Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 9(9): 2493-2501, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32864952

RESUMO

Neomycin, a multicomponent aminoglycoside antibiotic, is mainly utilized in livestock husbandry and feed additives in animals. The antimicrobial potency of the main product neomycin B is higher than that of its stereoisomer neomycin C. However, the content of neomycin C as an impurity in the high-producing strain is relatively high, and its isolation or removal from neomycin B is quite difficult, which influences the widespread application of neomycin. In this work, the essential genes responsible for neomycin biosynthesis were evaluated and overexpressed to reduce the content of neomycin C. Among them, neoG and neoH are two novel regulatory genes for neomycin biosynthesis, aphA is a resistance gene, neoN encoding a radical SAM-dependent epimerase is responsible for the conversion of neomycin C to B using SAM as the cofactor, and metK is a SAM synthetase coding gene. We demonstrated that the reconstitution and overexpression of a mini-gene-cluster (PkasO*-neoN-metK-PkasO*-neoGH-aphA) could effectively reduce the accumulation of neomycin C from 19.1 to 12.7% and simultaneously increase neomycin B by ∼13.1% in the engineered strain Sf/pKCZ04 compared with the wild-type strain (Sf). Real-time quantitative polymerase chain reaction analysis revealed the remarkable up-regulation of the neoE, neoH, neoN, and metK genes situated in the mini-gene-cluster. The findings will pave a new path for component optimization and the large-scale industrial production of significant commercial antibiotics.


Assuntos
Antibacterianos/biossíntese , Neomicina/biossíntese , Streptomyces/metabolismo , Antibacterianos/química , Vias Biossintéticas/genética , Metionina Adenosiltransferase/genética , Família Multigênica , Neomicina/química , Plasmídeos/genética , Plasmídeos/metabolismo , Streptomyces/química , Streptomyces/genética
2.
Appl Microbiol Biotechnol ; 103(5): 2263-2275, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30685809

RESUMO

Neomycin, an aminoglycoside antibiotic, is widely used in the livestock husbandry due to its higher antimicrobial activity and availability of feed additives in animals. However, its production yield is relatively low and cannot meet the needs of developing market and clinical application. Here, the entire natural neo cluster was cloned from Streptomyces fradiae CGMCC 4.576 by φBT1 integrase-mediated site-specific recombination. Then, the rational reconstruction of the neo cluster was performed by using λ-Red-mediated PCR targeting for improving neomycin production. In order to coordinate with this attempt, the supplementation of suitable precursors was carried out. The constructed recombinant strain Sf/pKCZ03 has multi-copy of the neo cluster modified by disrupting the negative regulatory gene neoI and replacing the native promoter of the neoE-D with PkasO*. Compared to the yield (1282 mg/L) of Streptomyces fradiae CGMCC 4.576, the engineered strain Sf/pKCZ03 had a 36% enhancement of neomycin production. Quantitative real-time PCR analysis revealed the increased transcription of structural genes (neoE, neoB, neoL, aacC8) and regulatory genes (neoR, neoH) in Sf/pKCZ03. Additionally, under the supplementation of 1 g/L N-acetyl-D-glucosamine and 5 g/L L-glutamine, the yield of engineered strain Sf/pKCZ03 showed 62% and 107% improvements compared to that of the wild-type strain in the original medium, respectively. These findings demonstrated that engineering the antibiotic gene cluster in combination with precursors feeding was an effective approach for strain improvement, and would be potentially extended to other Streptomyces for large-scale production of commercialized antibiotics.


Assuntos
Antibacterianos/biossíntese , Neomicina/biossíntese , Engenharia de Proteínas/métodos , Streptomyces/genética , Streptomyces/metabolismo , Clonagem Molecular/métodos , Testes de Sensibilidade Microbiana , Família Multigênica/genética , Staphylococcus aureus/efeitos dos fármacos
3.
Protein Sci ; 27(5): 945-956, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29516565

RESUMO

The aminoglycoside antibiotics, discovered as natural products in the 1940s, demonstrate a broad antimicrobial spectrum. Due to their nephrotoxic and ototoxic side effects, however, their widespread clinical usage has typically been limited to the treatment of serious infections. Neomycin B, first isolated from strains of Streptomyces in 1948, is one such drug that was approved for human use by the U.S. Food and Drug Administration in 1964. Only within the last 11 years has the biochemical pathway for its production been elaborated, however. Here we present the three-dimensional architecture of NeoB from Streptomyces fradiae, which is a pyridoxal 5'-phosphate or PLP-dependent aminotransferase that functions on two different substrates in neomycin B biosynthesis. For this investigation, four high resolution X-ray structures of NeoB were determined in various complexed states. The overall fold of NeoB is that typically observed for members of the "aspartate aminotransferase" family with the exception of an additional three-stranded antiparallel ß-sheet that forms part of the subunit-subunit interface of the dimer. The manner in which the active site of NeoB accommodates quite different substrates has been defined by this investigation. In addition, during the course of this study, we also determined the structure of the aminotransferase GenB1 to high resolution. GenB1 functions as an aminotransferase in gentamicin biosynthesis. Taken together, the structures of NeoB and GenB1, presented here, provide the first detailed descriptions of aminotransferases that specifically function on aldehyde moieties in aminoglycoside biosynthesis.


Assuntos
Neomicina/biossíntese , Streptomyces/enzimologia , Transaminases/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Neomicina/química , Transaminases/química
4.
Biosci Biotechnol Biochem ; 82(1): 161-165, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29297252

RESUMO

Owing to their photosynthetic capabilities, there is increasing interest in utilizing cyanobacteria to convert solar energy into biomass. 2-Deoxy-scyllo-inosose (DOI) is a valuable starting material for the benzene-free synthesis of catechol and other benzenoids. DOI synthase (DOIS) is responsible for the formation of DOI from d-glucose-6-phosphate (G6P) in the biosynthesis of 2-deoxystreptamine-containing aminoglycoside antibiotics such as neomycin and butirosin. DOI fermentation using a recombinant Escherichia coli strain has been reported, although a carbon source is necessary for high-yield DOI production. We constructed DOI-producing cyanobacteria toward carbon-free and sustainable DOI production. A DOIS gene derived from the butirosin producer strain Bacillus circulans (btrC) was introduced and expressed in the cyanobacterium Synechococcus elongatus PCC 7942. We ultimately succeeded in producing 400 mg/L of DOI in S. elongatus without using a carbon source. DOI production by cyanobacteria represents a novel and efficient approach for producing benzenoids from G6P synthesized by photosynthesis.


Assuntos
Inositol/análogos & derivados , Synechococcus/química , Benzaldeídos/química , Benzeno/química , Benzoquinonas/química , Sulfato de Butirosina/biossíntese , Catecóis/química , Inositol/biossíntese , Neomicina/biossíntese , Fotossíntese
5.
Sci China Life Sci ; 60(9): 980-991, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28812297

RESUMO

Neomycins are a group of aminoglycoside antibiotics with both clinical and agricultural applications. To elucidate the regulatory mechanism of neomycin biosynthesis, we completed draft genome sequencing of a neomycin producer Streptomyces fradiae CGMCC 4.7387 from marine sediments, and the neomycin biosynthesis gene cluster was identified. Inactivation of the afsA-g gene encoding a γ-butyrolactone (GBL) synthase in S. fradiae CGMCC 4.7387 resulted in a significant decrease of neomycin production. Quantitative RT-PCR analysis revealed that the transcriptional level of neoR and the aphA-neoGH operon were reduced in the afsA-g::aac(3)IV mutant. Interestingly, a conserved binding site of AdpA, a key activator in the GBL regulatory cascade, was discovered upstream of neoR, a putative regulatory gene encoding a protein with an ATPase domain and a tetratricopeptide repeat domain. When neoR was inactivated, the neomycin production was reduced about 40% in comparison with the WT strain. Quantitative RT-PCR analysis revealed that the transcriptional levels of genes in the aphA-neoGH operon were reduced clearly in the neoR::aac(3)IV mutant. Finally, the titers of neomycin were improved considerably by overexpression of afsA-g and neoR in S. fradiae CGMCC 4.7387.


Assuntos
Proteínas de Bactérias/genética , Família Multigênica/genética , Neomicina/biossíntese , Streptomyces/genética , DNA Bacteriano/análise , DNA Bacteriano/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Óperon/genética , Reação em Cadeia da Polimerase em Tempo Real , Streptomyces/metabolismo
6.
Folia Microbiol (Praha) ; 56(6): 555-61, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22083789

RESUMO

Neomycin, produced by Streptomyces fradiae, has been widely used for the treatment of bacterial infections in clinical and agricultural applications. In this study, a neomycin nonproducing mutant of S. fradiae was obtained by gene disruption technique for mutational biosynthesis. A crucial gene neoC (neo7) which encodes 2-deoxystreptamine (2-DOS) synthases was disrupted. The mutant could resume producing neomycin in the presence of 2-DOS. Salen derivatives of 2-DOS were synthesized and individually added to cultures of the mutant. Antibacterial activity of the mutasynthesis products against Staphylococcus aureus and four plant pathogenic bacteria (Pseudomonas solanacarum, Erwinia carotovora, Xanthomonas oryzae, and Xanthomonas campestris) was detected quantitatively by Oxford cup method. It is suggested that all 2-DOS derivatives were incorporated by the mutant into new active neomycin analogs except for 2-DOS derivative 2d ((1R,2r,3S,4R,6S)-4,6-bis((E)-3,5-di-tert-butyl-2-hydroxybenzylideneamino)cyclohexane-1,2,3-triol). Neomycin analogs produced by feeding 2-DOS derivative 2a ((1R,2r,3S,4R,6S)-4,6-bis((E)-2 hydroxybenzylideneamino)cyclohexane-1,2,3-triol) to cultures of the mutant displayed a similar antibacterial activity with neomycin produced by wild strain.


Assuntos
Antibacterianos/biossíntese , Neomicina/biossíntese , Streptomyces/genética , Streptomyces/metabolismo , Antibacterianos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Estrutura Molecular , Mutação , Neomicina/análogos & derivados , Streptomyces/enzimologia
7.
Methods Enzymol ; 459: 493-519, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19362652

RESUMO

Butirosin and neomycin belong to a family of clinically valuable 2-deoxystreptamine (2DOS)-containing aminoglycoside antibiotics. The biosynthetic gene clusters for butirosin and neomycin were identified in 2000 and in 2005, respectively. In recent years, most of the enzymes encoded in the gene clusters have been characterized, and thus almost all the biosynthetic steps leading to the final antibiotics have been understood. This knowledge could shed light on the complex biosynthetic pathways for other related structurally diverse aminoglycoside antibiotics. In this chapter, the enzymatic reactions in the biosynthesis of butirosin and neomycin are reviewed step by step.


Assuntos
Bactérias/enzimologia , Bactérias/metabolismo , Sulfato de Butirosina/biossíntese , Neomicina/biossíntese , Modelos Biológicos , Família Multigênica/genética , Família Multigênica/fisiologia
8.
Mol Cells ; 27(1): 83-8, 2009 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-19214437

RESUMO

Amino acid homology analysis predicted that rbmD, a putative glycosyltransferase from Streptomyces ribosidificus ATCC 21294, has the highest homology with neoD in neomycin biosynthesis. S. fradiae BS1, in which the production of neomycin was abolished, was generated by disruption of the neoD gene in the neomycin producer S. fradiae. The restoration of neomycin by self complementation suggested that there was no polar effect in the mutant. In addition, S. fradiae BS6 was created with complementation by rbmD in S. fradiae BS1, and secondary metabolite analysis by ESI/MS, LC/MS and MS/MS showed the restoration of neomycin production in S. fradiae BS6. These gene inactivation and complementation studies suggested that, like neoD, rbmD functions as a 2-N-acetlyglucosaminyltransferase and demonstrated the potential for the generation of novel aminoglycoside antibiotics using glycosyltransferases in vivo.


Assuntos
Genes Bacterianos , Engenharia Genética , Glicosiltransferases/genética , Família Multigênica , Neomicina/biossíntese , Ribostamicina/metabolismo , Streptomyces/genética , Antibacterianos/farmacologia , Teste de Complementação Genética , Testes de Sensibilidade Microbiana , Mutação/genética , Ribostamicina/química , Análise de Sequência de DNA , Espectrometria de Massas por Ionização por Electrospray , Streptomyces/efeitos dos fármacos , Streptomyces/enzimologia
9.
Biotechnol Lett ; 31(6): 869-75, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19219581

RESUMO

A putative aminotransferase gene, kanB, lies in the biosynthetic gene cluster of Streptomyces kanamyceticus ATCC 12853 and has 66% identity with neo6 in neomycin biosynthesis. Streptomyces fradiae Deltaneo6::tsr was generated by disrupting neo6 in the neomycin producer Streptomyces fradiae. Neomycin production was completely abolished in the disruptant mutant but was restored through self-complementation of neo6. S. fradiae HN4 was generated through complementation with kanB in Streptomyces fradiae neo6::tsr. Based on metabolite analysis by ESI/MS and LC/MS, neomycin production was restored in Streptomyces fradiae HN4. Thus, like neo6, kanB also functions as a 2-deoxy-scyllo-inosose aminotransferase that has dual functions in the formation of 2-deoxy-scyllo-inosose (DOS).


Assuntos
Proteínas de Bactérias/genética , Teste de Complementação Genética , Neomicina/biossíntese , Streptomyces/genética , Streptomyces/metabolismo , Transaminases/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas/genética , Deleção de Genes , Inositol/análogos & derivados , Inositol/metabolismo , Transaminases/metabolismo
10.
Org Biomol Chem ; 6(18): 3306-14, 2008 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-18802637

RESUMO

An efficient protocol has been developed for the genetic manipulation of Streptomyces fradiae NCIMB 8233, which produces the 2-deoxystreptamine (2-DOS)-containing aminoglycoside antibiotic neomycin. This has allowed the in vivo analysis of the respective roles of the glycosyltransferases Neo8 and Neo15, and of the deacetylase Neo16 in neomycin biosynthesis. Specific deletion of each of the neo8, neo15 and neo16 genes confirmed that they are all essential for neomycin biosynthesis. The pattern of metabolites produced by feeding putative pathway intermediates to these mutants provided unambiguous support for a scheme in which Neo8 and Neo15, whose three-dimensional structures are predicted to be highly similar, have distinct roles: Neo8 catalyses transfer of N-acetylglucosamine to 2-DOS early in the pathway, while Neo15 catalyses transfer of the same aminosugar to ribostamycin later in the pathway. The in vitro substrate specificity of Neo15, purified from recombinant Escherichia coli, was fully consistent with these findings. The in vitro activity of Neo16, the only deacetylase so far recognised in the neo gene cluster, showed that it is capable of acting in tandem with both Neo8 and Neo15 as previously proposed. However, the deacetylation of N-acetylglucosaminylribostamycin was still observed in a strain deleted of the neo16 gene and fed with suitable pathway precursors, providing evidence for the existence of a second enzyme in S. fradiae with this activity.


Assuntos
Amidoidrolases/metabolismo , Glicosiltransferases/metabolismo , Família Multigênica/genética , Neomicina/biossíntese , Streptomyces/enzimologia , Streptomyces/genética , Acetilglucosamina/química , Acetilglucosamina/metabolismo , Amidoidrolases/classificação , Amidoidrolases/genética , Sequência de Aminoácidos , Sequência Conservada , Glicosiltransferases/química , Glicosiltransferases/classificação , Glicosiltransferases/genética , Hexosaminas/química , Hexosaminas/metabolismo , Espectrometria de Massas , Dados de Sequência Molecular , Estrutura Molecular , Neomicina/química , Alinhamento de Sequência
12.
Chembiochem ; 8(3): 283-8, 2007 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-17206729

RESUMO

The proteins Neo-11 and Neo-18 encoded in the neomycin gene cluster (neo) of Streptomyces fradiae NCIMB 8233 have been characterized as glucosaminyl-6'-oxidase and 6'-oxoglucosaminyl:L-glutamate aminotransferase, respectively. The joint activity of Neo-11 and Neo-18 is responsible for the conversion of paromamine to neamine in the biosynthetic pathway of neomycin through a mechanism of FAD-dependent dehydrogenation followed by a pyridoxal-5'-phosphate-mediated transamination. Neo-18 is also shown to catalyze deamination at C-6''' of neomycin, thus suggesting bifunctional roles of the two enzymes in the formation of both neosamine rings of neomycin. The product of the btrB gene, a homologue of neo-18 in the butirosin biosynthetic gene cluster (btr) in Bacillus circulans, exhibits the same activity as Neo-18; this indicates that there is a similar reaction sequence in both butirosin and neomycin biosynthesis.


Assuntos
Antibacterianos/biossíntese , Sulfato de Butirosina/biossíntese , Glucosamina/análogos & derivados , Neomicina/biossíntese , Oxirredutases/química , Transaminases/química , Bacillus/enzimologia , Bacillus/genética , Sequência de Carboidratos , Ciclização , Glucosamina/química , Glucosamina/classificação , Dados de Sequência Molecular , Família Multigênica , Oxirredutases/genética , Oxirredutases/metabolismo , Streptomyces/enzimologia , Streptomyces/genética , Transaminases/genética , Transaminases/metabolismo
13.
Org Biomol Chem ; 3(8): 1410-8, 2005 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-15827636

RESUMO

The biosynthetic gene cluster of the 2-deoxystreptamine (DOS)-containing aminoglycoside antibiotic neomycin has been cloned for the first time by screening of a cosmid library of Streptomyces fradiae NCIMB 8233. Sequence analysis has identified 21 putative open reading frames (ORFs) in the neomycin gene cluster (neo) with significant protein sequence similarity to gene products involved in the biosynthesis of other DOS-containing aminoglycosides, namely butirosin (btr), gentamycin (gnt), tobramycin (tbm) and kanamycin (kan). Located at the 5'-end of the neo gene cluster is the previously-characterised neomycin phosphotransferase gene (apH). Three genes unique to the neo and btr clusters have been revealed by comparison of the neo cluster to btr, gnt, tbm and kan clusters. This suggests that these three genes may be involved in the transfer of a ribose moiety to the DOS ring during the antibiotic biosynthesis. The product of the neo-6 gene is characterised here as the L-glutamine : 2-deoxy-scyllo-inosose aminotransferase responsible for the first transamination in DOS biosynthesis, which supports the assignment of the gene cluster.


Assuntos
Família Multigênica/genética , Neomicina/biossíntese , Streptomyces/enzimologia , Streptomyces/genética , Transaminases/química , Aminação , Configuração de Carboidratos , Cromatografia Líquida , Clonagem Molecular , Hexosaminas/biossíntese , Fases de Leitura Aberta/genética , Ribose/química , Análise Espectral , Streptomyces/classificação
14.
Appl Microbiol Biotechnol ; 68(2): 141-50, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15702315

RESUMO

Natural products represent an important source of drugs in a number of therapeutic fields, e.g. antiinfectives and cancer therapy. Natural products are considered as biologically validated lead structures, and evolution of compounds with novel or enhanced biological properties is expected from the generation of structural diversity in natural product libraries. However, natural products are often structurally complex, thus precluding reasonable synthetic access for further structure-activity relationship studies. As a consequence, natural product research involves semisynthetic or biotechnological approaches. Among the latter are mutasynthesis (also known as mutational biosynthesis) and precursor-directed biosynthesis, which are based on the cellular uptake and incorporation into complex antibiotics of relatively simple biosynthetic building blocks. This appealing idea, which has been applied almost exclusively to bacteria and fungi as producing organisms, elegantly circumvents labourious total chemical synthesis approaches and exploits the biosynthetic machinery of the microorganism. The recent revitalization of mutasynthesis is based on advancements in both chemical syntheses and molecular biology, which have provided a broader available substrate range combined with the generation of directed biosynthesis mutants. As an important tool in supporting combinatorial biosynthesis, mutasynthesis will further impact the future development of novel secondary metabolite structures.


Assuntos
Actinobacteria/metabolismo , Antibacterianos/biossíntese , Bactérias/enzimologia , Actinobacteria/enzimologia , Actinobacteria/genética , Aminoglicosídeos/biossíntese , Aminoglicosídeos/química , Antibacterianos/química , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Meios de Cultura , Macrolídeos/química , Macrolídeos/metabolismo , Mutação , Neomicina/análogos & derivados , Neomicina/biossíntese , Neomicina/química , Novobiocina/biossíntese , Novobiocina/química , Peptídeos , Sideróforos/biossíntese , Streptomyces/enzimologia , Streptomyces/genética , Streptomyces/crescimento & desenvolvimento
15.
Toxicol Sci ; 81(1): 133-8, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15201442

RESUMO

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), an environmental toxicant, elicits a spectrum of deleterious biological responses including carcinogenesis. We hypothesize that TCDD exposure exerts its carcinogenicity, in part, by affecting the repair of DNA double strand breaks (DSBs) through homologous recombination (HR), mediated by the AhR signaling pathway. To investigate this hypothesis we used a Chinese hamster ovary (CHO) cell line (CHO 33) containing a neo direct repeat recombination reporter substrate to determine whether TCDD affects DNA DSB repair. The Saccharomyces cerevisiae mitochondrial endonuclease I-SceI was used to induce a site specific DSB within the upstream neo recombination substrate in the CHO 33 cells. The cells were then exposed to 500 pM of TCDD in the presence or absence of the AhR antagonist alpha-naphthoflavone (0.1 microM) for 24 h. Two weeks later HR frequencies were determined by counting the number of functional neo expressing, G418-resistant colonies per live cells plated. TCDD significantly increased HR frequency, demonstrating that it does in fact modulate the repair of DNA DSBs. Southern blot analysis of G418-resistant colonies using a cDNA neo probe determined that both gene conversion and gene deletion HR events occurred as a result of DNA DSB repair and TCDD exposure. Exposure of cells to alpha-naphthoflavone resulted in a significant decrease in TCDD-induced HR frequency. These results demonstrate that TCDD, potentially acting via the AhR, can modulate HR repair of DNA DSBs in CHO 33 cells.


Assuntos
Reparo do DNA/efeitos dos fármacos , DNA/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Dibenzodioxinas Policloradas/toxicidade , Animais , Southern Blotting , Células CHO , Morte Celular/genética , Cricetinae , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Genes Reporter , Neomicina/biossíntese , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Receptores de Hidrocarboneto Arílico/genética , Recombinação Genética/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae , Sequências de Repetição em Tandem/efeitos dos fármacos , Sequências de Repetição em Tandem/genética , Transfecção
17.
Pharmazie ; 58(1): 58-9, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12622255

RESUMO

The effect of 30, 70, 90, 100, 110 and 150 gauss permanent magnetic field strength on the growth and neomycin titre of Streptomyces marinensis was studied. Maximum growth was attained in 120 h at all magnetic strengths. Gradual increase in neomycin titre was observed with increase of magnetic field strength up to 110 gauss.


Assuntos
Antibacterianos/biossíntese , Campos Eletromagnéticos , Neomicina/biossíntese , Streptomyces/metabolismo , Fermentação , Concentração de Íons de Hidrogênio , Streptomyces/efeitos da radiação
18.
AAPS PharmSciTech ; 4(4): E57, 2003 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-15198552

RESUMO

The purpose of this investigation was to study the effect of Streptomyces marinensis NUV-5 cells immobilized in calcium alginate for the production of neomycin. The effect of various parameters, such as the effect of alginate concentration (1%, 2%, 3%, 4%, and 5% wt/vol), the effect of cation (CaCl2, BaCl2, and SrCl2), the concentration of cation (0.01M, 0.125M, 0.25M, 0.375M, and 0.5M), the curing times (1, 6, 11, 16, and 21 hours), and the diameter of the bead (1.48, 2.16, 3.24, 4.46, and 5.44 mm), on neomycin production and bead stability were studied. The effect of maltose (4%, 3%, 2%, and 1% wt/vol) and sodium glutamate (0.6%, 0.3%, 0.15%, and 0.075% wt/vol) concentration on neomycin production was also studied. Better neomycin production was achieved with optimized parameters, such as alginate at 2% wt/vol, 0.25M CaCl2, 1-hour curing time, and 3.24 mm bead diameter. Effective neomycin production was achieved with 3% wt/vol maltose and 0.6% wt/vol sodium glutamate concentration. The repeated batch fermentations were conducted (every 96 hours) using the optimized alginate beads, employing the production medium with 3% wt/vol maltose and 0.6% wt/vol sodium glutamate along with mineral salts solution. The increase in antibiotic production was observed up to the 5th cycle, and later gradual decrease in antibiotic production was observed. Comparison of the total antibiotic production with free cells and immobilized cells was also done. An enhanced antibiotic productivity of 32% was achieved with immobilized cells over the conventional free-cell fermentation, while 108% more productivity was achieved over the washed free-cell fermentation. From these results it is concluded that the immobilized cells of S marinensis NUV-5 in calcium alginate are more efficient for the production of neomycin with repeated batch fermentation.


Assuntos
Antibacterianos/biossíntese , Células Imobilizadas/metabolismo , Microbiologia Industrial , Neomicina/biossíntese , Streptomyces/metabolismo , Alginatos/química , Meios de Cultura , Fermentação , Ácido Glucurônico/química , Ácidos Hexurônicos/química
19.
Genesis ; 30(4): 259-63, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11536432

RESUMO

In an effort to create a conventional knockout mouse model for multiple endocrine neoplasia type 1 (MEN1), we targeted disruption of the mouse Men1 gene through homologous recombination in ES cells. Men1 exons 2-4 were replaced by a PGK-neomycin cassette inserted in the opposite direction of Men1 transcription (Men1(MSK/+)). Unexpectedly, the Men1 conventional knockout was lethal in heterozygous, chimeric animals. Analysis of embryos revealed late gestational lethality with some embryos showing omphalocele. This was a very surprising phenotype, given that humans and mice that are heterozygotes for loss of function mutations in MEN1 are phenotypically normal except for a risk of endocrine tumors. Northern analysis of Men1(MSK/+) embryonic stem cell RNA revealed the presence of an abundant, novel transcript of 2.1 kb, in addition to the expected wild-type transcripts of 2.7 kb and 3.1 kb. RT-PCR analysis identified this aberrant transcript as arising from the antisense strand of the PGK promoter. We hypothesize that this transcript is producing either a toxic effect at the RNA level, or a dominant negative effect through the production of an amino-terminal truncated protein product. This example serves as a cautionary reminder that mouse knockouts using PGK-neo may sometimes display phenotypes that reflect more than just the loss of function of the targeted gene.


Assuntos
Perda do Embrião/genética , Genes Letais/genética , Heterozigoto , Mutagênese Insercional/genética , Proteínas de Neoplasias/genética , Proteínas Proto-Oncogênicas , Transcrição Gênica/genética , Animais , Western Blotting , Quimera/genética , Embrião de Mamíferos/metabolismo , Éxons/genética , Deleção de Genes , Marcação de Genes/métodos , Genes Dominantes/genética , Genes Reporter/genética , Hérnia Umbilical/genética , Camundongos , Camundongos Knockout , Neomicina/biossíntese , Fenótipo , Testes de Precipitina , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
Oncogene ; 20(32): 4344-53, 2001 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-11466615

RESUMO

c-Myc is a protooncogene involved in the control of cellular proliferation, differentiation and apoptosis. Like many other early response genes, regulation of c-myc expression is mainly controlled at the level of mRNA stability. Multiple cis-acting destabilizing elements have been described that are located both in the protein-coding region and in the 3' untranslated region (3' UTR). However, it is not known when they function during development and whether they act as partly redundant or independent elements to regulate c-myc mRNA level of expression. To begin to address these questions, we created a series of c-myc alleles modified in the 3' UTR, using homologous recombination and the Cre/loxP system, and analysed the consequences of these modifications in ES cells and transgenic animals. We found that deletion of the complete 3' UTR, including runs of Us and AU-rich elements proposed, on the basis of cell-culture assays, to be involved in the control of c-myc mRNA stability, did not alter the steady-state level of c-myc mRNA in any of the various situations analysed in vivo. Moreover, mice homozygous for the 3' UTR-deleted gene were perfectly healthy and fertile. Our results therefore strongly suggest that the 3' UTR of c-myc mRNA does not play a major role in the developmental control of c-myc expression.


Assuntos
Regiões 3' não Traduzidas , Genes myc , Alelos , Animais , Diferenciação Celular , Linhagem Celular , Marcação de Genes , Fígado/fisiologia , Regeneração Hepática , Camundongos , Camundongos Transgênicos , Neomicina/biossíntese , Neoplasias/etiologia , Proteínas Proto-Oncogênicas c-myc/biossíntese , Proteínas Proto-Oncogênicas c-myc/genética , Estabilidade de RNA , RNA Mensageiro/biossíntese , Elementos de Resposta , Deleção de Sequência , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...