Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.278
Filtrar
1.
BMC Cancer ; 24(1): 564, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711026

RESUMO

BACKGROUND: 5-Fluorouracil (5FU) is a primary chemotherapeutic agent used to treat oral squamous cell carcinoma (OSCC). However, the development of drug resistance has significantly limited its clinical application. Therefore, there is an urgent need to determine the mechanisms underlying drug resistance and identify effective targets. In recent years, the Wingless and Int-1 (WNT) signaling pathway has been increasingly studied in cancer drug resistance; however, the role of WNT3, a ligand of the canonical WNT signaling pathway, in OSCC 5FU-resistance is not clear. This study delved into this potential connection. METHODS: 5FU-resistant cell lines were established by gradually elevating the drug concentration in the culture medium. Differential gene expressions between parental and resistant cells underwent RNA sequencing analysis, which was then substantiated via Real-time quantitative PCR (RT-qPCR) and western blot tests. The influence of the WNT signaling on OSCC chemoresistance was ascertained through WNT3 knockdown or overexpression. The WNT inhibitor methyl 3-benzoate (MSAB) was probed for its capacity to boost 5FU efficacy. RESULTS: In this study, the WNT/ß-catenin signaling pathway was notably activated in 5FU-resistant OSCC cell lines, which was confirmed through transcriptome sequencing analysis, RT-qPCR, and western blot verification. Additionally, the key ligand responsible for pathway activation, WNT3, was identified. By knocking down WNT3 in resistant cells or overexpressing WNT3 in parental cells, we found that WNT3 promoted 5FU-resistance in OSCC. In addition, the WNT inhibitor MSAB reversed 5FU-resistance in OSCC cells. CONCLUSIONS: These data underscored the activation of the WNT/ß-catenin signaling pathway in resistant cells and identified the promoting effect of WNT3 upregulation on 5FU-resistance in oral squamous carcinoma. This may provide a new therapeutic strategy for reversing 5FU-resistance in OSCC cells.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Fluoruracila , Neoplasias Bucais , Via de Sinalização Wnt , Proteína Wnt3 , Humanos , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/metabolismo , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Via de Sinalização Wnt/efeitos dos fármacos , Linhagem Celular Tumoral , Proteína Wnt3/metabolismo , Proteína Wnt3/genética , beta Catenina/metabolismo , beta Catenina/genética , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antimetabólitos Antineoplásicos/farmacologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
2.
Commun Biol ; 7(1): 567, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745046

RESUMO

Lymph node metastasis, primarily caused by the migration of oral squamous cell carcinoma (OSCC) cells, stands as a crucial prognostic marker. We have previously demonstrated that EP4, a subtype of the prostaglandin E2 (PGE2) receptor, orchestrates OSCC cell migration via Ca2+ signaling. The exact mechanisms by which EP4 influences cell migration through Ca2+ signaling, however, is unclear. Our study aims to clarify how EP4 controls OSCC cell migration through this pathway. We find that activating EP4 with an agonist (ONO-AE1-473) increased intracellular Ca2+ levels and the migration of human oral cancer cells (HSC-3), but not human gingival fibroblasts (HGnF). Further RNA sequencing linked EP4 to calmodulin-like protein 6 (CALML6), whose role remains undefined in OSCC. Through protein-protein interaction network analysis, a strong connection is identified between CALML6 and calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2), with EP4 activation also boosting mitochondrial function. Overexpressing EP4 in HSC-3 cells increases experimental lung metastasis in mice, whereas inhibiting CaMKK2 with STO-609 markedly lowers these metastases. This positions CaMKK2 as a potential new target for treating OSCC metastasis. Our findings highlight CALML6 as a pivotal regulator in EP4-driven mitochondrial respiration, affecting cell migration and metastasis via the CaMKK2 pathway.


Assuntos
Carcinoma de Células Escamosas , Movimento Celular , Mitocôndrias , Neoplasias Bucais , Receptores de Prostaglandina E Subtipo EP4 , Humanos , Neoplasias Bucais/patologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/genética , Mitocôndrias/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Receptores de Prostaglandina E Subtipo EP4/genética , Animais , Camundongos , Linhagem Celular Tumoral , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/genética , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Calmodulina/metabolismo , Calmodulina/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
3.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612772

RESUMO

Oral cancer ranks fourth among malignancies among Taiwanese men and is the eighth most common cancer among men worldwide in terms of general diagnosis. The purpose of the current study was to investigate how low-density lipoprotein receptor-related protein 1B (LDL receptor related protein 1B; LRP1B) gene polymorphisms affect oral squamous cell carcinoma (OSCC) risk and progression in individuals with diabetes mellitus (DM). Three LRP1B single-nucleotide polymorphisms (SNPs), including rs10496915, rs431809, and rs6742944, were evaluated in 311 OSCC cases and 300 controls. Between the case and control groups, we found no evidence of a significant correlation between the risk of OSCC and any of the three specific SNPs. Nevertheless, in evaluating the clinicopathological criteria, individuals with DM who possess a minimum of one minor allele of rs10496915 (AC + CC; p = 0.046) were significantly associated with tumor size compared with those with homozygous major alleles (AA). Similarly, compared to genotypes homologous for the main allele (GG), rs6742944 genotypes (GA + AA; p = 0.010) were more likely to develop lymph node metastases. The tongue and the rs6742944 genotypes (GA + AA) exhibited higher rates of advanced clinical stages (p = 0.024) and lymph node metastases (p = 0.007) when compared to homozygous alleles (GG). LRP1B genetic polymorphisms appear to be prognostic and diagnostic markers for OSCC and DM, as well as contributing to genetic profiling research for personalized medicine.


Assuntos
Carcinoma de Células Escamosas , Diabetes Mellitus , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Masculino , Humanos , Neoplasias Bucais/genética , Metástase Linfática , Carcinoma de Células Escamosas/genética , Polimorfismo de Nucleotídeo Único , Carcinoma de Células Escamosas de Cabeça e Pescoço , Receptores de LDL/genética
4.
Appl Immunohistochem Mol Morphol ; 32(5): 249-253, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38602289

RESUMO

The pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP) family has been found to have both tumor-suppressor and oncogenic properties across various types and locations of cancer. Given that PHLPP has not been previously studied in oral squamous cell carcinoma (SCC), we conducted an assessment of the expression of both its isoforms in oral SCC tissues and cell lines and compared these findings to their corresponding normal counterparts. In addition, we assessed the relationship between PHLPP and clinicopathological factors and patient survival. Quantitative real-time polymerase chain reaction was used to detect the mRNA levels of PHLPP1 and PHLPP2 in cancerous and normal cell lines in addition to 124 oral SCC and noncancerous adjacent epithelia (N = 62, each). Correlations between their expression rate and clinicopathological parameters were further evaluated in 57 patients. Data were statistically analyzed with t test and paired t test, analysis of variance, Mann-Whitney U , and Cox Regression tests ( P < 0.05). We found significantly lower levels of both PHLPP isoforms in oral SCC tissues compared with noncancerous epithelia ( P < 0.001, for both). However, in the cell lines, this difference was significant only for PHLPP1 ( P = 0.027). The correlation between the two isoforms was significant only in cancerous tissues ( P < 0.001). None of the clinicopathologic factors showed significant associations with either of the isoforms and there was no correlation with survival. We showed for the first time that PHLPP1 and PHLPP2 act as tumor suppressors in oral SCC at the mRNA level. The regulation of their mRNA appears to be different between normal and cancerous tissues.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Proteínas Nucleares , Fosfoproteínas Fosfatases , Humanos , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas Fosfatases/genética , Neoplasias Bucais/patologia , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Feminino , Masculino , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Pessoa de Meia-Idade , Linhagem Celular Tumoral , Idoso , Regulação Neoplásica da Expressão Gênica , Adulto , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Isoformas de Proteínas/metabolismo
5.
Cells ; 13(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38667326

RESUMO

Precancerous cells in the oral cavity may appear as oral potentially malignant disorders, but they may also present as dysplasia without visual manifestation in tumor-adjacent tissue. As it is currently not possible to prevent the malignant transformation of these oral precancers, new treatments are urgently awaited. Here, we generated precancer culture models using a previously established method for the generation of oral keratinocyte cultures and incorporated CRISPR/Cas9 editing. The generated cell lines were used to investigate the efficacy of a set of small molecule inhibitors. Tumor-adjacent mucosa and oral leukoplakia biopsies were cultured and genetically characterized. Mutations were introduced in CDKN2A and TP53 using CRISPR/Cas9 and combined with the ectopic activation of telomerase to generate cell lines with prolonged proliferation. The method was tested in normal oral keratinocytes and tumor-adjacent biopsies and subsequently applied to a large set of oral leukoplakia biopsies. Finally, a subset of the immortalized cell lines was used to assess the efficacy of a set of small molecule inhibitors. Culturing and genomic engineering was highly efficient for normal and tumor-adjacent oral keratinocytes, but success rates in oral leukoplakia were remarkably low. Knock-out of CDKN2A in combination with either the activation of telomerase or knock-out of TP53 seemed a prerequisite for immortalization. Prolonged culturing was accompanied by additional genetic aberrations in these cultures. The generated cell lines were more sensitive than normal keratinocytes to small molecule inhibitors of previously identified targets. In conclusion, while very effective for normal keratinocytes and tumor-adjacent biopsies, the success rate of oral leukoplakia cell culturing methods was very low. Genomic engineering enabled the prolonged culturing of OL-derived keratinocytes but was associated with acquired genetic changes. Further studies are required to assess to what extent the immortalized cultures faithfully represent characteristics of the cells in vivo.


Assuntos
Queratinócitos , Leucoplasia Oral , Neoplasias Bucais , Humanos , Queratinócitos/metabolismo , Queratinócitos/patologia , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Leucoplasia Oral/genética , Leucoplasia Oral/patologia , Telomerase/genética , Telomerase/metabolismo , Engenharia Genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Sistemas CRISPR-Cas/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Mucosa Bucal/patologia , Lesões Pré-Cancerosas/patologia , Lesões Pré-Cancerosas/genética
6.
Int J Mol Sci ; 25(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38612901

RESUMO

We explore the possibility that defects in genes associated with the response and repair of DNA double strand breaks predispose oral potentially malignant disorders (OPMD) to undergo malignant transformation to oral squamous cell carcinoma (OSCC). Defects in the homologous recombination/Fanconi anemia (HR/FA), but not in the non-homologous end joining, causes the DNA repair pathway to appear to be consistent with features of familial conditions that are predisposed to OSCC (FA, Bloom's syndrome, Ataxia Telangiectasia); this is true for OSCC that occurs in young patients, sometimes with little/no exposure to classical risk factors. Even in Dyskeratosis Congenita, a disorder of the telomerase complex that is also predisposed to OSCC, attempts at maintaining telomere length involve a pathway with shared HR genes. Defects in the HR/FA pathway therefore appear to be pivotal in conditions that are predisposed to OSCC. There is also some evidence that abnormalities in the HR/FA pathway are associated with malignant transformation of sporadic cases OPMD and OSCC. We provide data showing overexpression of HR/FA genes in a cell-cycle-dependent manner in a series of OPMD-derived immortal keratinocyte cell lines compared to their mortal counterparts. The observations in this study argue strongly for an important role of the HA/FA DNA repair pathway in the development of OSCC.


Assuntos
Carcinoma de Células Escamosas , Anemia de Fanconi , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Neoplasias Bucais/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço , DNA
7.
Cell Biochem Funct ; 42(3): e4000, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38566395

RESUMO

Tongue squamous cell carcinoma (TSCC) is a prevalent form of oral malignancy, with increasing incidence. Unfortunately, the 5-year survival rate for patients has not exceeded 50%. Studies have shown that sex-determining region Y box 9 (SOX9) correlates with malignancy and tumor stemness in a variety of tumors. To investigate the role of SOX9 in TSCC stemness, we analyzed its influence on various aspects of tumor biology, including cell proliferation, migration, invasion, sphere and clone formation, and drug resistance in TSCC. Our data suggest a close association between SOX9 expression and both the stemness phenotype and drug resistance in TSCC. Immunohistochemical experiments revealed a progressive increase of SOX9 expression in normal oral mucosa, paracancerous tissues, and tongue squamous carcinoma tissues. Furthermore, the expression of SOX9 was closely linked to the TNM stage, but not to lymph node metastasis or tumor diameter. SOX9 is a crucial gene in TSCC responsible for promoting the stemness function of cancer stem cells. Developing drugs that target SOX9 is extremely important in clinical settings.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Neoplasias da Língua , Humanos , Carcinoma de Células Escamosas/patologia , Neoplasias da Língua/metabolismo , Linhagem Celular Tumoral , Neoplasias Bucais/genética , Língua/metabolismo , Língua/patologia , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo
8.
Biomolecules ; 14(4)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38672474

RESUMO

Machine learning analyses within the realm of oral cancer outcomes are relatively underexplored compared to other cancer types. This study aimed to assess the performance of machine learning algorithms in identifying oral cancer patients, utilizing microRNA expression data. In this study, we implemented this approach using a panel of oral cancer-associated microRNAs sourced from standard incisional biopsy specimens to identify cases of oral squamous cell carcinomas (OSCC). For the model development process, we used a dataset comprising 30 OSCC and 30 histologically normal epithelium (HNE) cases. We initially trained a logistic regression prediction model using 70 percent of the dataset, while reserving the remaining 30 percent for testing. Subsequently, the model underwent hyperparameter tuning resulting in enhanced performance metrics. The hyperparameter-tuned model exhibited high accuracy (0.894) and ROC AUC (0.898) in predicting OSCC. Testing the model on cases of potentially malignant disorders (OPMDs) revealed that leukoplakia with mild dysplasia was predicted as having a high risk of progressing to OSCC, emphasizing machine learning's advantage over histopathology in detecting early molecular changes. These findings underscore the necessity for further refinement, incorporating a broader set of variables to enhance the model's predictive capabilities in assessing the risk of oral potentially malignant disorders.


Assuntos
Carcinoma de Células Escamosas , Aprendizado de Máquina , MicroRNAs , Neoplasias Bucais , Humanos , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Neoplasias Bucais/diagnóstico , MicroRNAs/genética , MicroRNAs/metabolismo , Biópsia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/diagnóstico , Feminino , Masculino , Algoritmos , Regulação Neoplásica da Expressão Gênica , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico
9.
Int J Mol Sci ; 25(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38673902

RESUMO

Lectin-like transcript-1 (LLT1) expression is detected in different cancer types and is involved in immune evasion. The present study investigates the clinical relevance of tumoral and stromal LLT1 expression in oral squamous cell carcinoma (OSCC), and relationships with the immune infiltrate into the tumor immune microenvironment (TIME). Immunohistochemical analysis of LLT1 expression was performed in 124 OSCC specimens, together with PD-L1 expression and the infiltration of CD20+, CD4+, and CD8+ lymphocytes and CD68+ and CD163+-macrophages. Associations with clinicopathological variables, prognosis, and immune cell densities were further assessed. A total of 41 (33%) OSCC samples showed positive LLT1 staining in tumor cells and 55 (44%) positive LLT1 in tumor-infiltrating lymphocytes (TILs). Patients harboring tumor-intrinsic LLT1 expression exhibited poorer survival, suggesting an immunosuppressive role. Conversely, positive LLT1 expression in TILs was significantly associated with better disease-specific survival, and also an immune-active tumor microenvironment highly infiltrated by CD8+ T cells and M1/M2 macrophages. Furthermore, the combination of tumoral and stromal LLT1 was found to distinguish three prognostic categories (favorable, intermediate, and adverse; p = 0.029, Log-rank test). Together, these data demonstrate the prognostic relevance of tumoral and stromal LLT1 expression in OSCC, and its potential application to improve prognosis prediction and patient stratification.


Assuntos
Carcinoma de Células Escamosas , Linfócitos do Interstício Tumoral , Neoplasias Bucais , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Feminino , Neoplasias Bucais/patologia , Neoplasias Bucais/imunologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/genética , Neoplasias Bucais/mortalidade , Masculino , Prognóstico , Pessoa de Meia-Idade , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Idoso , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/genética , Adulto , Macrófagos/metabolismo , Macrófagos/imunologia , Biomarcadores Tumorais/metabolismo , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Idoso de 80 Anos ou mais , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/mortalidade , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
10.
Sci Rep ; 14(1): 9616, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671227

RESUMO

In this study, we aimed to study the role of TCONS_00006091 in the pathogenesis of oral squamous cellular carcinoma (OSCC) transformed from oral lichen planus (OLP). This study recruited 108 OSCC patients which transformed from OLP as the OSCC group and 102 OLP patients with no sign of OSCC as the Control group. ROC curves were plotted to measure the diagnostic values of TCONS_00006091, miR-153, miR-370 and let-7g, and the changes in gene expressions were measured by RT-qPCR. Sequence analysis and luciferase assays were performed to analyze the molecular relationships among these genes. Cell proliferation and apoptosis were observed via MTT and FCM. TCONS_00006091 exhibited a better diagnosis value for OSCC transformed from OLP. OSCC group showed increased TCONS_00006091 expression and decreased expressions of miR-153, miR-370 and let-7g. The levels of SNAI1, IRS and HMGA2 was all significantly increased in OSCC patients. And TCONS_00006091 was found to sponge miR-153, miR-370 and let-7g, while these miRNAs were respectively found to targe SNAI1, IRS and HMGA2. The elevated TCONS_00006091 suppressed the expressions of miR-153, miR-370 and let-7g, leading to the increased expression of SNAI1, IRS and HMGA2. Also, promoted cell proliferation and suppressed apoptosis were observed upon the over-expression of TCONS_00006091. This study demonstrated that the expressions of miR-153, miR-370 and let-7g were down-regulated by the highly expressed TCONS_00006091 in OSCC patients, which accordingly up-regulated the expressions of SNAI1, IRS and HMGA2, resulting in the promoted cell proliferation and suppressed cell apoptosis.


Assuntos
Apoptose , Carcinoma de Células Escamosas , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Proteína HMGA2 , MicroRNAs , Neoplasias Bucais , Fatores de Transcrição da Família Snail , Humanos , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Proteína HMGA2/genética , Proteína HMGA2/metabolismo , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Neoplasias Bucais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Feminino , Masculino , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Apoptose/genética , Pessoa de Meia-Idade , Regulação para Cima , Linhagem Celular Tumoral , Líquen Plano Bucal/genética , Líquen Plano Bucal/metabolismo , Líquen Plano Bucal/patologia
11.
Oral Oncol ; 152: 106807, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615585

RESUMO

OBJECTIVES: Oral mucosal melanoma (OMM) is a rare but aggressive melanoma subtype. Due to its rarity, the genomic landscape of OMM remains unknown despite a relatively thorough understanding of the genetic profile of cutaneous melanoma (CM). In this study, we analyzed the genomic mutational profiles of Japanese patients with OMM and compared them with those of patients with nose/sinuses mucosal melanoma (NMM) and CM to identify potential therapeutic targets. MATERIALS AND METHODS: We extracted clinical and genomic information of patients with OMM (n = 15), NMM (n = 63), and CM (n = 413) who underwent comprehensive genomic profiling tests under the National Health Insurance between June 2019 and November 2023 from the Center for Cancer Genomics and Therapeutics database. RESULTS: The most frequent genomic alteration identified in OMM was RICTOR (40%) followed by CDK4 (33.3%), MDM2 (33.3%), KDR (30%), KIT (26.7%), and NF1 (26.7%). CDK4 and MDM2 were co-amplified. Gene alterations in MYC and NRAS were the highest in patients with NMM, followed by those with CM, and no MYC alteration was observed in patients with OMM. BRAF V600 mutation, which is frequently observed in patients with CM (23.2%) were only present in 1.6% of patients with NMM and none in patients with OMM. CONCLUSION: This study clarified the genetic differences between OMM and NMM, and the first to report the frequent occurrence of RICTOR amplification in OMM. This analysis offers insights into the development of personalized therapeutics for OMM.


Assuntos
Melanoma , Neoplasias Bucais , Mutação , Humanos , Melanoma/genética , Masculino , Feminino , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Pessoa de Meia-Idade , Idoso , Japão , Mucosa Bucal/patologia , Adulto , Idoso de 80 Anos ou mais , Genômica/métodos , Estudos de Coortes , População do Leste Asiático
12.
NPJ Biofilms Microbiomes ; 10(1): 39, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589501

RESUMO

Dysbiosis of the human oral microbiota has been reported to be associated with oral cavity squamous cell carcinoma (OSCC) while the host-microbiota interactions with respect to the potential impact of pathogenic bacteria on host genomic and epigenomic abnormalities remain poorly studied. In this study, the mucosal bacterial community, host genome-wide transcriptome and DNA CpG methylation were simultaneously profiled in tumors and their adjacent normal tissues of OSCC patients. Significant enrichment in the relative abundance of seven bacteria species (Fusobacterium nucleatum, Treponema medium, Peptostreptococcus stomatis, Gemella morbillorum, Catonella morbi, Peptoanaerobacter yurli and Peptococcus simiae) were observed in OSCC tumor microenvironment. These tumor-enriched bacteria formed 254 positive correlations with 206 up-regulated host genes, mainly involving signaling pathways related to cell adhesion, migration and proliferation. Integrative analysis of bacteria-transcriptome and bacteria-methylation correlations identified at least 20 dysregulated host genes with inverted CpG methylation in their promoter regions associated with enrichment of bacterial pathogens, implying a potential of pathogenic bacteria to regulate gene expression, in part, through epigenetic alterations. An in vitro model further confirmed that Fusobacterium nucleatum might contribute to cellular invasion via crosstalk with E-cadherin/ß-catenin signaling, TNFα/NF-κB pathway and extracellular matrix remodeling by up-regulating SNAI2 gene, a key transcription factor of epithelial-mesenchymal transition (EMT). Our work using multi-omics approaches explored complex host-microbiota interactions and provided important insights into genetic and functional basis in OSCC tumorigenesis, which may serve as a precursor for hypothesis-driven study to better understand the causational relationship of pathogenic bacteria in this deadly cancer.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Microbiota , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Epigenômica , Disbiose , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Bactérias , Fusobacterium nucleatum , Neoplasias de Cabeça e Pescoço/genética , Epigênese Genética , Microambiente Tumoral
13.
Shanghai Kou Qiang Yi Xue ; 33(1): 30-35, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38583021

RESUMO

PURPOSE: To explore the mechanism of SETDB1 inhibiting epithelial mesenchymal transition (EMT),migration and invasion in oral cancer via SOX 7 methylation. METHODS: SETDB1 and SOX7 mRNA and protein expression levels in KB cells of oral cancer and oral mucosal epithelial ATCC cells were determined by qRT-PCR and Western blot (WB). SETDB1 si-RNA was structured, then transfect into KB cells of oral cancer by liposome-mediated method. siRNA-SETDB1 was the experimental group (si-S), siRNA empty vector was the negative control group (si-N), and untransfected KB cells were the blank control group(NC). SETDB1 mRNA and protein expression levels were detected by qRT-PCR and Western blot(WB), to verify the transfection effect. The methylation levels of SOX7 were determined by pyrosequencing. The expression of N-cadherin, Vimentin, ß-catenin, and Slug proteins was detected by WB. Cell viability was measured by MTT assay, migration ability was tested by scratch healing assay, and invasion ability was tested by Transwell chamber assay. Statistical analysis was performed with SPSS 21.0 software package. RESULTS: The results of Rt-qPCR and WB showed that the SETDB1 mRNA and protein expression decreased significantly in si-S group(P<0.05). Pyrosequencing test results showed that the regulation of SETDB1 could significantly reduce the SOX7 methylation rate and increased the SOX7 protein expression. WB results showed that knockdown of SETDB1 significantly inhibited the expression of EMT-related proteins N-cadherin, Vimentin, ß-catenin and Slug in oral cancer KB cells (P<0.05). The results of cell functology experiments showed that knockdown of SETDB1 could significantly inhibit survival, migration and invasion of KB cells. CONCLUSIONS: Downregulation of SETDB1 could suppress EMT, migration and invasion of oral cancer cells by regulating SOX7 methylation level, providing new ideas and targets for the diagnosis and treatment of oral cancer.


Assuntos
Neoplasias Bucais , Fatores de Transcrição SOXF , beta Catenina , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Regulação para Baixo , Linhagem Celular Tumoral , Vimentina/genética , Vimentina/metabolismo , Caderinas/genética , Caderinas/metabolismo , RNA Interferente Pequeno/metabolismo , Neoplasias Bucais/genética , Transição Epitelial-Mesenquimal , RNA Mensageiro/metabolismo , Metilação , Movimento Celular/genética , Proliferação de Células , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo
14.
Cell Signal ; 119: 111176, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38636767

RESUMO

Therapeutic strategies are the hot-spot issues in treating patients with advanced oral squamous cell carcinoma (OSCC). Mounting studies have proved that triggering ferroptosis is one of the promising targets for OSCC management. In this study, we performed a first attempt to collect the current evidence on the proposed roles of ferroptosis in OSCC through a comprehensive review. Based on clinical data from the relevant studies within this topic, we found that ferroptosis-associated tumor microenvironment, ferroptosis-related genes (FRGs), and ferroptosis-related lncRNAs exhibited a potent prognostic value for OSCC patients. Mechanistically, experimental data revealed that the proliferation and tumorigenesis of OSCC might be associated with the inhibition of cellular ferroptosis through the activation of glutathione peroxidase 4 (GPX4) and adipocyte enhancer-binding protein 1 (AEBP1), suppression of glutathione (GSH) and Period 1 (PER1) expression, and modulation of specific non-coding RNAs (i.e., miR-520d-5p, miR-34c-3p, and miR-125b-5p) and their targeted proteins. Several specific interventions (i.e., Quisinostat, Carnosic acid, hyperbaric oxygen, melatonin, aqueous-soluble sporoderm-removed G. lucidum spore powder, and disulfiram/copper complex) were found to dramatically induce ferroptosis cell death of OSCC via multiple mechanisms. This review highlighted the pivotal role of ferroptosis in the pathogenesis and prognosis of OSCC. Future anticancer therapeutic strategies targeting ferroptosis and its associated molecules might provide a new insight for OSCC treatment.


Assuntos
Carcinoma de Células Escamosas , Ferroptose , Neoplasias Bucais , Ferroptose/genética , Humanos , Neoplasias Bucais/patologia , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Prognóstico , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/genética , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral
15.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 241-247, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38650127

RESUMO

Oral squamous cell carcinoma (OSCC) is a common malignant tumor. Importin7 (IPO7) is responsible for nucleoplasmic transport of RNAs and proteins, and it has been confirmed to be involved in the development of human cancers. This study aimed to explore the function and mechanism of IPO7 in OSCC. IPO7 expression in tissues and cells was determined by RT-qPCR. Cell proliferative, migratory, and invasive capabilities were detected through transwell assay and colony formation assay. Mice xenograft models were established for evaluating tumor growth. Autophagy was estimated by the LC3 levels in cells through western blot and immunofluorescence (IF). Western blot was utilized to detect the key proteins in PERK/EIF2AK3/ATF4 pathway for assessing the endoplasmic reticulum stress (ERS). The interaction of IPO7 and homeobox A10 (HOXA10) was tested by GST pull-down assay and Co-IP assay. ChIP assay and luciferase reporter assay were utilized to determine the combination of HOXA10 and EIF2AK3. We proved that IPO7 was upregulated in OSCC tissues and cells, and its depletion reduced cell proliferation, migration, invasion and tumor growth. Furthermore, LC3 expression in cells was found to be reduced by IPO7 knockdown. IPO7 promoted OSCC tumor metastasis by activating autophagy. Additionally, we discovered that IPO7 could regulate ERS by activating the PERK/ATF4 pathway. EIF2AK3 upregulation can promote cell autophagy. Furthermore, IPO7 was proven to promote nuclear translocation of HOXA10 in cells. EIF2AK3 promoter can bind to HOXA10. Rescue assay confirmed that HOXA10 upregulation can reverse the effect of IPO7 silencing on OSCC progression. IPO7 can enhance proliferation, migration, invasion, and autophagy by nuclear translocation of HOXA10 and the activation of EIF2AK3/ATF4 pathway in OSCC.


Assuntos
Autofagia , Carcinoma de Células Escamosas , Movimento Celular , Núcleo Celular , Proliferação de Células , Proteínas Homeobox A10 , Proteínas de Homeodomínio , Neoplasias Bucais , alfa Carioferinas , eIF-2 Quinase , Humanos , Autofagia/genética , Neoplasias Bucais/patologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , eIF-2 Quinase/metabolismo , eIF-2 Quinase/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/genética , Movimento Celular/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Núcleo Celular/metabolismo , Camundongos , Estresse do Retículo Endoplasmático/genética , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , Transdução de Sinais , Carioferinas/metabolismo , Carioferinas/genética , Masculino , Camundongos Endogâmicos BALB C , Feminino , Invasividade Neoplásica
17.
Medicine (Baltimore) ; 103(16): e37831, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640322

RESUMO

Oral squamous cell carcinoma (OSCC) is a malignant tumor that occurs in oral cavity and is dominated by squamous cells. The relationship between CDK1, CCNA2, and OSCC is still unclear. The OSCC datasets GSE74530 and GSE85195 configuration files were downloaded from the Gene Expression Omnibus (GEO) database and were derived from platforms GPL570 and GPL6480. Differentially expressed genes (DEGs) were screened. The weighted gene co-expression network analysis, functional enrichment analysis, gene set enrichment analysis, construction and analysis of protein-protein interaction (PPI) network, Comparative Toxicogenomics Database analysis were performed. Gene expression heatmap was drawn. TargetScan was used to screen miRNAs that regulate central DEGs. A total of 1756 DEGs were identified. According to Gene Ontology (GO) analysis, they were predominantly enriched in processes related to organic acid catabolic metabolism, centromeric, and chromosomal region condensation, and oxidoreductase activity. In Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the DEGs were mainly concentrated in metabolic pathways, P53 signaling pathway, and PPAR signaling pathway. Weighted gene co-expression network analysis was performed with a soft-thresholding power set at 9, leading to the identification of 6 core genes (BUB1B, CCNB1, KIF20A, CCNA2, CDCA8, CDK1). The gene expression heatmap revealed that core genes (CDK1, CCNA2) were highly expressed in OSCC samples. Comparative Toxicogenomics Database analysis demonstrated associations between the 6 genes (BUB1B, CCNB1, KIF20A, CCNA2, CDCA8, CDK1) and oral tumors, precancerous lesions, inflammation, immune system disorders, and tongue tumors. The associated miRNAs for CDK1 gene were hsa-miR-203a-3p.2, while for CCNA2 gene, they were hsa-miR-6766-3p, hsa-miR-4782-3p, and hsa-miR-219a-5p. CDK1 and CCNA2 are highly expressed in OSCC. The higher the expression of CDK1 and CCNA2, the worse the prognosis.


Assuntos
Proteína Quinase CDC2 , Carcinoma de Células Escamosas , Ciclina A2 , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Biologia Computacional , Ciclina A2/genética , Ciclina A2/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Redes Reguladoras de Genes , Neoplasias de Cabeça e Pescoço/genética , MicroRNAs/genética , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
18.
Biochem Biophys Res Commun ; 714: 149965, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38657447

RESUMO

At present, the molecular mechanisms driving the progression and metastasis of oral squamous cell carcinoma (OSCC) remain largely uncharacterized. The activation of transforming growth factor-ß (TGF-ß) signaling in the tumor microenvironment has been observed in various types of cancer and has been implicated their progression by enhancing the migration and invasion of epithelial cancer cells. However, its specific roles in the oral cancer progression remain unexplored. In this study, we examined the effects of TGF-ß signaling on the murine squamous cell carcinoma, SCCVII cells in vitro and in vivo. The incubation of SCCVII cells with TGF-ß induced the activation of TGF-ß signals and epithelial-mesenchymal transition (EMT). Notably, the motility of SCCVII cells was increased upon the activation of the TGF-ß signaling. RNA sequencing revealed upregulation of genes related to EMT and angiogenesis. Consistent with these in vitro results, the inhibition of TGF-ß signals in SCCVII cell-derived primary tumors resulted in suppressed angiogenesis. Furthermore, we identified six candidate factors (ANKRD1, CCBE1, FSTL3, uPA, TSP-1 and integrin ß3), whose expression was induced by TGF-ß in SCCVII cells, and associated with poor prognosis for patients with head and neck squamous cell carcinoma. These results highlight the role of TGF-ß signals in the progression of OSCC via multiple mechanisms, including EMT and angiogenesis, and suggest novel therapeutic targets for the treatment of OSCC.


Assuntos
Carcinoma de Células Escamosas , Progressão da Doença , Transição Epitelial-Mesenquimal , Neovascularização Patológica , Transdução de Sinais , Fator de Crescimento Transformador beta , Animais , Fator de Crescimento Transformador beta/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/irrigação sanguínea , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neovascularização Patológica/genética , Camundongos , Linhagem Celular Tumoral , Neoplasias Bucais/patologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/genética , Neoplasias Bucais/irrigação sanguínea , Movimento Celular/efeitos dos fármacos , Humanos , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral , Angiogênese
19.
Gene ; 915: 148436, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38579904

RESUMO

BACKGROUND: Oral squamous cell carcinoma (OSCC) is originating from oral mucosal epithelial cells. Autophagy plays a crucial role in cancer treatment by promoting cellular self-degradation and eliminating damaged components, thereby enhancing therapeutic efficacy. In this study, we aim to identify a novel autophagy-related biomarker to improve OSCC therapy. METHODS: We firstly utilized Cox and Lasso analyses to identify that ATF6 is associated with OSCC prognosis, and validated the results by Kaplan-Meier survival analysis. We further identified the downstream pathways and related genes by enrichment analysis and WGCNA analysis. Subsequently, we used short interfering RNA to investigate the effects of ATF6 knockdown on proliferation, migration, apoptosis, and autophagy in SCC-9 and SCC-15 cells through cell viability assay, transwell assay, EdU incorporation assay, flow cytometry analysis, western blot analysis and immunofluorescence analysis, etc. RESULTS: Bioinformatics analyses showed that ATF6 overexpression was associated with prognosis and detrimental to survival. In vitro studies verified that ATF6 knockdown reduced OSCC cell proliferation and migration. Mechanistically, ATF6 knockdown could promote cellular autophagy and apoptosis. CONCLUSION: We propose that ATF6 holds potential as a prognostic biomarker linked to autophagy in OSCC. This study provides valuable clues for further exploration of targeted therapy against OSCC.


Assuntos
Fator 6 Ativador da Transcrição , Autofagia , Biomarcadores Tumorais , Carcinoma de Células Escamosas , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Bucais , Humanos , Fator 6 Ativador da Transcrição/genética , Fator 6 Ativador da Transcrição/metabolismo , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Neoplasias Bucais/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Prognóstico , Linhagem Celular Tumoral , Autofagia/genética , Proliferação de Células/genética , Movimento Celular/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Apoptose/genética , Estimativa de Kaplan-Meier
20.
Anticancer Drugs ; 35(6): 492-500, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38477942

RESUMO

The resistance of oral squamous cell carcinoma (OSCC) cells to cisplatin remains a tough nut to crack in OSCC therapy. Homeobox A1 (HOXA1) overexpression has been detected in head and neck squamous carcinoma (HNSC). Accordingly, this study aims to explore the potential role and mechanism of HOXA1 on cisplatin resistance in OSCC. The expression of HOXA1 in HNSC and its role in overall survival (OS) rate of OSCC patients were analyzed by bioinformatic analysis. Following transfection as needed, OSCC cells were induced by different concentrations of cisplatin, and the cell viability and apoptosis were evaluated by cell counting kit-8 and flow cytometry assays. The mRNA and protein expression levels of HOXA1 and the phosphorylation of IκBα and p65 were determined by real-time quantitative PCR and western blot. HOXA1 expression level was upregulated in HNSC tissues and OSCC cells. Overexpressed HOXA1 was correlated with a low OS rate of OSCC patients. Cisplatin exerted an anti-cancer effect on OSCC cells. HOXA1 silencing or cisplatin suppressed OSCC cell viability, boosted the apoptosis, and repressed the phosphorylation of IκBα and p65. Intriguingly, the combination of HOXA1 silencing and cisplatin generated a stronger anti-cancer effect on OSCC cells than their single use. HOXA1 silencing attenuates cisplatin resistance of OSCC cells via IκB/NF-κB signaling pathway, hinting that HOXA1 is a biomarker associated with OSCC and HOXA1 silencing can enhance the sensitivity of OSCC cells to cisplatin.


Assuntos
Cisplatino , Resistencia a Medicamentos Antineoplásicos , Proteínas de Homeodomínio , Neoplasias Bucais , NF-kappa B , Transdução de Sinais , Humanos , Cisplatino/farmacologia , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/patologia , Neoplasias Bucais/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Transdução de Sinais/efeitos dos fármacos , NF-kappa B/metabolismo , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteínas I-kappa B/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...