Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 838
Filtrar
1.
J Cell Mol Med ; 28(9): e18286, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38742843

RESUMO

Osteosarcoma, the primary bone cancer in adolescents and young adults, is notorious for its aggressive growth and metastatic potential. Our study delved into the prognostic impact of inflammasome-related gene signatures in osteosarcoma patients, employing comprehensive genetic profiling to uncover signatures linked with patient outcomes. We identified three patient subgroups through consensus clustering, with one showing worse survival rates correlated with high FGFR3 and RARB expressions. Immune profiling revealed significant immune cell infiltration differences among these subgroups, affecting survival. Utilising advanced machine learning, including StepCox and gradient boosting machine algorithms, we developed a prognostic model with a notable c-index of 0.706, highlighting CD36 and MYD88 as key genes. Higher inflammasome risk scores from our model were associated with poorer survival, corroborated across datasets. In vitro experiments validated CD36 and MYD88's roles in promoting osteosarcoma cell proliferation, invasion and migration, emphasising their therapeutic potential. This research offers new insights into inflammasomes' role in osteosarcoma, introducing novel biomarkers for risk assessment and potential therapeutic targets. Our findings suggest a pathway towards personalised treatment strategies, potentially improving patient outcomes in osteosarcoma.


Assuntos
Biomarcadores Tumorais , Neoplasias Ósseas , Regulação Neoplásica da Expressão Gênica , Inflamassomos , Osteossarcoma , Humanos , Osteossarcoma/genética , Osteossarcoma/patologia , Osteossarcoma/imunologia , Osteossarcoma/mortalidade , Inflamassomos/metabolismo , Inflamassomos/genética , Biomarcadores Tumorais/genética , Prognóstico , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Neoplasias Ósseas/mortalidade , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/diagnóstico , Perfilação da Expressão Gênica , Feminino , Masculino , Transcriptoma/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Adolescente , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo
2.
Br J Cancer ; 130(10): 1609-1620, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38605247

RESUMO

BACKGROUND: Chordomas are rare osseous neoplasms with a dismal prognosis when they recur. Here we identified cell surface proteins that could potentially serve as novel immunotherapeutic targets in patients with chordoma. METHODS: Fourteen chordoma samples from patients attending Xuanwu Hospital Capital Medical University were subjected to single-cell RNA sequencing. Target molecules were identified on chordoma cells and cancer metastasis-related signalling pathways characterised. VEGFR-targeting CAR-T cells and VEGFR CAR-T cells with an additional TGF-ß scFv were synthesised and their in vitro antitumor activities were evaluated, including in a primary chordoma organoid model. RESULTS: Single-cell transcriptome sequencing identified the chordoma-specific antigen VEGFR and TGF-ß as therapeutic targets. VRGFR CAR-T cells and VEGFR/TGF-ß scFv CAR-T cells recognised antigen-positive cells and exhibited significant antitumor effects through CAR-T cell activation and cytokine secretion. Furthermore, VEGFR/TGF-ß scFv CAR-T cells showed enhanced and sustained cytotoxicity of chordoma cell lines in vitro compared with VRGFR CAR-T cells. CONCLUSIONS: This study provides a comprehensive single-cell landscape of human chordoma and highlights its heterogeneity and the role played by TGF-ß in chordoma progression. Our findings substantiate the potential of VEGFR as a target for CAR-T cell therapies in chordoma which, together with modulated TGF-ß signalling, may augment the efficacy of CAR-T cells.


Assuntos
Cordoma , Imunoterapia Adotiva , Análise de Célula Única , Humanos , Cordoma/terapia , Cordoma/genética , Cordoma/patologia , Cordoma/imunologia , Imunoterapia Adotiva/métodos , Feminino , Masculino , Fator de Crescimento Transformador beta/metabolismo , Linhagem Celular Tumoral , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Pessoa de Meia-Idade , Adulto , Neoplasias Ósseas/terapia , Neoplasias Ósseas/patologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/imunologia
3.
Commun Biol ; 7(1): 496, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658617

RESUMO

Osteosarcoma (OS) is a heterogeneous, aggressive malignancy of the bone that disproportionally affects children and adolescents. Therapeutic interventions for OS are limited, which is in part due to the complex tumor microenvironment (TME). As such, we used single-cell RNA sequencing (scRNA-seq) to describe the cellular and molecular composition of the TME in 6 treatment-naïve dogs with spontaneously occurring primary OS. Through analysis of 35,310 cells, we identified 41 transcriptomically distinct cell types including the characterization of follicular helper T cells, mature regulatory dendritic cells (mregDCs), and 8 tumor-associated macrophage (TAM) populations. Cell-cell interaction analysis predicted that mregDCs and TAMs play key roles in modulating T cell mediated immunity. Furthermore, we completed cross-species cell type gene signature homology analysis and found a high degree of similarity between human and canine OS. The data presented here act as a roadmap of canine OS which can be applied to advance translational immuno-oncology research.


Assuntos
Neoplasias Ósseas , Doenças do Cão , Osteossarcoma , Análise de Sequência de RNA , Análise de Célula Única , Microambiente Tumoral , Cães , Animais , Osteossarcoma/genética , Osteossarcoma/veterinária , Osteossarcoma/imunologia , Osteossarcoma/patologia , Análise de Sequência de RNA/veterinária , Neoplasias Ósseas/genética , Neoplasias Ósseas/veterinária , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/patologia , Doenças do Cão/genética , Doenças do Cão/imunologia , Doenças do Cão/patologia , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Transcriptoma , Feminino , Regulação Neoplásica da Expressão Gênica , Masculino
4.
J Cancer Res Ther ; 20(2): 522-530, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38687921

RESUMO

ABSTRACT: Bone sarcomas encompass a group of spontaneous mesenchymal malignancies, among which osteosarcoma, Ewing sarcoma, chondrosarcoma, and chordoma are the most common subtypes. Chondrosarcoma, a relatively prevalent malignant bone tumor that originates from chondrocytes, is characterized by endogenous cartilage ossification within the tumor tissue. Despite the use of aggressive treatment approaches involving extensive surgical resection, chemotherapy, and radiotherapy for patients with osteosarcoma, chondrosarcoma, and chordoma, limited improvements in patient outcomes have been observed. Furthermore, resistance to chemotherapy and radiation therapy has been observed in chondrosarcoma and chordoma cases. Consequently, novel therapeutic approaches for bone sarcomas, including chondrosarcoma, need to be uncovered. Recently, the emergence of immunotherapy and immune checkpoint inhibitors has garnered attention given their clinical success in various diverse types of cancer, thereby prompting investigations into their potential for managing chondrosarcoma. Considering that circumvention of immune surveillance is considered a key factor in the malignant progression of tumors and that immune checkpoints play an important role in modulating antitumor immune effects, blockers or inhibitors targeting these immune checkpoints have become effective therapeutic tools for patients with tumors. One such checkpoint receptor implicated in this process is programmed cell death protein-1 (PD-1). The association between PD-1 and programmed cell death ligand-1 (PD-L1) and cancer progression in humans has been extensively studied, highlighting their remarkable potential as biomarkers for cancer treatment. This review comprehensively examines available studies on current chondrosarcoma treatments and advancements in anti-PD-1/PD-L1 blockade therapy for chondrosarcoma.


Assuntos
Antígeno B7-H1 , Neoplasias Ósseas , Condrossarcoma , Inibidores de Checkpoint Imunológico , Receptor de Morte Celular Programada 1 , Humanos , Condrossarcoma/terapia , Condrossarcoma/patologia , Condrossarcoma/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/terapia , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/tratamento farmacológico , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia/métodos
5.
Sci Rep ; 14(1): 9769, 2024 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684858

RESUMO

As a highly aggressive bone malignancy, osteosarcoma poses a significant therapeutic challenge, especially in the setting of metastasis or recurrence. This study aimed to investigate the potential of CD8-Tex cell-associated genes as prognostic biomarkers to reveal the immunogenomic profile of osteosarcoma and guide therapeutic decisions. mRNA expression data and clinical details of osteosarcoma patients were obtained from the TCGA database (TARGET-OS dataset). The GSE21257 dataset (from the GEO database) was used as an external validation set to provide additional information on osteosarcoma specimens. 84 samples from the TARGET-OS dataset were used as the training set, and 53 samples from the GSE21257 dataset served as the external validation cohort. Univariate Cox regression analysis was utilized to identify CD8 Tex cell genes associated with prognosis. The LASSO algorithm was performed for 1000 iterations to select the best subset to form the CD8 Tex cell gene signature (TRS). Final genes were identified using the multivariate Cox regression model of the LASSO algorithm. Risk scores were calculated to categorize patients into high- and low-risk groups, and clinical differences were explored by Kaplan-Meier survival analysis to assess model performance. Prediction maps were constructed to estimate 1-, 3-, and 5 year survival rates for osteosarcoma patients, including risk scores for CD8 Texcell gene markers and clinicopathologic factors. The ssGSEA algorithm was used to assess the differences in immune function between TRS-defined high- and low-risk groups. TME and immune cell infiltration were further assessed using the ESTIMATE and CIBERSORT algorithms. To explore the relationship between immune checkpoint gene expression levels and the two risk-defined groups. A CD8 Tex cell-associated gene signature was extracted from the TISCH database and prognostic markers including two genes were developed. The high-risk group showed lower survival, and model performance was validated by ROC curves and C-index. Predictive plots were constructed to demonstrate survival estimates, combining CD8 Tex cell gene markers and clinical factors. This study provides valuable insights into the molecular and immune characteristics of osteosarcoma and offers potential avenues for advances in therapeutic approaches.


Assuntos
Biomarcadores Tumorais , Neoplasias Ósseas , Linfócitos T CD8-Positivos , Osteossarcoma , Osteossarcoma/genética , Osteossarcoma/imunologia , Osteossarcoma/mortalidade , Osteossarcoma/patologia , Humanos , Prognóstico , Neoplasias Ósseas/genética , Neoplasias Ósseas/mortalidade , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/patologia , Masculino , Feminino , Biomarcadores Tumorais/genética , Linfócitos T CD8-Positivos/imunologia , Regulação Neoplásica da Expressão Gênica , Transcriptoma , Estimativa de Kaplan-Meier , Adulto , Perfilação da Expressão Gênica , Adolescente
6.
Cancer Biomark ; 39(4): 299-312, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250759

RESUMO

BACKGROUND: Osteosarcoma (OS) is a relatively rare malignant bone tumor in teenagers; however, its molecular mechanisms are not yet understood comprehensively. OBJECTIVE: The study aimed to use necroptosis-related genes (NRGs) and their relationships with immune-related genes to construct a prognostic signature for OS. METHODS: TARGET-OS was used as the training dataset, and GSE 16091 and GSE 21257 were used as the validation datasets. Univariate regression, survival analysis, and Kaplan-Meier curves were used to screen for hub genes. The immune-related targets were screened using immune infiltration assays and immune checkpoints. The results were validated using nomogram and decision curve analyses (DCA). RESULTS: Using univariate Cox regression analysis, TNFRSF1A was screened from 14 NRGs as an OS prognostic signature. Functional enrichment was analyzed based on the median expression of TNFRSF1A. The prognosis of the TNFRSF1A low-expression group in the Kaplan-Meier curve was notably worse. Immunohistochemistry analysis showed that the number of activated T cells and tumor purity increased considerably. Furthermore, the immune checkpoint lymphocyte activation gene 3 (LAG-3) is a possible target for intervention. The nomogram accurately predicted 1-, 3-, and 5-year survival rates. DCA validated the model (C = 0.669). Conclusion: TNFRSF1A can be used to elucidate the potential relationship between the immune microenvironment and NRGs in OS pathogenesis.


Assuntos
Biomarcadores Tumorais , Neoplasias Ósseas , Osteossarcoma , Receptores Tipo I de Fatores de Necrose Tumoral , Humanos , Osteossarcoma/genética , Osteossarcoma/mortalidade , Osteossarcoma/imunologia , Osteossarcoma/patologia , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Biomarcadores Tumorais/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Neoplasias Ósseas/mortalidade , Neoplasias Ósseas/imunologia , Prognóstico , Feminino , Masculino , Nomogramas , Adolescente , Estimativa de Kaplan-Meier , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética
7.
J Immunother Cancer ; 11(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36941015

RESUMO

BACKGROUND: The molecular characteristics of prostate cancer (PCa) cells and the immunosuppressive bone tumor microenvironment (TME) contribute to the limitations of immune checkpoint therapy (ICT). Identifying subgroups of patients with PCa for ICT remains a challenge. Herein, we report that basic helix-loop-helix family member e22 (BHLHE22) is upregulated in bone metastatic PCa and drives an immunosuppressive bone TME. METHODS: In this study, the function of BHLHE22 in PCa bone metastases was clarified. We performed immunohistochemical (IHC) staining of primary and bone metastatic PCa samples, and assessed the ability to promote bone metastasis in vivo and in vitro. Then, the role of BHLHE22 in bone TME was determined by immunofluorescence (IF), flow cytometry, and bioinformatic analyses. RNA sequencing, cytokine array, western blotting, IF, IHC, and flow cytometry were used to identify the key mediators. Subsequently, the role of BHLHE22 in gene regulation was confirmed using luciferase reporter, chromatin immunoprecipitation assay, DNA pulldown, co-immunoprecipitation, and animal experiments. Xenograft bone metastasis mouse models were used to assess whether the strategy of immunosuppressive neutrophils and monocytes neutralization by targeting protein arginine methyltransferase 5 (PRMT5)/colony stimulating factor 2 (CSF2) could improve the efficacy of ICT. Animals were randomly assigned to treatment or control groups. Moreover, we performed IHC and correlation analyses to identify whether BHLHE22 could act as a potential biomarker for ICT combination therapies in bone metastatic PCa. RESULTS: Tumorous BHLHE22 mediates the high expression of CSF2, resulting in the infiltration of immunosuppressive neutrophils and monocytes and a prolonged immunocompromised T-cell status. Mechanistically, BHLHE22 binds to the CSF2 promoter and recruits PRMT5, forming a transcriptional complex. PRMT5 epigenetically activates CSF2 expression. In a tumor-bearing mouse model, ICT resistance of Bhlhe22+ tumors could be overcome by inhibition of Csf2 and Prmt5. CONCLUSIONS: These results reveal the immunosuppressive mechanism of tumorous BHLHE22 and provide a potential ICT combination therapy for patients with BHLHE22+ PCa.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Neoplasias Ósseas , Neoplasias da Próstata , Animais , Humanos , Masculino , Camundongos , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/secundário , Modelos Animais de Doenças , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Microambiente Tumoral , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
8.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 44(1): 110-117, 2022 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-35300772

RESUMO

Objective To screen the potential key genes of osteosarcoma by bioinformatics methods and analyze their immune infiltration patterns. Methods The gene expression profiles GSE16088 and GSE12865 associated with osteosarcoma were obtained from the Gene Expression Omnibus(GEO),and the differentially expressed genes(DEGs)related to osteosarcoma were screened by bioinformatics tools.Gene Ontology(GO)annotation,Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment,and analysis of immune cell infiltration were then carried out for the DEGs.The potential Hub genes of osteosarcoma were identified by protein-protein interaction network,and the expression of Hub genes in osteosarcoma and normal tissue samples was verified via the Cancer Genome Atlas(TCGA). Results A total of 108 DEGs were screened out.GO annotation and KEGG pathway enrichment revealed that the DEGs were mainly involved in integrin binding,extracellular matrix (ECM) structural components,ECM receptor interactions,and phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt)signaling pathway.Macrophages were the predominant infiltrating immune cells in osteosarcoma.Secreted phosphoprotein 1(SPP1),matrix metallopeptidase 2(MMP2),lysyl oxidase(LOX),collagen type V alpha(II)chain(COL5A2),and melanoma cell adhesion molecule(MCAM)presented differential expression between osteosarcoma and normal tissue samples(all P<0.05). Conclusions SPP1,MMP2,LOX,COL5A2,and MCAM are all up-regulated in osteosarcoma,which may serve as potential biomarkers of osteosarcoma.Macrophages are the key infiltrating immune cells in osteosarcoma,which may provide new perspectives for the treatment of osteosarcoma.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Macrófagos Associados a Tumor , Neoplasias Ósseas/genética , Neoplasias Ósseas/imunologia , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Humanos , Osteossarcoma/genética , Osteossarcoma/imunologia , Fosfatidilinositol 3-Quinases/genética , Macrófagos Associados a Tumor/imunologia
9.
Cytotherapy ; 24(6): 567-576, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35193828

RESUMO

Osteosarcoma (OS) is one of the most common malignancies in children and adolescents. Multimodal chemotherapy and aggressive surgical resection have improved the prognosis of patients with osteosarcoma. However, the prognosis of OS patients with unresectable advanced tumors, distant metastasis or chemotherapy is still poor. Chimeric antigen receptor (CAR) T cells have achieved remarkable success in the treatment of hematologic malignancies, injecting new vitality into the field of adoptive cell therapy. However, the efficacy in solid tumors has been largely limited. The reason for the poor curative effect of solid tumors is mainly the heterogeneity of solid tumor antigen, immune escape, tumor microenvironment barrier, resistance of immunosuppressive cells and inhibitory factors, which lead to the obstruction of CAR T cell infiltration and the aggravation of failure. Potential antigenic targets for osteosarcoma CAR T cell therapy are under continuous exploration. Some of the antigenic targets, such as anti-HER2-CAR T cells, have achieved good results in preclinical studies, and some of them have entered clinical studies and achieved certain clinical effects. In this review, we discuss the research progress of potential antigen targets and osteosarcoma microenvironment of CAR T cells in the treatment of osteosarcoma.


Assuntos
Neoplasias Ósseas , Imunoterapia Adotiva , Osteossarcoma , Receptores de Antígenos Quiméricos , Adolescente , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/terapia , Criança , Humanos , Imunoterapia Adotiva/métodos , Osteossarcoma/imunologia , Osteossarcoma/terapia , Receptores de Antígenos Quiméricos/imunologia , Microambiente Tumoral
10.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35101971

RESUMO

Metastatic osteosarcoma has a poor prognosis with a 2-y, event-free survival rate of ∼15 to 20%, highlighting the need for the advancement of efficacious therapeutics. Chimeric antigen receptor (CAR) T-cell therapy is a potent strategy for eliminating tumors by harnessing the immune system. However, clinical trials with CAR T cells in solid tumors have encountered significant challenges and have not yet demonstrated convincing evidence of efficacy for a large number of patients. A major bottleneck for the success of CAR T-cell therapy is our inability to monitor the accumulation of the CAR T cells in the tumor with clinical-imaging techniques. To address this, we developed a clinically translatable approach for labeling CAR T cells with iron oxide nanoparticles, which enabled the noninvasive detection of the iron-labeled T cells with magnetic resonance imaging (MRI), photoacoustic imaging (PAT), and magnetic particle imaging (MPI). Using a custom-made microfluidics device for T-cell labeling by mechanoporation, we achieved significant nanoparticle uptake in the CAR T cells, while preserving T-cell proliferation, viability, and function. Multimodal MRI, PAT, and MPI demonstrated homing of the T cells to osteosarcomas and off-target sites in animals administered with T cells labeled with the iron oxide nanoparticles, while T cells were not visualized in animals infused with unlabeled cells. This study details the successful labeling of CAR T cells with ferumoxytol, thereby paving the way for monitoring CAR T cells in solid tumors.


Assuntos
Neoplasias Ósseas , Óxido Ferroso-Férrico/farmacologia , Imunoterapia Adotiva , Imageamento por Ressonância Magnética , Nanopartículas/uso terapêutico , Neoplasias Experimentais , Osteossarcoma , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Animais , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/terapia , Camundongos , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/terapia , Osteossarcoma/diagnóstico por imagem , Osteossarcoma/imunologia , Osteossarcoma/terapia
11.
Biomolecules ; 12(2)2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35204793

RESUMO

Immune checkpoint inhibitors (ICIs) such as PD1/PD-L1 blockers are an established treatment for many solid cancers. There are currently no approved ICIs for sarcomas, but satisfactory results have been seen in some patients with disseminated disease in certain histological types. Most studies on PD-L1 in sarcoma have used small specimens and there are no clear cutoff values for scoring. We investigated PD-L1 immunoreactivity in high-grade chondrosarcomas (CS), abdominal liposarcoma (LS) and undifferentiated pleomorphic sarcomas (UPS). In total, 230 tumors were stained with SP142 and SP263 assays and evaluated by two clinical pathologists. Immunoreactivity in tumor and immune cells was correlated with clinical outcome. Overall, ≥1% PD-L1 immunoreactivity in tumor cells was found in 11 CS, 26 LS and 59 UPS (SP142 assay) and in 10 CS, 26 LS and 77 UPS (SP263 assay). Most tumors exhibited ≤10% PD-L1 immunoreactivity, but a subset across all three subtypes had >50%. Kaplan-Meier survival analysis showed no significant difference in metastasis-free or overall survival in relation to PD-L1 immunoreactivity in tumor or immune cells for any subtype. As there is a lack of clinical data regarding PD-L1/PD-1 status and therapy response, it is not currently possible to establish clear cutoff values. Patients with high (>50%) PD-L1 immunoreactivity in tumor cells (TC) with the SP263 assay would be a logical group to investigate for potentially beneficial PD1/PD-L1-targeted treatment.


Assuntos
Antígeno B7-H1 , Neoplasias Ósseas , Condrossarcoma , Lipossarcoma , Sarcoma , Antígeno B7-H1/biossíntese , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/imunologia , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/patologia , Condrossarcoma/imunologia , Condrossarcoma/patologia , Humanos , Lipossarcoma/imunologia , Lipossarcoma/patologia , Sarcoma/imunologia , Sarcoma/patologia , Coloração e Rotulagem
12.
Bioengineered ; 13(2): 3751-3759, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35081874

RESUMO

Osteosarcoma (OS) is solid tumors with high malignancy and incidence starting in the bones. OS pathogenesis has been proved to be closely associated with immune imbalance, and follicular helper T cells (Tfh) significantly affect host humoral immune homeostasis. However, there are few reports on the effect of Tfh cell activation on the prognosis of OS patients. Hence, this investigation on the changes in the proportion of peripheral blood Tfh cells in OS patients, and the relationship between their activity level and OS prognosis. We collected peripheral blood from patients with OS, benign bone tumor (BT group) and healthy subjects (Healthy group), respectively. The number of CD4+CXCR5+ Tfh cell in peripheral blood was measured by flow cytometry and correlation analysis between its activity and OS clinicopathological characteristics was carried out. The data showed that in comparison with the BT and Healthy groups, higher proportion and activation level of peripheral blood CD4+CXCR5+ Tfh cells in CD4+ T cells were found in the OS group. In OS patients, increases of the proportion and activity level of Tfh cells were associated with poorly differentiated OS and tumor metastasis. Additionally, Kaplan-Meier and Cox regression analysis showed a longer overall survival in patients with low proportion of peripheral blood CD4+CXCR5+ Tfh cells in CD4+ T cells, and their activation level may be a prognostic factor in OS patients. In conclusion, peripheral blood CD4+CXCR5+ Tfh cell activation in OS patients was associated with a poor prognosis. This study provided ideas for improving the clinical treatment of OS patients.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Células T Auxiliares Foliculares , Adolescente , Adulto , Neoplasias Ósseas/sangue , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/mortalidade , Intervalo Livre de Doença , Feminino , Citometria de Fluxo , Seguimentos , Humanos , Masculino , Osteossarcoma/sangue , Osteossarcoma/imunologia , Osteossarcoma/mortalidade , Taxa de Sobrevida , Células T Auxiliares Foliculares/imunologia , Células T Auxiliares Foliculares/metabolismo
13.
Front Immunol ; 13: 909932, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36591220

RESUMO

Introduction: Tumor microenvironment (TME) has been shown to be extensively involved in tumor development. However, the dynamic change of TME components and their effects are still unclear. Here, we attempted to identify TME-related genes that could help predict survival and may be potential therapeutic targets. Methods: Data was collected from UCSC Xena and GEO database. ESTIMATE and CIBERSORT algorithms were applied to estimate the components and the proportions of TIICs in TME. We analyzed the gene expression differences of immune components and stromal components, respectively, and finally got the overlapped DEGs. Through protein-protein interaction (PPI) network and univariate Cox regression analysis based on shared DEGs, we screened out and validated the TME-related genes. Focusing on this gene, we analyzed the expression and prognostic value of this gene, and investigated its relationship with immune cells by correlation analysis, single cell analysis, immunohistochemistry and immunofluorescence analysis. Results: Through a series analysis, we found that the proportion of immune and stromal components was an important prognostic factor, and screened out a key gene, LPAR5, which was highly correlated with prognosis and metastasis. And the expression of LPAR5 was positively correlated with immune cells, especially macrophages, indicating LPAR5+ macrophages played an important role in tumor microenvironment of osteosarcoma. Meanwhile, the genes in LPAR5 high expression group were enriched in immune-related activities and pathways, and differentially expressed genes between LPAR5+ macrophages and LPAR5- macrophages were enriched in the biological processes associated with phagocytosis and antigen presentation. What' more, we found that LPAR5 was mainly expressed in TME, and high LPAR5 expression predicting a better prognosis. Conclusion: We identified a TME-related gene, LPAR5, which is a promising indicator for TME remodeling in osteosarcoma. Particularly, LPAR5+ macrophages might have great potential to be a prognostic factor and therapeutic target for osteosarcoma.


Assuntos
Neoplasias Ósseas , Macrófagos , Osteossarcoma , Receptores de Ácidos Lisofosfatídicos , Microambiente Tumoral , Humanos , Neoplasias Ósseas/genética , Neoplasias Ósseas/imunologia , Macrófagos/imunologia , Osteossarcoma/genética , Osteossarcoma/imunologia , Fagocitose/genética , Fagocitose/imunologia , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Prognóstico , Apresentação de Antígeno/genética , Apresentação de Antígeno/imunologia
14.
J Surg Oncol ; 125(4): 754-765, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34811745

RESUMO

OBJECTIVE: This retrospective study of patients with osteosarcoma investigated the following biomarkers of inflammation and nutritional status: neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, prognostic nutritional index (PNI), and systemic immune-inflammation index (SII). The efficacies of these indicators to predict overall survival (OS) of young and elderly patients were compared. METHODS: The data of 125 patients with osteosarcoma, comprising the young (≤20 years) and elderly (60-80 years), were reviewed. Receiver operating characteristic (ROC) curves were calculated to determine the optimal cut-off value and area under the ROC curve of each potential biomarker. Kaplan-Meier curves and a Cox proportional hazards model were used to perform survival analyses. RESULTS: The cut-off values for low and high PNI ( ≤48.5, >48.5) and low and high SII (≤607.3, >607.3) were determined. Osteosarcoma patients in low PNI group or high SII group exhibited poorer OS relative to those in high PNI or low SII groups. The univariate and multivariate analyses indicated that preoperative PNI and SII were independent prognostic factors for OS in both the young and elderly subjects. CONCLUSION: Preoperative PNI and SII can be viable biomarkers of prognosis for both young and elderly patients with osteosarcoma. Awareness of these valuable indexes will enable clinicians to evaluate the inflammatory and nutritional status of these patients and establish a framework for individualized therapy.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias Ósseas/mortalidade , Inflamação/mortalidade , Terapia Neoadjuvante/mortalidade , Recidiva Local de Neoplasia/mortalidade , Avaliação Nutricional , Osteossarcoma/mortalidade , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Plaquetas/patologia , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/patologia , Feminino , Seguimentos , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/patologia , Metástase Linfática , Linfócitos/patologia , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/imunologia , Recidiva Local de Neoplasia/patologia , Neutrófilos/patologia , Osteossarcoma/tratamento farmacológico , Osteossarcoma/imunologia , Osteossarcoma/secundário , Cuidados Pré-Operatórios , Prognóstico , Curva ROC , Estudos Retrospectivos , Taxa de Sobrevida , Adulto Jovem
15.
Cancer Sci ; 113(2): 432-445, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34927311

RESUMO

Thrombospondin-1 (TSP1) is generally assumed to suppress the growth of osteosarcoma through inhibiting angiogenesis; however, it is unclear whether TSP1 could affect the antitumor immunity against osteosarcoma. We aimed to explore the immune-related tumor-promoting effects of TSP1 and decipher its underlying mechanism. First, we identified that TSP1 regulated programmed death-ligand 1 (PD-L1) expression, which was related to the CD8+ T cells anergy in osteosarcoma cells. The exact role of PD-L1 in the immunosuppressive effect of TSP1 was then further confirmed by the addition of the PD-L1 neutralizing Ab. With the addition of PD-L1 neutralizing Abs during cocultivation, the inhibition of CD8+ T cells was abolished to a certain extent. Further mechanistic investigations showed that TSP1-induced PD-L1 upregulation was achieved by activation of the signal transducer and activator of transcription 3 (STAT3) pathway. In vivo experiments also indicated that TSP1 overexpression could promote the growth of primary lesions, whereas TSP1 knockdown effectively inhibits the growth of the primary lesion as well as lung metastasis by restoring the antitumor immunity. Thrombospondin-1 knockdown combined with PD-L1 neutralizing Ab achieved a more pronounced antitumor effect. Taken together, our study showed that TSP1 upregulates PD-L1 by activating the STAT3 pathway and, therefore, impairs the antitumor immunity against osteosarcoma.


Assuntos
Antígeno B7-H1/imunologia , Neoplasias Ósseas/imunologia , Tolerância Imunológica , Osteossarcoma/imunologia , Fator de Transcrição STAT3/imunologia , Trombospondina 1/imunologia , Animais , Apoptose , Antígeno B7-H1/genética , Neoplasias Ósseas/patologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Osteossarcoma/patologia , Transdução de Sinais , Trombospondina 1/genética
16.
Mol Oncol ; 16(11): 2174-2194, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34894177

RESUMO

Osteosarcoma (OS) is the most common primary malignancy of bone. Epigenetic regulation plays a pivotal role in cancer development in various aspects, including immune response. In this study, we studied the potential association of alterations in the DNA methylation and transcription of immune-related genes with changes in the tumor microenvironment (TME) and tumor prognosis of OS. We obtained multi-omics data for OS patients from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) and Gene Expression Omnibus (GEO) databases. By referring to curated immune signatures and using a consensus clustering method, we categorized patients based on immune-related DNA methylation patterns (IMPs), and evaluated prognosis and TME characteristics of the resulting patient subgroups. Subsequently, we used a machine-learning approach to construct an IMP-associated prognostic risk model incorporating the expression of a six-gene signature (MYC, COL13A1, UHRF2, MT1A, ACTB, and GBP1), which was then validated in an independent patient cohort. Furthermore, we evaluated TME patterns, transcriptional variation in biological pathways, somatic copy number alteration, anticancer drug sensitivity, and potential responsiveness to immune checkpoint inhibitor therapy with regard to our IMP-associated signature scoring model. By integrative IMP and transcriptomic analysis, we uncovered distinct prognosis and TME patterns in OS. Finally, we constructed a classifying model, which may aid in prognosis prediction and provide a potential rationale for targeted- and immune checkpoint inhibitor therapy in OS.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Neoplasias Ósseas/genética , Neoplasias Ósseas/imunologia , Bases de Dados Genéticas , Epigênese Genética , Humanos , Inibidores de Checkpoint Imunológico , Osteossarcoma/genética , Osteossarcoma/imunologia , Transcriptoma/genética , Microambiente Tumoral/genética
17.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-927853

RESUMO

Objective To screen the potential key genes of osteosarcoma by bioinformatics methods and analyze their immune infiltration patterns. Methods The gene expression profiles GSE16088 and GSE12865 associated with osteosarcoma were obtained from the Gene Expression Omnibus(GEO),and the differentially expressed genes(DEGs)related to osteosarcoma were screened by bioinformatics tools.Gene Ontology(GO)annotation,Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment,and analysis of immune cell infiltration were then carried out for the DEGs.The potential Hub genes of osteosarcoma were identified by protein-protein interaction network,and the expression of Hub genes in osteosarcoma and normal tissue samples was verified via the Cancer Genome Atlas(TCGA). Results A total of 108 DEGs were screened out.GO annotation and KEGG pathway enrichment revealed that the DEGs were mainly involved in integrin binding,extracellular matrix (ECM) structural components,ECM receptor interactions,and phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt)signaling pathway.Macrophages were the predominant infiltrating immune cells in osteosarcoma.Secreted phosphoprotein 1(SPP1),matrix metallopeptidase 2(MMP2),lysyl oxidase(LOX),collagen type V alpha(II)chain(COL5A2),and melanoma cell adhesion molecule(MCAM)presented differential expression between osteosarcoma and normal tissue samples(all P<0.05). Conclusions SPP1,MMP2,LOX,COL5A2,and MCAM are all up-regulated in osteosarcoma,which may serve as potential biomarkers of osteosarcoma.Macrophages are the key infiltrating immune cells in osteosarcoma,which may provide new perspectives for the treatment of osteosarcoma.


Assuntos
Humanos , Neoplasias Ósseas/imunologia , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Osteossarcoma/imunologia , Fosfatidilinositol 3-Quinases/genética , Macrófagos Associados a Tumor/imunologia
18.
J Immunol Res ; 2021: 8970173, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34877360

RESUMO

The treatment of bone metastases is a thorny issue. Immunotherapy may be one of the few hopes for patients with unresectable bone metastases. Immune checkpoint inhibitors are the most commonly used immunotherapy drugs currently. In this review, the characteristics and interaction of bone metastases and their immune microenvironment were systematically discussed, and the relevant research progress of the immunological mechanism of tumor bone metastasis was reviewed. On this basis, we expounded the clinical application of immune checkpoint inhibitors for bone metastasis of common tumors, including non-small-cell lung cancer, renal cell carcinoma, prostate cancer, melanoma, and breast cancer. Then, the deficiencies and limitations in current researches were summarized. In-depth basic research on bone metastases and optimization of clinical treatment is needed.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Inibidores de Checkpoint Imunológico/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/mortalidade , Neoplasias Ósseas/secundário , Ensaios Clínicos como Assunto , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Intervalo Livre de Progressão , Microambiente Tumoral/imunologia
19.
BMC Cancer ; 21(1): 1345, 2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34922489

RESUMO

BACKGROUNDS: Osteosarcomas are one of the most common primary malignant tumors of bone. It primarily occurs in children and adolescents, with the second highest incidence among people over 50 years old. Although there were immense improvements in the survival of patients with osteosarcoma in the past 30 years, targetable mutations and agents of osteosarcomas still have been generally not satisfactory. Therefore, it is of great importance to further explore the highly specialized immune environment of bone, genes related to macrophage infiltration and potential therapeutic biomarkers and targets. METHODS: The 11 expression data sets of OS tissues and the 11 data sets of adjacent non-tumorous tissues available in the GEO database GSE126209 were used to conduct immune infiltration analysis. Then, through WGCNA analysis, we acquired the co-expression modules related to Mast cells activated and performed the GO and KEGG enrichment analysis. Next, we did the survival prognosis analysis and plotted a survival curve. Finally, we analyzed the COX multivariate regression of gene expression on clinical parameters and drew forest maps for visualization by the forest plot package. RESULTS: OS disease-related immune cell populations, mainly Mast cells activated, have higher cell content (p = 0.006) than the normal group. Then, we identified co-expression modules related to Mast cells activated. In sum, a total of 822 genes from the top three strongest positive correlation module MEbrown4, MEdarkslateblue and MEnavajowhite2 and the strongest negative correlation module MEdarkturquoise. From that, we identified nine genes with different levels in immune cell infiltration related to osteosarcoma, eight of which including SORBS2, BAIAP2L2, ATAD2, CYGB, PAMR1, PSIP1, SNAPC3 and ZDHHC21 in their low abundance have higher disease-free survival probability than the group in their high abundances. CONCLUSION: These results could assist clinicians to select targets for immunotherapies and individualize treatment strategies for patients with OS.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Ósseas/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia , Recidiva Local de Neoplasia/epidemiologia , Osteossarcoma/imunologia , Adolescente , Biomarcadores Tumorais/antagonistas & inibidores , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/mortalidade , Conjuntos de Dados como Assunto , Intervalo Livre de Doença , Perfilação da Expressão Gênica , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Mastócitos/imunologia , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/imunologia , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteossarcoma/mortalidade , Prognóstico , Análise de Sobrevida , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
20.
Comput Math Methods Med ; 2021: 2895893, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950224

RESUMO

OBJECTIVE: To study the effect of miR-138 on the function of osteosarcoma (OS) T follicular helper cells (Tfh cells) and its mechanism. METHODS: Peripheral blood mononuclear cells (PBMCs) were isolated from patients with osteosarcoma (OS group) and healthy volunteers (control group). CD4+CXCR5+ Tfh cells and CD9+ B cells were sorted by flow cytometry. qRT-PCR was used to detect the expression of miR-138 and PDK1 in the peripheral blood and CD4+CXCR5+ Tfh cells. Flow cytometry was employed to detect the proportion of CD4+CXCR5+ Tfh cells in CD4+ T cells, the level of CD40L in CD4+CXCR5+ Tfh cells, and the expression of CD27 and CD38 in B cells. Western blot was used to determine the protein expression of PDK1, PI3K, p-Akt, Akt, p-mTOR, and mTOR. In addition, dual-luciferase reporter assay was performed to verify the relationship between miR-138 and PDK1. ELISA method was used to determine the levels of IgM, IgG, IL-10, and IL-21. RESULTS: Compared with that of the control group, the expression of miR-138 in PBMC and CD4+CXCR5+ Tfh cells of the OS group was lower; overexpression of miR-138 could promote the maturation of Tfh cells and immature B cells. The results of the dual-luciferase report experiment showed that miR-138 can target and negatively regulate PDK1, and PDK1 can reverse the effect of miR-138 on the function of Tfh cells and immature B cells. CONCLUSION: miR-138 inhibits the PI3K/Akt/mTOR pathway by targeting and negatively regulating PDK1 to alleviate the dysfunction of T follicular helper cells in OS.


Assuntos
Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , MicroRNAs/genética , Osteossarcoma/genética , Osteossarcoma/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/antagonistas & inibidores , Células T Auxiliares Foliculares/imunologia , Células T Auxiliares Foliculares/metabolismo , Adulto , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Neoplasias Ósseas/imunologia , Ligante de CD40/metabolismo , Estudos de Casos e Controles , Biologia Computacional , Regulação para Baixo , Feminino , Humanos , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Osteossarcoma/imunologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Serina-Treonina Quinases TOR/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...