase (Cb 5R) and cytochrome b 5 (Cb 5) form an enzymatic redox system that plays many roles in mammalian cells. In the last 15 years, it has been proposed that this system is involved in the recycling of ascorbate, a vital antioxidant molecule in the brain and that its deregulation can lead to the production of reactive oxygen species that play a major role in oxidative-induced neuronal death. In this work, we have performed a regional and cellular distribution study of the expression of this redox system in adult rat brain by anti-Cb 5R isoform 3 and anti-Cb 5 antibodies. We found high expression levels in cerebellar cortex, labeling heavily granule neurons and Purkinje cells, and in structures such as the fastigial, interposed and dentate cerebellar nuclei. A large part of Cb 5R isoform 3 in the cerebellum cortex was regionalized in close proximity to the lipid raft-like nanodomains, labeled with cholera toxin B, as we have shown by fluorescence resonance energy transfer imaging. In addition, vestibular, reticular and motor nuclei located at the brain stem level and pyramidal neurons of somatomotor areas of the brain cortex and of the hippocampus have been also found to display high expression levels of these proteins. All these results point out the enrichment of Cb 5R isoform 3/Cb 5 system in neuronal cells and structures of the cerebellum and brain stem whose functional impairment can account for neurological deficits reported in type II congenital methemoglobinemia, as well as in brain areas highly prone to undergo oxidative stress-induced neurodegeneration.


Assuntos
Encéfalo/enzimologia , Cerebelo/enzimologia , Citocromo-B(5) Redutase/metabolismo , Citocromos b5/metabolismo , Células Piramidais/enzimologia , Animais , Tronco Encefálico/enzimologia , Hipocampo/enzimologia , Isoenzimas/metabolismo , Masculino , Microdomínios da Membrana/enzimologia , Neocórtex/enzimologia , Neuroglia/enzimologia , Ratos , Ratos Wistar
13.
J Comp Neurol ; 523(4): 629-48, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25349050

RESUMO

Mounting evidence has demonstrated that a specialized extracellular matrix exists in the mammalian brain and that this glycoprotein-rich matrix contributes to many aspects of brain development and function. The most prominent supramolecular assemblies of these extracellular matrix glycoproteins are perineuronal nets, specialized lattice-like structures that surround the cell bodies and proximal neurites of select classes of interneurons. Perineuronal nets are composed of lecticans, a family of chondroitin sulfate proteoglycans that includes aggrecan, brevican, neurocan, and versican. These lattice-like structures emerge late in postnatal brain development, coinciding with the ending of critical periods of brain development. Despite our knowledge of the presence of lecticans in perineuronal nets and their importance in regulating synaptic plasticity, we know little about the development or distribution of the extracellular proteases that are responsible for their cleavage and turnover. A subset of a large family of extracellular proteases (called a disintegrin and metalloproteinase with thrombospondin motifs [ADAMTS]) is responsible for endogenously cleaving lecticans. We therefore explored the expression pattern of two aggrecan-degrading ADAMTS family members, ADAMTS15 and ADAMTS4, in the hippocampus and neocortex. Here, we show that both lectican-degrading metalloproteases are present in these brain regions and that each exhibits a distinct temporal and spatial expression pattern. Adamts15 mRNA is expressed exclusively by parvalbumin-expressing interneurons during synaptogenesis, whereas Adamts4 mRNA is exclusively generated by telencephalic oligodendrocytes during myelination. Thus, ADAMTS15 and ADAMTS4 not only exhibit unique cellular expression patterns but their developmental upregulation by these cell types coincides with critical aspects of neural development.


Assuntos
Proteínas ADAM/metabolismo , Hipocampo/enzimologia , Hipocampo/crescimento & desenvolvimento , Neocórtex/enzimologia , Neocórtex/crescimento & desenvolvimento , Pró-Colágeno N-Endopeptidase/metabolismo , Proteínas ADAMTS , Proteína ADAMTS1 , Proteína ADAMTS4 , Proteína ADAMTS5 , Animais , Regulação da Expressão Gênica no Desenvolvimento , Hipocampo/citologia , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Interneurônios/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neocórtex/citologia , Oligodendroglia/metabolismo , Parvalbuminas/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Neurochem Res ; 39(12): 2492-500, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25316496

RESUMO

The epileptogenesis process involves cell signaling events associated with neuroplasticity. The mitogen-activated protein kinases (MAPKs) integrate signals originating from a variety of extracellular stimuli and may regulate cell differentiation, survival, cell death and synaptic plasticity. Here we compared the total and phosphorylated MAPKs (ERK1/2, JNK1/2 and p38(MAPK)) levels in the neocortex and hippocampus of adult Swiss male mice quantified by western blotting analysis 48 h after the last injection of pentylenetetrazole (PTZ), according to the kindling protocol (35 mg/kg, i.p., on alternated days, with a total of eight injections). The total levels of the investigated MAPKs and the phospho-p38(MAPK) in the neocortex and hippocampus were not affected by the PTZ injections. The MAPKs phosphorylation levels remain unaltered in PTZ-treated animals without convulsive seizures. The phospho-JNK2 phosphorylation, but not the phospho-JNK1, was increased in the hippocampus of PTZ-treated animals showing 1-3 days with convulsive seizures, whereas no significant changes were observed in those animals with more than 3 days with convulsive seizures. The phospho-ERK1/2 phosphorylation decreased in the neocortex and increased in the hippocampus of animals with 1-4 days with convulsive seizures and became unaltered in mice that showed convulsive seizures for more than 4 days. These findings indicate that resistance to PTZ kindling is associated with unaltered ERK1/2, JNK1/2 and p38(MAPK) phosphorylation levels in the neocortex and hippocampus. Moreover, when the PTZ kindling-induced epileptogenesis manifests behaviorally, the activation of the different MAPKs sub-families shows a variable and non-linear pattern in the neocortex and hippocampus.


Assuntos
Hipocampo/enzimologia , Excitação Neurológica/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neocórtex/enzimologia , Pentilenotetrazol/farmacologia , Animais , Masculino , Camundongos
15.
Biol Pharm Bull ; 37(10): 1699-703, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25273393

RESUMO

Caspases are well-known enzymes that work as initiators and effectors of apoptosis. To elucidate the role of caspases in neurodevelopment, we sought to determine if caspases are involved in the proliferation of neural stem/progenitor cells (NPCs) in the developing mouse brain. Labeling with 5-bromo-2'-deoxyuridine (BrdU) from days 14 to 18 of pregnant mice revealed that the 18-d old fetus had many BudU-positive cells in its brain. Double-labeling revealed that active caspase-3 was co-localized with these BrdU-positive cells in the neocortex, hippocampus, and subventricular zone of the fetal brain. Active caspase-3 was detected in cultures of NPCs derived from the neocortex of 15-d old fetuses during culture periods. Importantly, the pan-caspase inhibitor z-VAD-FMK was effective at completely inhibiting neurosphere formation by the NPCs. These results suggest the possibility that the caspase cascade is essential for the proliferation of neocortical NPCs in the developing mouse brain.


Assuntos
Caspases/análise , Proliferação de Células , Neocórtex/química , Neocórtex/embriologia , Células-Tronco Neurais/química , Animais , Proliferação de Células/fisiologia , Células Cultivadas , Feminino , Camundongos , Neocórtex/enzimologia , Células-Tronco Neurais/enzimologia , Gravidez
16.
Brain Behav Evol ; 83(3): 216-30, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24686273

RESUMO

With the evolution of a relatively large brain size in haplorhine primates (i.e. tarsiers, monkeys, apes, and humans), there have been associated changes in the molecular machinery that delivers energy to the neocortex. Here we investigated variation in lactate dehydrogenase (LDH) expression and isoenzyme composition of the neocortex and striatum in primates using quantitative Western blotting and isoenzyme analysis of total homogenates and synaptosomal fractions. Analysis of isoform expression revealed that LDH in synaptosomal fractions from both forebrain regions shifted towards a predominance of the heart-type, aerobic isoform LDH-B among haplorhines as compared to strepsirrhines (i.e. lorises and lemurs), while in the total homogenate of the neocortex and striatum there was no significant difference in LDH isoenzyme composition between the primate suborders. The largest increase occurred in synapse-associated LDH-B expression in the neocortex, with an especially remarkable elevation in the ratio of LDH-B/LDH-A in humans. The phylogenetic variation in the ratio of LDH-B/LDH-A was correlated with species-typical brain mass but not the encephalization quotient. A significant LDH-B increase in the subneuronal fraction from haplorhine neocortex and striatum suggests a relatively higher rate of aerobic glycolysis that is linked to synaptosomal mitochondrial metabolism. Our results indicate that there is a differential composition of LDH isoenzymes and metabolism in synaptic terminals that evolved in primates to meet increased energy requirements in association with brain enlargement.


Assuntos
Evolução Biológica , Corpo Estriado/enzimologia , Lactato Desidrogenases/metabolismo , Neocórtex/enzimologia , Primatas/metabolismo , Idoso , Animais , Corpo Estriado/anatomia & histologia , Feminino , Humanos/anatomia & histologia , Humanos/metabolismo , Isoenzimas/metabolismo , L-Lactato Desidrogenase/metabolismo , Lactato Desidrogenase 5 , Masculino , Pessoa de Meia-Idade , Neocórtex/anatomia & histologia , Tamanho do Órgão , Filogenia , Terminações Pré-Sinápticas/enzimologia , Primatas/anatomia & histologia , Prosencéfalo/anatomia & histologia , Prosencéfalo/enzimologia , Especificidade da Espécie , Sinaptossomos/enzimologia
17.
Neuron ; 81(2): 321-32, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24373884

RESUMO

Transcriptional events involved in the development of human cerebral neocortex are poorly understood. Here, we analyzed the temporal dynamics and laterality of gene expression in human and macaque monkey neocortex. We found that interareal differences exhibit a temporal hourglass pattern, dividing the human neocortical development into three major phases. The first phase, corresponding to prenatal development, is characterized by the highest number of differential expressed genes among areas and gradient-like expression patterns, including those that are different between human and macaque. The second, preadolescent phase, is characterized by lesser interareal expression differences and by an increased synchronization of areal transcriptomes. During the third phase, from adolescence onward, differential expression among areas increases again driven predominantly by a subset of areas, without obvious gradient-like patterns. Analyses of left-right gene expression revealed population-level global symmetry throughout the fetal and postnatal time span. Thus, human neocortical topographic gene expression is temporally specified and globally symmetric.


Assuntos
Lateralidade Funcional/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Neocórtex , Proteínas do Tecido Nervoso/genética , Adolescente , Adulto , Fatores Etários , Idoso , Análise de Variância , Animais , Animais Recém-Nascidos , Criança , Pré-Escolar , Feminino , Feto , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Lactente , Recém-Nascido , Macaca mulatta , Masculino , Pessoa de Meia-Idade , Neocórtex/enzimologia , Neocórtex/crescimento & desenvolvimento , Neocórtex/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Análise de Componente Principal , Especificidade da Espécie , Transcriptoma , Adulto Jovem
18.
J Cereb Blood Flow Metab ; 33(10): 1642-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23838828

RESUMO

Phosphorylation of N-methyl-D-aspartate (NMDA) receptors is a major regulatory mechanism underlying synaptic plasticity. However, changes in NMDA receptors and phosphorylation after traumatic brain injury (TBI) remain incompletely understood. Using an animal TBI model, we observed that the protein level of NMDA receptor subunit NR2B was downregulated in synaptosomal fractions obtained from the ipsilateral neocortical injury region, whereas the levels of NR2A, NR1, and PSD93 were not significantly altered at 4 and 24 hours after TBI. Further investigation showed that tyrosine phosphorylations of NR2B Y1472 and PSD93 Y340 in synaptosomal fractions were significantly decreased relative to their total protein level after TBI. Correspondingly, phosphorylation of the Src-kinase-inhibitory site Y527 was increased, whereas phosphorylation of the activation site Y416 was decreased, indicating that the activity of Src kinase is significantly inhibited after TBI. In comparison, other Src family kinase substrates of NMDA receptor, NR2A Y1246, NR2A Y1325, and NR2B Y1070 were not obviously affected after TBI. The results suggest that TBI downregulates the Src-kinase-mediated phosphorylation of NR2 and PSD93 to destabilize the synaptic localization of NMDA receptors. Therefore, post-TBI loss of NMDA receptors may contribute to the depression of synaptic activity after TBI.


Assuntos
Lesões Encefálicas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Quinases da Família src/metabolismo , Animais , Western Blotting , Lesões Encefálicas/enzimologia , Lesões Encefálicas/patologia , Modelos Animais de Doenças , Eletroforese em Gel de Poliacrilamida , Lateralidade Funcional , Masculino , Microscopia Confocal , Neocórtex/enzimologia , Neocórtex/metabolismo , Neocórtex/patologia , Fosforilação , Subunidades Proteicas , Ratos , Ratos Sprague-Dawley , Sinaptossomos/enzimologia , Sinaptossomos/metabolismo
19.
Neuron ; 79(2): 254-65, 2013 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-23830831

RESUMO

In the developing neocortex, progenitor cells expand through symmetric division before they generate cortical neurons through multiple rounds of asymmetric cell division. Here, we show that the orientation of the mitotic spindle plays a crucial role in regulating the transition between those two division modes. We demonstrate that the protein phosphatase PP4c regulates spindle orientation in early cortical progenitor cells. Upon removing PP4c, mitotic spindles fail to orient in parallel to the neuroepithelial surface and progenitors divide with random orientation. As a result, their divisions become asymmetric and neurogenesis starts prematurely. Biochemical and genetic experiments show that PP4c acts by dephosphorylating the microtubule binding protein Ndel1, thereby enabling complex formation with Lis1 to form a functional spindle orientation complex. Our results identify a key regulator of cortical development and demonstrate that changes in the orientation of progenitor division are responsible for the transition between symmetric and asymmetric cell division.


Assuntos
Proliferação de Células , Neocórtex/embriologia , Neocórtex/enzimologia , Neurogênese/fisiologia , Fosfoproteínas Fosfatases/fisiologia , Fuso Acromático/enzimologia , Animais , Divisão Celular/fisiologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neocórtex/citologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/enzimologia , Gravidez
20.
Neuron ; 79(2): 211-3, 2013 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-23889928

RESUMO

In this issue of Neuron, Xie et al. (2013) identified protein phosphatase 4c (PP4c) as a new component in the regulation of spindle orientation during mammalian neurogenesis. Importantly, their findings uncovered a novel and critical temporal aspect of the regulation of spindle orientation during neurogenesis.


Assuntos
Proliferação de Células , Neocórtex/embriologia , Neocórtex/enzimologia , Neurogênese/fisiologia , Fosfoproteínas Fosfatases/fisiologia , Fuso Acromático/enzimologia , Animais , Feminino , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...