Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 34(10): 155, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30276481

RESUMO

Anaerobic fungi (phylum Neocallimastigomycota), an early branching family of fungi, are commonly encountered in the digestive tract of mammalian herbivores. To date, isolates from ten described genera have been reported, and several novel taxonomic groupings are detected using culture-independent molecular methods. Anaerobic fungi are recognized as playing key roles in the decomposition of lignocellulose (up to 50% of the ingested and untreated lignocellulose), with their physical penetration and extracellular enzymatical secretion of an unbiased diverse repertoire of cell-wall-degrading enzymes. The secreted cell-wall-degrading enzymes of anaerobic fungi include both free enzymes and extracellular multi-enzyme complexes called cellulosomes, both of which have potential as fiber degraders in industries. In addition, anaerobic fungi can provide large amounts of substrates such as hydrogen, formate, and acetate for their co-cultured methanogens. Consequently, large amounts of methane can be produced. And thus, it is promising to use the co-culture of anaerobic fungi and methanogens in the biogas process to intensify the biogas yield owing to the efficient and robust degradation of recalcitrant biomass by anaerobic fungi and improved methane production from co-cultures of anaerobic fungi and methanogens.


Assuntos
Biodegradação Ambiental , Biotecnologia , Fermentação , Fungos/metabolismo , Metano/metabolismo , Neocallimastigomycota/metabolismo , Ácido Acético/metabolismo , Anaerobiose/fisiologia , Biocombustíveis , Biomassa , Celulase/genética , Celulase/metabolismo , Celulossomas/enzimologia , Técnicas de Cocultura , Fibra de Algodão , Euryarchaeota/metabolismo , Formiatos/metabolismo , Fungos/classificação , Fungos/enzimologia , Fungos/genética , Hidrogênio/metabolismo , Lignina/metabolismo , Neocallimastigomycota/classificação , Neocallimastigomycota/enzimologia , Neocallimastigomycota/genética , Polissacarídeos/metabolismo , Especificidade por Substrato
2.
Appl Microbiol Biotechnol ; 101(8): 3089-3101, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28314873

RESUMO

Fungi constitute an invaluable natural resource for scientific research, owing to their diversity; they offer a promising alternative for bioprospecting, thus contributing to biotechnological advances. For a long time, extensive information has been exploited and fungal products have been tested as a source of natural compounds. In this context, enzyme production remains a field of interest, since it offers an efficient alternative to the hazardous processes of chemical transformations. Owing to their vast biodiversity and peculiar biochemical characteristics, two fungal categories, white-rot and anaerobic Neocallimastigomycota, have gathered considerable attention for biotechnological applications. These fungi are known for their ability to depolymerize complex molecular structures and are used in degradation of lignocellulosic biomass, improvement of animal feed digestibility, biogas and bioethanol production, and various other applications. However, there are only limited reports that describe proteolytic enzymes and esterases in these fungi and their synergistic action with lignocellulolytic enzymes on degradation of complex polymers. Thus, in this minireview, we focus on the importance of these organisms in enzyme technology, their bioprospecting, possibility of integration of their enzyme repertoire, and their prospects for future biotechnological innovation.


Assuntos
Bioprospecção/métodos , Biotecnologia/métodos , Neocallimastigomycota/enzimologia , Microbiologia do Solo , Anaerobiose , Biocombustíveis , Biomassa , Biotecnologia/tendências , Esterases/metabolismo , Lignina/metabolismo , Neocallimastigomycota/metabolismo , Peptídeo Hidrolases/metabolismo , Polímeros/metabolismo , Madeira/microbiologia
3.
FEMS Microbiol Ecol ; 90(1): 1-17, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25046344

RESUMO

Anaerobic fungi (phylum Neocallimastigomycota) inhabit the gastrointestinal tract of mammalian herbivores, where they play an important role in the degradation of plant material. The Neocallimastigomycota represent the earliest diverging lineage of the zoosporic fungi; however, understanding of the relationships of the different taxa (both genera and species) within this phylum is in need of revision. Issues exist with the current approaches used for their identification and classification, and recent evidence suggests the presence of several novel taxa (potential candidate genera) that remain to be characterised. The life cycle and role of anaerobic fungi has been well characterised in the rumen, but not elsewhere in the ruminant alimentary tract. Greater understanding of the 'resistant' phase(s) of their life cycle is needed, as is study of their role and significance in other herbivores. Biotechnological application of anaerobic fungi, and their highly active cellulolytic and hemi-cellulolytic enzymes, has been a rapidly increasing area of research and development in the last decade. The move towards understanding of anaerobic fungi using -omics based (genomic, transcriptomic and proteomic) approaches is starting to yield valuable insights into the unique cellular processes, evolutionary history, metabolic capabilities and adaptations that exist within the Neocallimastigomycota.


Assuntos
Neocallimastigomycota/fisiologia , Animais , Biotecnologia , Fenômenos Ecológicos e Ambientais , Trato Gastrointestinal/microbiologia , Genoma Fúngico , Neocallimastigomycota/classificação , Neocallimastigomycota/enzimologia , Neocallimastigomycota/crescimento & desenvolvimento , Proteômica , Rúmen/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA