Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-34161217

RESUMO

The anaerobic gut fungi (AGF; phylum Neocallimastigomycota) reside in the alimentary tracts of herbivores. Multiple novel, yet-uncultured AGF taxa have recently been identified in culture-independent diversity surveys. Here, we report on the isolation and characterization of the first representative of the RH5 lineage from faecal samples of a wild blackbuck (Indian Antelope, Antilope cervicapra) from Sutton County, Texas, USA. The isolates displayed medium sized (2-4 mm) compact circular colonies on agar roll tubes and thin loose biofilm-like growth in liquid medium. Microscopic examination revealed monoflagellated zoospores and polycentric thalli with highly branched nucleated filamentous rhizomycelium, a growth pattern encountered in a minority of described AGF genera so far. The obtained isolates are characterized by formation of spherical vesicles at the hyphal tips from which multiple sporangia formed either directly on the spherical vesicles or at the end of sporangiophores. Phylogenetic analysis using the D1/D2 regions of the large ribosomal subunit (D1/D2 LSU) and the ribosomal internal transcribed spacer 1 (ITS1) revealed sequence similarities of 93.5 and 81.3%, respectively, to the closest cultured relatives (Orpinomyces joyonii strain D3A (D1/D2 LSU) and Joblinomyces apicalis strain GFH681 (ITS1). Substrate utilization experiments using the type strain (BB-3T) demonstrated growth capabilities on a wide range of mono-, oligo- and polysaccharides, including glucose, xylose, mannose, fructose, cellobiose, sucrose, maltose, trehalose, lactose, cellulose, xylan, starch and raffinose. We propose accommodating these novel isolates in a new genus and species, for which the name Paucimyces polynucleatus gen. nov., sp. nov. is proposed.


Assuntos
Antílopes/microbiologia , Fezes/microbiologia , Neocallimastigomycota/classificação , Filogenia , Anaerobiose , Animais , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Neocallimastigomycota/isolamento & purificação , Subunidades Ribossômicas Maiores , Análise de Sequência de DNA , Texas
2.
Environ Microbiol ; 22(9): 3883-3908, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32656919

RESUMO

The anaerobic gut fungi (AGF, Neocallimastigomycota) reside in the alimentary tracts of herbivores where they play a central role in the breakdown of plant material. Here, we report on the development of the hypervariable domains D1/D2 of the large ribosomal subunit (D1/D2 LSU) as a barcoding marker for the AGF. We generated a reference D1/D2 LSU database for all cultured AGF genera, as well as the majority of candidate genera encountered in prior internal transcribed spacer 1 (ITS1)-based surveys. Subsequently, a D1/D2 LSU-based diversity survey using long read PacBio SMRT sequencing was conducted on faecal samples from 21 wild and domesticated herbivores. Twenty-eight genera and candidate genera were identified, including multiple novel lineages that were predominantly, but not exclusively, identified in wild herbivores. Association between certain AGF genera and animal lifestyles, or animal host family was observed. Finally, to address the current paucity of AGF isolates, concurrent isolation efforts utilizing multiple approaches to maximize recovery yielded 216 isolates belonging to 12 different genera, several of which have no prior cultured-representatives. Our results establish the utility of D1/D2 LSU and PacBio sequencing for AGF diversity surveys, the culturability of multiple AGF taxa, and demonstrate that wild herbivores represent a yet-untapped reservoir of AGF diversity.


Assuntos
Microbioma Gastrointestinal , Herbivoria , Neocallimastigomycota/isolamento & purificação , Subunidades Ribossômicas Maiores/genética , Animais , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Fezes/microbiologia , Neocallimastigomycota/classificação , Neocallimastigomycota/genética , Filogenia , Análise de Sequência de DNA
3.
Mycologia ; 112(6): 1212-1239, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32057282

RESUMO

We isolated and characterized 65 anaerobic gut fungal (AGF; Neocallimastigomycota) strains from fecal samples of five wild (W, axis deer, white-tailed deer, Boer goat, mouflon, and Nilgiri tahr), one zoo-housed (Z, zebra), and three domesticated (D,  horse, sheep, and goat) herbivores in the US states of Texas (TX) and Oklahoma (OK), Wales (WA), and the Indian states of Kerala (KE) and Haryana (HA). Phylogenetic assessment using the D1-D2 regions of the large subunit (28S) rDNA and internal transcribed spacer 1 (ITS1) identified seven monophyletic clades that are distinct from all currently recognized AGF genera. All strains displayed monocentric thalli and produced exclusively or predominantly monoflagellate zoospores, with the exception of axis deer strains, which produced polyflagellate zoospores. Analysis of amplicon-based AGF diversity surveys indicated that zebra and horse strains are representatives of uncultured AL1 group, whereas domesticated goat and sheep strains are representatives of uncultured AL5 group, previously encountered in fecal and rumen samples of multiple herbivores. The other five lineages, all of which were isolated from wild herbivores, have not been previously encountered in such surveys. Our results significantly expand the genus-level diversity within the Neocallimastigomycota and strongly suggest that wild herbivores represent a yet-untapped reservoir of AGF diversity. We propose seven novel genera and eight novel Neocallimastigomycota species to comprise these strains, for which we propose the names Agriosomyces longus (mouflon and wild Boer goat), Aklioshbomyces papillarum (white-tailed deer), Capellomyces foraminis (wild Boar goat), and C. elongatus (domesticated goat), Ghazallomyces constrictus (axis deer), Joblinomyces apicalis (domesticated goat and sheep), Khoyollomyces ramosus (zebra-horse), and Tahromyces munnarensis (Nilgiri tahr).


Assuntos
Animais Domésticos/microbiologia , Animais Selvagens/microbiologia , Animais de Zoológico/microbiologia , Herbivoria , Neocallimastigomycota/classificação , Neocallimastigomycota/genética , Filogenia , Anaerobiose , Animais , DNA Fúngico/genética , DNA Ribossômico/genética , Cervos/microbiologia , Fezes/microbiologia , Feminino , Cabras/microbiologia , Herbivoria/classificação , Cavalos/microbiologia , Masculino , Neocallimastigomycota/isolamento & purificação , Ovinos/microbiologia , Suínos/microbiologia
4.
World J Microbiol Biotechnol ; 34(10): 155, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30276481

RESUMO

Anaerobic fungi (phylum Neocallimastigomycota), an early branching family of fungi, are commonly encountered in the digestive tract of mammalian herbivores. To date, isolates from ten described genera have been reported, and several novel taxonomic groupings are detected using culture-independent molecular methods. Anaerobic fungi are recognized as playing key roles in the decomposition of lignocellulose (up to 50% of the ingested and untreated lignocellulose), with their physical penetration and extracellular enzymatical secretion of an unbiased diverse repertoire of cell-wall-degrading enzymes. The secreted cell-wall-degrading enzymes of anaerobic fungi include both free enzymes and extracellular multi-enzyme complexes called cellulosomes, both of which have potential as fiber degraders in industries. In addition, anaerobic fungi can provide large amounts of substrates such as hydrogen, formate, and acetate for their co-cultured methanogens. Consequently, large amounts of methane can be produced. And thus, it is promising to use the co-culture of anaerobic fungi and methanogens in the biogas process to intensify the biogas yield owing to the efficient and robust degradation of recalcitrant biomass by anaerobic fungi and improved methane production from co-cultures of anaerobic fungi and methanogens.


Assuntos
Biodegradação Ambiental , Biotecnologia , Fermentação , Fungos/metabolismo , Metano/metabolismo , Neocallimastigomycota/metabolismo , Ácido Acético/metabolismo , Anaerobiose/fisiologia , Biocombustíveis , Biomassa , Celulase/genética , Celulase/metabolismo , Celulossomas/enzimologia , Técnicas de Cocultura , Fibra de Algodão , Euryarchaeota/metabolismo , Formiatos/metabolismo , Fungos/classificação , Fungos/enzimologia , Fungos/genética , Hidrogênio/metabolismo , Lignina/metabolismo , Neocallimastigomycota/classificação , Neocallimastigomycota/enzimologia , Neocallimastigomycota/genética , Polissacarídeos/metabolismo , Especificidade por Substrato
5.
Mycologia ; 109(2): 231-243, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28494211

RESUMO

The anaerobic gut fungi (AGF) inhabit the rumen and alimentary tracts of multiple ruminant and nonruminant herbivores, belong to a distinct phylum-level lineage (Neocallimastigomycota), and play an important role in plant biomass degradation in many herbivores. As part of a wider effort to obtain AGF with high lignocellulolytic capacities, we isolated and characterized four different AGF strains from the feces of cattle and sheep. Microscopically, isolates produced monocentric thalli and monoflagellated zoospores. Phylogenetic analysis revealed that all isolates formed a monophyletic cluster with strong bootstrap support as a sister clade to the genus Orpinomyces and close to Neocallimastix, an unexpected result because these two genera of AGF form polyflagellated zoospores. Isolates displayed a smooth biofilm-like growth in liquid medium and formed small (0.5-1 mm) pinpoint circular colonies on agar roll tubes. Both endogenous and exogenous sporangia were observed with variable shapes and sizes. Zoospores were mainly spherical, with diameters ranging between 3.8 and 12.5 µm, and mostly a single flagellum. All strains exhibited similar substrate utilization patterns and comparable cellulolytic and xylanolytic activities. Similar ITS1 sequences falling within the same distinctive clade were found on GenBank, with all environmental samples obtained from diverse ruminant and pseudoruminant hosts from three continents, but not from any hindgut-fermenting hosts. Given the high level of sequence divergence between our strains and closest cultured representatives and their distinct microscopic/macroscopic features, we propose a new genus, Pecoramyces, from the name of the taxonomic infraorder Pecora ("horned ruminants" or "higher ruminants"; derived from the Latin word for horned livestock), and a new species, P. ruminantium (since occurrence seems to be specific to ruminant/pseudoruminant foregut, but not hindgut-fermenting mammals).


Assuntos
Fezes/microbiologia , Trato Gastrointestinal/microbiologia , Neocallimastigomycota/classificação , Animais , Bovinos , DNA Fúngico/genética , DNA Ribossômico/genética , DNA Espaçador Ribossômico/genética , Técnicas de Tipagem Micológica , Neocallimastigomycota/citologia , Neocallimastigomycota/genética , Neocallimastigomycota/ultraestrutura , Filogenia , Rúmen/microbiologia , Análise de Sequência de DNA , Ovinos , Esporângios/ultraestrutura , Esporos Fúngicos/ultraestrutura
6.
Antonie Van Leeuwenhoek ; 110(1): 87-103, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27734254

RESUMO

The phylum Neocallimastigomycota contains eight genera (about 20 species) of strictly anaerobic fungi. The evolutionary relationships of these genera are uncertain due to insufficient sequence data to infer their phylogenies. Based on morphology and molecular phylogeny, thirteen isolates obtained from yak faeces and rumen digesta in China were assigned to Neocallimastix frontalis (nine isolates), Orpinomyces joyonii (two isolates) and Caecomyces sp. (two isolates), respectively. The phylogenetic relationships of the eight genera were evaluated using complete ITS and partial LSU sequences, compared to the ITS1 region which has been widely used in this phylum in the past. Five monophyletic lineages corresponding to six of the eight genera were statistically supported. Isolates of Caecomyces and Cyllamyces were present in a single lineage and could not be separated properly. Members of Neocallimastigomycota with uniflagellate zoospores represented by Piromyces were polyphyletic. The Piromyces-like genus Oontomyces was consistently closely related to the traditional Anaeromyces, and separated the latter genus into two clades. The phylogenetic position of the Piromyces-like genus Buwchfawromyces remained unresolved. Orpinomyces and Neocallimastix, sharing polyflagellate zoospores, were supported as sister genera in the LSU phylogeny. Apparently ITS, specifically ITS1 alone, is not a good marker to resolve the generic affinities of the studied fungi. The LSU sequences are easier to align and appear to work well to resolve generic relationships. This study provides a comparative phylogenetic revision of Neocallimastigomycota isolates known from culture and sequence data.


Assuntos
Bovinos/microbiologia , Fezes/microbiologia , Neocallimastigomycota/classificação , Neocallimastigomycota/isolamento & purificação , Filogenia , Animais , China , DNA Fúngico/genética , DNA Ribossômico/genética , DNA Espaçador Ribossômico/genética , Neocallimastigomycota/genética , Rúmen/microbiologia
7.
J Microbiol Methods ; 127: 28-40, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27220661

RESUMO

Anaerobic fungi (AF) decompose plant material with their rhizoid and multiple cellulolytic enzymes. They disintegrate the complex structure of lignocellulosic substrates, making them more accessible and suitable for further microbial degradation. There is also much interest in their use as biocatalysts for biotechnological applications. Here, three novel polymerase chain reaction (PCR)-based methods for detecting AF and their transcriptional activity in in vitro cultures and environmental samples were developed. Two real-time quantitative PCR (qPCR)-based methods targeting AF were developed: AF-SSU, was designed to quantify the 18S rRNA genes of AF. AF-Endo, measuring transcripts of an endoglucanase gene from the glycoside hydrolase family 5 (GH5), was developed to quantify their transcriptional cellulolytic activity. The third PCR based approach was designed for phylogenetical analysis. It targets the 28S rRNA gene (LSU) of AF revealing their phylogenetic affiliation. The in silico-designed primer/probe combinations were successfully tested for the specific amplification of AF from animal and biogas plant derived samples. In combination, these three methods represent useful tools for the analysis of AF transcriptional cellulolytic activity, their abundance and their phylogenetic placement.


Assuntos
Biotecnologia/métodos , Neocallimastigomycota/classificação , Neocallimastigomycota/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Anaerobiose , Celulase/genética , Primers do DNA , Lignina/metabolismo , Neocallimastigomycota/isolamento & purificação , Filogenia , Transcrição Gênica
8.
Gen Physiol Biophys ; 35(1): 95-107, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26612922

RESUMO

Isolates of anaerobic fungi from rumen, animal faeces and compost displayed morphological similarity with known anaerobic fungi. According to their ITS sequences, species were related to Neocallimastix and Piromyces. Rumen fungi tolerated exposure to an aerobic atmosphere for at least four days. Under anaerobic conditions, they could grow on both, defined or complex substrates. Growth in liquid media was monitored by the continuous measurement of metabolic gases (O2, CO2, H2, CO, H2S, CH4). Monitored metabolism was complex, showed that both CO2 and H2 were produced and subsequently consumed by yet unknown metabolic pathway(s). CO and H2S were evolved similarly, but not identically with the generation of CO2 and H2 suggesting their connection with energetic metabolism. Anaerobic fungi from snail faeces and compost produced concentrations of H2S, H2, CO near the lower limit of detection. The rumen isolates produced cellulases and xylanases with similar pH and temperature optima. Proteolytic enzymes were secreted as well. Activities of some enzymes of the main catabolic pathways were found in cell-free homogenates of mycelia. The results indicate the presence of the pentose cycle, the glyoxylate cycle and an incomplete citrate cycle in these fungi. Differences between isolates indicate phenotypic variability between anaerobic fungi.


Assuntos
Ecossistema , Fezes/microbiologia , Neocallimastigomycota/classificação , Neocallimastigomycota/fisiologia , Rúmen/microbiologia , Microbiologia do Solo , Aclimatação/fisiologia , Anaerobiose/fisiologia , Animais , Monóxido de Carbono/metabolismo , Bovinos , Hidrogênio/metabolismo , Sulfeto de Hidrogênio/metabolismo , Hidrolases/metabolismo , Fenótipo , Ovinos , Caramujos , Especificidade da Espécie
9.
FEMS Microbiol Ecol ; 90(1): 1-17, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25046344

RESUMO

Anaerobic fungi (phylum Neocallimastigomycota) inhabit the gastrointestinal tract of mammalian herbivores, where they play an important role in the degradation of plant material. The Neocallimastigomycota represent the earliest diverging lineage of the zoosporic fungi; however, understanding of the relationships of the different taxa (both genera and species) within this phylum is in need of revision. Issues exist with the current approaches used for their identification and classification, and recent evidence suggests the presence of several novel taxa (potential candidate genera) that remain to be characterised. The life cycle and role of anaerobic fungi has been well characterised in the rumen, but not elsewhere in the ruminant alimentary tract. Greater understanding of the 'resistant' phase(s) of their life cycle is needed, as is study of their role and significance in other herbivores. Biotechnological application of anaerobic fungi, and their highly active cellulolytic and hemi-cellulolytic enzymes, has been a rapidly increasing area of research and development in the last decade. The move towards understanding of anaerobic fungi using -omics based (genomic, transcriptomic and proteomic) approaches is starting to yield valuable insights into the unique cellular processes, evolutionary history, metabolic capabilities and adaptations that exist within the Neocallimastigomycota.


Assuntos
Neocallimastigomycota/fisiologia , Animais , Biotecnologia , Fenômenos Ecológicos e Ambientais , Trato Gastrointestinal/microbiologia , Genoma Fúngico , Neocallimastigomycota/classificação , Neocallimastigomycota/enzimologia , Neocallimastigomycota/crescimento & desenvolvimento , Proteômica , Rúmen/microbiologia
10.
PLoS One ; 9(3): e91928, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24663345

RESUMO

The internal transcribed spacer (ITS) is a popular barcode marker for fungi and in particular the ITS1 has been widely used for the anaerobic fungi (phylum Neocallimastigomycota). A good number of validated reference sequences of isolates as well as a large number of environmental sequences are available in public databases. Its highly variable nature predisposes the ITS1 for low level phylogenetics; however, it complicates the establishment of reproducible alignments and the reconstruction of stable phylogenetic trees at higher taxonomic levels (genus and above). Here, we overcame these problems by proposing a common core secondary structure of the ITS1 of the anaerobic fungi employing a Hidden Markov Model-based ITS1 sequence annotation and a helix-wise folding approach. We integrated the additional structural information into phylogenetic analyses and present for the first time an automated sequence-structure-based taxonomy of the ITS1 of the anaerobic fungi. The methodology developed is transferable to the ITS1 of other fungal groups, and the robust taxonomy will facilitate and improve high-throughput anaerobic fungal community structure analysis of samples from various environments.


Assuntos
DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Neocallimastigomycota/genética , Anaerobiose , Sequência de Bases , Marcadores Genéticos/genética , Cadeias de Markov , Neocallimastigomycota/classificação , Neocallimastigomycota/metabolismo , Conformação de Ácido Nucleico , Filogenia
11.
Anaerobe ; 29: 34-43, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24384307

RESUMO

Anaerobic fungi occupy the rumen and digestive tract of herbivores, where they play an important role in enzymatic digestion of lignocellulosic and cellulosic substrates, i.e. organic material that their hosts are unable to decompose on their own. In this study we isolated anaerobic fungi from a typical alpine herbivore, the Alpine ibex (C. ibex). Three fungal strains, either as pure culture (ST2) or syntrophic co-culture with methanogens (ST3, ST4) were successfully obtained and morphologically characterised by different microscopy- and staining-techniques and by rDNA ITS gene sequencing. The isolated fungi were identified as Neocallimastix frontalis (ST2) and Caecomyces communis (ST3 and ST4). We introduce a novel field of application for lactofuchsin-staining, combined with confocal laser scanning microscopy. This approach proved as an effective method to visualize fungal structures, especially in the presence of plant biomass, generally exhibiting high autofluorescence. Moreover, we could demonstrate that fungal morphology is subject to changes depending on the carbon source used for cultivation. Oxygen tolerance was confirmed for both, C. communis-cultures for up to three, and for the N. frontalis-isolate for up to 12 h, respectively. With PCR, FISH and an oligonucleotide microarray we found associated methanogens (mainly Methanobacteriales) for C. communis, but not for N. frontalis.


Assuntos
DNA Arqueal/genética , DNA Fúngico/genética , Metano/biossíntese , Methanobacteriales/metabolismo , Neocallimastigomycota/metabolismo , Anaerobiose , Animais , DNA Espaçador Ribossômico/genética , Fezes/microbiologia , Fermentação , Cabras/microbiologia , Methanobacteriales/classificação , Methanobacteriales/genética , Methanobacteriales/isolamento & purificação , Microscopia Confocal , Neocallimastigomycota/classificação , Neocallimastigomycota/genética , Neocallimastigomycota/isolamento & purificação , Filogenia , Reação em Cadeia da Polimerase , Rúmen/microbiologia , Análise de Sequência de DNA , Simbiose/fisiologia
12.
PLoS One ; 7(5): e36866, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22615827

RESUMO

Anaerobic fungi are key players in the breakdown of fibrous plant material in the rumen, but not much is known about the composition and stability of fungal communities in ruminants. We analyzed anaerobic fungi in 53 rumen samples from farmed sheep (4 different flocks), cattle, and deer feeding on a variety of diets. Denaturing gradient gel electrophoresis fingerprinting of the internal transcribed spacer 1 (ITS1) region of the rrn operon revealed a high diversity of anaerobic fungal phylotypes across all samples. Clone libraries of the ITS1 region were constructed from DNA from 11 rumen samples that had distinctly different fungal communities. A total of 417 new sequences were generated to expand the number and diversity of ITS1 sequences available. Major phylogenetic groups of anaerobic fungi in New Zealand ruminants belonged to the genera Piromyces, Neocallimastix, Caecomyces and Orpinomyces. In addition, sequences forming four novel clades were obtained, which may represent so far undetected genera or species of anaerobic fungi. We propose a revised phylogeny and pragmatic taxonomy for anaerobic fungi, which was tested and proved suitable for analysis of datasets stemming from high-throughput next-generation sequencing methods. Comparing our revised taxonomy to the taxonomic assignment of sequences deposited in the GenBank database, we believe that >29% of ITS1 sequences derived from anaerobic fungal isolates or clones are misnamed at the genus level.


Assuntos
Neocallimastigomycota/metabolismo , Anaerobiose , Sequência de Bases , Primers do DNA , Neocallimastigomycota/classificação , Filogenia
13.
ISME J ; 4(10): 1225-35, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20410935

RESUMO

The phylogenetic diversity and community structure of members of the gut anaerobic fungi (AF) (phylum Neocallimastigomycota) were investigated in 30 different herbivore species that belong to 10 different mammalian and reptilian families using the internal transcribed spacer region-1 (ITS-1) ribosomal RNA (rRNA) region as a phylogenetic marker. A total of 267 287 sequences representing all known anaerobic fungal genera were obtained in this study. Sequences affiliated with the genus Piromyces were the most abundant, being encountered in 28 different samples, and representing 36% of the sequences obtained. On the other hand, sequences affiliated with the genera Cyllamyces and Orpinomyces were the least abundant, being encountered in 2, and 8 samples, and representing 0.7%, and 1.1% of the total sequences obtained, respectively. Further, 38.3% of the sequences obtained did not cluster with previously identified genera and formed eight phylogenetically distinct novel anaerobic fungal lineages. Some of these novel lineages were widely distributed (for example NG1 and NG3), whereas others were animal specific, being encountered in only one or two animals (for example NG4, NG6, NG7, and NG8). The impact of various physiological and environmental factors on the diversity and community structure of AF was examined. The results suggest that animal host phylogeny exerts the most significant role on shaping anaerobic fungal diversity and community composition. These results greatly expand the documented global phylogenetic diversity of members of this poorly studied group of fungi that has an important function in initiating plant fiber degradation during fermentative digestion in ruminant and non-ruminant herbivores.


Assuntos
Biodiversidade , Trato Gastrointestinal/microbiologia , Mamíferos/microbiologia , Neocallimastigomycota/classificação , Neocallimastigomycota/fisiologia , Répteis/microbiologia , Anaerobiose , Animais , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Dados de Sequência Molecular , Neocallimastigomycota/genética , Neocallimastigomycota/isolamento & purificação , Filogenia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA