Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.355
Filtrar
1.
J Exp Med ; 218(10)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34415994

RESUMO

Understanding mechanisms of immune regulation is key to developing immunotherapies for autoimmunity and cancer. We examined the role of mononuclear phagocytes during peripheral T cell regulation in type 1 diabetes and melanoma. MERTK expression and activity in mononuclear phagocytes in the pancreatic islets promoted islet T cell regulation, resulting in reduced sensitivity of T cell scanning for cognate antigen in prediabetic islets. MERTK-dependent regulation led to reduced T cell activation and effector function at the disease site in islets and prevented rapid progression of type 1 diabetes. In human islets, MERTK-expressing cells were increased in remaining insulin-containing islets of type 1 diabetic patients, suggesting that MERTK protects islets from autoimmune destruction. MERTK also regulated T cell arrest in melanoma tumors. These data indicate that MERTK signaling in mononuclear phagocytes drives T cell regulation at inflammatory disease sites in peripheral tissues through a mechanism that reduces the sensitivity of scanning for antigen leading to reduced responsiveness to antigen.


Assuntos
Autoimunidade/fisiologia , Ilhotas Pancreáticas/enzimologia , Fagócitos/fisiologia , Linfócitos T/imunologia , c-Mer Tirosina Quinase/imunologia , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Células Apresentadoras de Antígenos/imunologia , Antígenos/imunologia , Antígenos/metabolismo , Antígenos CD11/metabolismo , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Tipo 1/enzimologia , Diabetes Mellitus Tipo 1/patologia , Feminino , Humanos , Ilhotas Pancreáticas/imunologia , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Neoplasias Experimentais/enzimologia , Neoplasias Experimentais/imunologia , Fagócitos/imunologia , Piperazinas/farmacologia , c-Mer Tirosina Quinase/genética , c-Mer Tirosina Quinase/metabolismo
2.
J Biochem Mol Toxicol ; 35(9): e22838, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34273909

RESUMO

Colorectal cancer (CRC) is the third most common type of cancer. Here, we studied the inhibitory effect of IRAK1 and IRAK4 as a preventive strategy using a colitis-induced tumorigenesis mouse model. CRC clinical data were obtained from the Gene Expression Omnibus (GEO). An experimental inflammation-dependent CRC model was induced by treatment with azoxymethane (AOM) and then dextran sodium sulfate (DSS) in C57BL/6 mice. Mice were administered an IRAK1/4 inhibitor by intraperitoneal injection at 3 mg/kg twice each week for 9 weeks. The IRAK1/4 inhibitor attenuated histological changes and prevented tumor growth. Tumor-associated proteins, including p65 and Ki-67, were downregulated by the IRAK1/4 inhibitor in AOM/DSS-treated mice. Additionally, IRAK1/4 inhibitor administration effectively decreased the expression of inflammatory cytokines. Furthermore, we observed that IRAK1/4 inhibitor treatment attenuated colitis-induced tumorigenesis by inhibiting epithelial-mesenchymal transition. These observations indicate that inhibition of IRAK1 and IRAK4 may suppress experimental colitis-induced tumorigenesis by inhibiting inflammatory responses and epithelial-mesenchymal transition.


Assuntos
Carcinogênese/efeitos dos fármacos , Neoplasias Associadas a Colite/tratamento farmacológico , Colite/tratamento farmacológico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias Experimentais/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Animais , Carcinogênese/induzido quimicamente , Carcinogênese/metabolismo , Colite/induzido quimicamente , Colite/enzimologia , Neoplasias Associadas a Colite/induzido quimicamente , Neoplasias Associadas a Colite/enzimologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/enzimologia , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Masculino , Camundongos , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentais/induzido quimicamente , Neoplasias Experimentais/enzimologia
3.
Int J Mol Sci ; 22(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946854

RESUMO

Hexokinases are a family of ubiquitous exose-phosphorylating enzymes that prime glucose for intracellular utilization. Hexokinase 2 (HK2) is the most active isozyme of the family, mainly expressed in insulin-sensitive tissues. HK2 induction in most neoplastic cells contributes to their metabolic rewiring towards aerobic glycolysis, and its genetic ablation inhibits malignant growth in mouse models. HK2 can dock to mitochondria, where it performs additional functions in autophagy regulation and cell death inhibition that are independent of its enzymatic activity. The recent definition of HK2 localization to contact points between mitochondria and endoplasmic reticulum called Mitochondria Associated Membranes (MAMs) has unveiled a novel HK2 role in regulating intracellular Ca2+ fluxes. Here, we propose that HK2 localization in MAMs of tumor cells is key in sustaining neoplastic progression, as it acts as an intersection node between metabolic and survival pathways. Disrupting these functions by targeting HK2 subcellular localization can constitute a promising anti-tumor strategy.


Assuntos
Hexoquinase/fisiologia , Proteínas de Neoplasias/fisiologia , Neoplasias/enzimologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/fisiologia , Autofagia/fisiologia , Sinalização do Cálcio/fisiologia , Hipóxia Celular , Peptídeos Penetradores de Células/uso terapêutico , Indução Enzimática , Regulação Neoplásica da Expressão Gênica , Glicólise/fisiologia , Hexoquinase/antagonistas & inibidores , Humanos , Membranas Intracelulares/enzimologia , Camundongos , MicroRNAs/genética , Mitocôndrias/metabolismo , Terapia de Alvo Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias/terapia , Neoplasias Experimentais/enzimologia , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Processamento de Proteína Pós-Traducional , Ratos , Ubiquitinação
4.
J Clin Invest ; 131(10)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33998600

RESUMO

Intercellular biomolecule transfer (ICBT) between malignant and benign cells is a major driver of tumor growth, resistance to anticancer therapies, and therapy-triggered metastatic disease. Here we characterized cholesterol 25-hydroxylase (CH25H) as a key genetic suppressor of ICBT between malignant and endothelial cells (ECs) and of ICBT-driven angiopoietin-2-dependent activation of ECs, stimulation of intratumoral angiogenesis, and tumor growth. Human CH25H was downregulated in the ECs from patients with colorectal cancer and the low levels of stromal CH25H were associated with a poor disease outcome. Knockout of endothelial CH25H stimulated angiogenesis and tumor growth in mice. Pharmacologic inhibition of ICBT by reserpine compensated for CH25H loss, elicited angiostatic effects (alone or combined with sunitinib), augmented the therapeutic effect of radio-/chemotherapy, and prevented metastatic disease induced by these regimens. We propose inhibiting ICBT to improve the overall efficacy of anticancer therapies and limit their prometastatic side effects.


Assuntos
Proteínas de Neoplasias , Neoplasias Experimentais/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Reserpina/farmacologia , Esteroide Hidroxilases , Sunitinibe/farmacologia , Animais , Células Endoteliais/enzimologia , Técnicas de Silenciamento de Genes , Células HCT116 , Humanos , Camundongos , Camundongos Knockout , Metástase Neoplásica , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentais/enzimologia , Neoplasias Experimentais/genética , Neovascularização Patológica/enzimologia , Neovascularização Patológica/genética , Esteroide Hidroxilases/antagonistas & inibidores , Esteroide Hidroxilases/genética , Esteroide Hidroxilases/metabolismo
5.
Molecules ; 26(6)2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33801057

RESUMO

A cannabinoid anticancer para-quinone, HU-331, which was synthesized by our group five decades ago, was shown to have very high efficacy against human cancer cell lines in-vitro and against in-vivo grafts of human tumors in nude mice. The main mechanism was topoisomerase IIα catalytic inhibition. Later, several groups synthesized related compounds. In the present presentation, we review the publications on compounds synthesized on the basis of HU-331, summarize their published activities and mechanisms of action and report the synthesis and action of novel quinones, thus expanding the structure-activity relationship in these series.


Assuntos
Canabidiol/análogos & derivados , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias Experimentais , Proteínas de Ligação a Poli-ADP-Ribose/antagonistas & inibidores , Quinonas , Inibidores da Topoisomerase II , Animais , Canabidiol/química , Canabidiol/uso terapêutico , DNA Topoisomerases Tipo II/metabolismo , Humanos , Camundongos , Camundongos Nus , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/enzimologia , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Quinonas/química , Quinonas/uso terapêutico , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/uso terapêutico
6.
J Biol Chem ; 296: 100285, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33450231

RESUMO

DNA methylation regulates gene transcription and is involved in various physiological processes in mammals, including development and hematopoiesis. It is catalyzed by DNA methyltransferases including Dnmt1, Dnmt3a, and Dnmt3b. For Dnmt3b, its effects on transcription can result from its own DNA methylase activity, the recruitment of other Dnmts to mediate methylation, or transcription repression in a methylation-independent manner. Low-frequency mutations in human DNMT3B are found in hematologic malignancies including cutaneous T-cell lymphomas, hairy cell leukemia, and diffuse large B-cell lymphomas. Moreover, Dnmt3b is a tumor suppressor in oncogene-driven lymphoid and myeloid malignancies in mice. However, it is poorly understood how the different Dnmt3b activities contribute to these outcomes. We modulated Dnmt3b activity in vivo by generating Dnmt3b+/- mice expressing one wild-type allele as well as Dnmt3b+/CI and Dnmt3bCI/CI mice where one or both alleles express catalytically inactive Dnmt3bCI. We show that 43% of Dnmt3b+/- mice developed T-cell lymphomas, chronic lymphocytic leukemia, and myeloproliferation over 18 months, thus resembling phenotypes previously observed in Dnmt3a+/- mice, possibly through regulation of shared target genes. Interestingly, Dnmt3b+/CI and Dnmt3bCI/CI mice survived postnatal development and were affected by B-cell rather than T-cell malignancies with decreased penetrance. Genome-wide hypomethylation, increased expression of oncogenes such as Jdp2, STAT1, and Trip13, and p53 downregulation were major events contributing to Dnmt3b+/- lymphoma development. We conclude that Dnmt3b catalytic activity is critical to prevent B-cell transformation in vivo, whereas accessory and methylation-independent repressive functions are important to prevent T-cell transformation.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Leucemia Linfocítica Crônica de Células B/genética , Linfoma de Células B/genética , Linfoma de Células T/genética , Transtornos Mieloproliferativos/genética , Neoplasias Experimentais/genética , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA (Citosina-5-)-Metiltransferases/deficiência , Metilação de DNA , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Heterozigoto , Homozigoto , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Leucemia Linfocítica Crônica de Células B/enzimologia , Leucemia Linfocítica Crônica de Células B/patologia , Linfoma de Células B/enzimologia , Linfoma de Células B/patologia , Linfoma de Células T/enzimologia , Linfoma de Células T/patologia , Masculino , Camundongos , Camundongos Knockout , Transtornos Mieloproliferativos/enzimologia , Transtornos Mieloproliferativos/patologia , Neoplasias Experimentais/enzimologia , Neoplasias Experimentais/patologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , DNA Metiltransferase 3B
7.
Commun Biol ; 4(1): 142, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514834

RESUMO

The genetic and metabolic heterogeneity of RAS-driven cancers has confounded therapeutic strategies in the clinic. To address this, rapid and genetically tractable animal models are needed that recapitulate the heterogeneity of RAS-driven cancers in vivo. Here, we generate a Drosophila melanogaster model of Ras/Lkb1 mutant carcinoma. We show that low-level expression of oncogenic Ras (RasLow) promotes the survival of Lkb1 mutant tissue, but results in autonomous cell cycle arrest and non-autonomous overgrowth of wild-type tissue. In contrast, high-level expression of oncogenic Ras (RasHigh) transforms Lkb1 mutant tissue resulting in lethal malignant tumors. Using simultaneous multiview light-sheet microcopy, we have characterized invasion phenotypes of Ras/Lkb1 tumors in living larvae. Our molecular analysis reveals sustained activation of the AMPK pathway in malignant Ras/Lkb1 tumors, and demonstrate the genetic and pharmacologic dependence of these tumors on CaMK-activated Ampk. We further show that LKB1 mutant human lung adenocarcinoma patients with high levels of oncogenic KRAS exhibit worse overall survival and increased AMPK activation. Our results suggest that high levels of oncogenic KRAS is a driving event in the malignant transformation of LKB1 mutant tissue, and uncovers a vulnerability that may be used to target this aggressive genetic subset of RAS-driven tumors.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Genes ras , Mutação , Neoplasias Experimentais/genética , Proteínas Quinases/genética , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP/metabolismo , Adenocarcinoma de Pulmão/enzimologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/mortalidade , Animais , Animais Geneticamente Modificados , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Morte Celular , Movimento Celular , Bases de Dados Genéticas , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/enzimologia , Ativação Enzimática , Predisposição Genética para Doença , Humanos , Larva/enzimologia , Larva/genética , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Invasividade Neoplásica , Neoplasias Experimentais/enzimologia , Fenótipo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas p21(ras)/genética
8.
Small ; 17(7): e2007177, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33502119

RESUMO

Probing the dynamics and quantifying the activities of intracellular protein kinases that coordinate cell growth and division and constitute biomarkers and pharmacological targets in hyperproliferative and pathological disorders remain a challenging task. Here engineering and characterization of a nanobiosensor of the mitotic kinase CDK1, through multifunctionalization of carbon nanotubes with a CDK1-specific fluorescent peptide reporter, are described. This original reporter of CDK1 activity combines the sensitivity of a fluorescent biosensor with the unique physico-chemical and biological properties of nanotubes for multifunctionalization and efficient intracellular penetration. The functional versatility of this nanobiosensor enables implementation to quantify CDK1 activity in a sensitive and dose-dependent fashion in complex biological environments in vitro, to monitor endogenous kinase in living cells and directly within tumor xenografts in mice by fluorescence imaging, thanks to a ratiometric quantification strategy accounting for response relative to concentration in space and in time.


Assuntos
Proteína Quinase CDC2 , Nanotubos de Carbono , Neoplasias Experimentais/enzimologia , Animais , Proteína Quinase CDC2/metabolismo , Linhagem Celular Tumoral , Humanos , Camundongos , Fosforilação
9.
PLoS One ; 15(12): e0243327, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33296398

RESUMO

Carbonic anhydrase-IX (CA-IX) is attracting much attention as a target molecule for cancer treatment since high expression of CA-IX can lead to a poor prognosis of patients. We previously reported low-molecular-weight 111In/90Y complexes with a bivalent ureidosulfonamide scaffold ([111In/90Y]In/Y-US2) as cancer radiotheranostic agents for single photon emission computed tomography and radionuclide-based therapy targeting CA-IX. Here, we applied the US2 platform to positron emission tomography (PET) imaging and pharmacological therapy targeting CA-IX high-expressing tumors by introducing 68Ga and natIn, respectively. In an in vitro cell binding assay, [67Ga]Ga-US2, an alternative complex of [68Ga]Ga-US2 with a longer half-life, markedly bound to CA-IX high-expressing (HT-29) cells compared with low-expressing (MDA-MB-231) cells. In a biodistribution study with HT-29 and MDA-MB-231 tumor-bearing mice, [67Ga]Ga-US2 showed accumulation in the HT-29 tumor (3.81% injected dose/g at 60 min postinjection) and clearance from the blood pool with time. PET with [68Ga]Ga-US2 clearly visualized the HT-29 tumor in model mice at 60 min postinjection. In addition, the administration of [natIn]In-US2 to HT-29 tumor-bearing mice led to tumor growth delay and prolonged mouse survival, while no critical toxicity was observed. These results indicate that [68Ga]Ga-US2 and [natIn]In-US2 may be useful imaging and therapeutic agents targeting CA-IX, respectively, and that US2 may serve as an effective cancer theranostic platform utilizing CA-IX.


Assuntos
Antígenos de Neoplasias , Anidrase Carbônica IX , Inibidores da Anidrase Carbônica , Proteínas de Neoplasias , Neoplasias Experimentais , Tomografia por Emissão de Pósitrons , Radioisótopos de Ítrio , Animais , Antígenos de Neoplasias/metabolismo , Anidrase Carbônica IX/antagonistas & inibidores , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacocinética , Inibidores da Anidrase Carbônica/farmacologia , Células HT29 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/enzimologia , Ensaios Antitumorais Modelo de Xenoenxerto , Radioisótopos de Ítrio/química , Radioisótopos de Ítrio/farmacocinética , Radioisótopos de Ítrio/farmacologia
10.
Exp Hematol ; 90: 46-51.e2, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32910995

RESUMO

Chronic myeloid leukemia (CML) is a hematopoietic stem cell disorder caused by constitutively active BCR-ABL1 tyrosine kinase resulting from the t(9;22) Philadelphia translocation. Imatinib, a BCR-ABL1 tyrosine kinase inhibitor (TKI), is a revolutionary molecular target inhibitor for CML. However, leukemic stem cells (LSCs) eventually become resistant to imatinib and thereby cause relapse. The next-generation BCR-ABL1 TKI dasatinib is also unable to eliminate CML LSCs. On the other hand, the third-generation BCR-ABL1 TKI ponatinib is not well studied in terms of its efficacy on CML LSCs. Here, we evaluate the efficacy of ponatinib against CML LSC-containing lin-Sca-1+c-Kit+ (LSK) cells using a mouse CML-like model. To this end, we compared the efficacy of imatinib, dasatinib, and ponatinib on CML LSK cells and showed that ponatinib is more effective at eliminating CML LSK cells. Our results suggest that ponatinib could be potentially useful for achieving treatment-free remission in CML patients.


Assuntos
Proteínas de Fusão bcr-abl/antagonistas & inibidores , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Neoplasias Experimentais/tratamento farmacológico , Células-Tronco Neoplásicas/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Animais , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/enzimologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/enzimologia , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Células-Tronco Neoplásicas/patologia
11.
Molecules ; 25(12)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560527

RESUMO

Natural compounds of various origins are intensively investigated for their antitumor activity. Potential benefits of antitumor therapy can be achieved when cytotoxic agents kill cancer cells and these dying cancer cells drive adoptive immunity to the tumor. This strategy was successfully demonstrated for chemotherapeutic drugs that induce immunogenic type of cell death (ICD) with release of DAMPs (danger associated molecular patterns) and exposure of "eat me" signals. In this study, we demonstrated that recombinant human milk peptide lactaptin (RL2) induces death of cancer cells with ICD hallmarks in vitro with the release of ATP and high-mobility group box 1 protein (HMGB1) and exposure of calreticulin and HSP70 on the external cell membrane. RL2-treated cancer cells were efficiently engulfed by phagocytic cells. Using the syngeneic mouse model, we demonstrated that RL2-treated MX-7 rhabdomyosarcoma cells confer long-term immune-mediated protection against challenge with live MX-7 cells. We also analyzed the combinatorial antitumor effect of vaccination with RL2-treated cells and the inhibition of indoleamine 2,3-dioxygenase (IDO) with ethyl pyruvate. Compared to solo anti-tumor immunization with RL2-treated cells, additional chemical inhibition of IDO demonstrated better long-term antitumor responses than vaccination alone.


Assuntos
Antineoplásicos , Caseínas , Inibidores Enzimáticos , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias Experimentais/tratamento farmacológico , Vacinação , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Caseínas/química , Caseínas/farmacologia , Morte Celular , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Células MCF-7 , Camundongos , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentais/enzimologia , Neoplasias Experimentais/patologia , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia
12.
J Biol Chem ; 295(28): 9663-9675, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32467231

RESUMO

Acute myeloid leukemia (AML) with mixed lineage leukemia 1 (MLL1) gene rearrangement is characterized by increased expression of a set of homeodomain transcription factors, including homeobox A9 (HOXA9) and HOXA10. The target genes for these regulators include fibroblast growth factor 2 (FGF2) and Ariadne RBR E3 ubiquitin ligase 2 (ARIH2). FGF2 induces leukemia stem cell expansion in MLL1-rearranged AML. ARIH2 encodes TRIAD1, an E3 ubiquitin ligase required for termination of emergency granulopoiesis and leukemia suppressor function in MLL1-rearranged AML. Receptor tyrosine kinases (RTKs), including the FGF receptor, are TRIAD1 substrates that are possibly relevant to these activities. Using transcriptome analysis, we found increased activity of innate immune response pathways and RTK signaling in bone marrow progenitors from mice with MLL1-rearranged AML. We hypothesized that sustained RTK signaling, because of decreased TRIAD1 activity, impairs termination of emergency granulopoiesis during the innate immune response and contributes to leukemogenesis in this AML subtype. Consistent with this, we found aberrantly sustained emergency granulopoiesis in a murine model of MLL1-rearranged AML, associated with accelerated leukemogenesis. Treating these mice with an inhibitor of TRIAD1-substrate RTKs terminated emergency granulopoiesis, delayed leukemogenesis during emergency granulopoiesis, and normalized innate immune responses when combined with chemotherapy. Emergency granulopoiesis also hastened postchemotherapy relapse in mice with MLL1-rearranged AML, but remission was sustained by ongoing RTK inhibition. Our findings suggest that the physiological stress of infectious challenges may drive AML progression in molecularly defined subsets and identify RTK inhibition as a potential therapeutic approach to counteract this process.


Assuntos
Rearranjo Gênico , Histona-Lisina N-Metiltransferase/metabolismo , Leucemia Mieloide Aguda/enzimologia , Leucopoese , Proteína de Leucina Linfoide-Mieloide/metabolismo , Neoplasias Experimentais/enzimologia , Animais , Receptores ErbB/genética , Receptores ErbB/metabolismo , Histona-Lisina N-Metiltransferase/genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Proteína de Leucina Linfoide-Mieloide/genética , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Células-Tronco Neoplásicas/patologia , Recidiva , Transdução de Sinais/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
13.
Eur Rev Med Pharmacol Sci ; 24(8): 4368-4381, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32373974

RESUMO

OBJECTIVE: To discuss the role and mechanism of ß4GalT1 both in vivo and in vitro glioma, observe whether pathophysiological processes of glioma can be improved after ß4GalT1 is knocked down, and study whether ß4GalT1 plays a role in malignant biological processes of glioma by regulating the apoptosis and immune processes. PATIENTS AND METHODS: Firstly, the distribution difference of ß4GalT1 in tumor tissues and normal tissues was analyzed by Gene Expression Profiling Interactive Analysis (GEPIA) tumor analysis system to deduce the possible role of ß4GalT1 in glioma. Secondly, whether the malignant degree of glioma was related to the expression of ß4GalT1 and its immunity using human tumor tissues and blood lymphocyte subsets was analyzed. Thirdly, interfere lentivirus vector with ß4GalT1 and knockdown ß4GalT1 was analyzed to observe whether the malignant degree of glioma has changed. Fourthly, interfere lentivirus vector with recombinant ß4GalT protein and ß4GalT1 was analyzed to verify the effect of ß4GalT in vitro test. Fifth, interfere lentivirus vector with recombinant ß4GalT protein and ß4GalT1 was analyzed to verify effect of ß4GalT in vivo test. Finally, we discuss whether ß4GalT is involved in the biological process of glioma through inflammatory reaction. RESULTS: In the GEPIA tumor analysis system, the expression in tumor was significantly higher than that in normal tissues. The expression of ß4GalT1 in glioma tissues was higher than that in normal tissues, and the higher the malignancy of the tumor, the higher the expression of ß4GalT1 in the glioma tissues, and the lower the immune level was. The expression of IDH1, MGMT, and ki-67 was reduced, and the survival rate of the mice with glioma was improved after ß4GalT1 was knocked down. In vitro tests, the activity of tumor cells and their reproductive ability can be reduced after ß4GalT1 was knocked down, the immune level of the body can be improved, and the level of tissue apoptosis can be reduced. After recombinant ß4GalT1 was given alone, the result was opposite to that of ß4GalT1 knocked down group. In vivo tests, gross tumor volume can be reduced after ß4GalT1 was knocked down, the immune level of the body can be improved, and the level of tissue apoptosis can be reduced. After recombinant ß4GalT1 was given alone, the result was opposite to that of ß4GalT1 knocked down group. After knocking down ß4GalT1, the expression of inflammatory factors can be reduced both in vivo and in vitro, and the inflammatory microenvironment of tumors can be improved. After recombinant ß4GalT1 was given alone, the result was opposite to that of ß4GalT1 knocked down group. CONCLUSIONS: The level of ß4GalT1 expression in tumor tissues was increased. The malignant degree of glioma is related to the expression of ß4GalT1 and its immunity. The level of tumor marker can be decreased, and the survival rate of glioma model mice can be increased after ß4GalT1 is knocked down. Apoptosis and immune injury caused by tumor can be improved and gross tumor volume can be deduced after ß4GalT1 is knocked down. During the development of glioma, ß4GalT1 may play a malignant biological role through inflammatory response.


Assuntos
Neoplasias do Sistema Nervoso Central/enzimologia , Galactosiltransferases/metabolismo , Glioma/enzimologia , Animais , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Neoplasias Experimentais/enzimologia
14.
Br J Haematol ; 190(6): 877-890, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32232850

RESUMO

Future progress in the treatment of multiple myeloma (MM) requires both the characterisation of key drivers of the disease and novel, innovative approaches to tackle these vulnerabilities. The present study focussed on the pre-clinical evaluation of a novel drug class, BMI-1 modulators, in MM. We demonstrate potent activity of PTC-028 and PTC596 in a comprehensive set of in vitro and in vivo models, including models of drug resistance and stromal support. Treatment of MM cells with PTC-028 and PTC596 downregulated BMI-1 protein levels, which was found to correlate with drug activity. Surprisingly, BMI-1 was dispensable for the activity of BMI-1 modulators and MM cell growth. Our data rather point to mitotic arrest accompanied by myeloid cell leukaemia-1 (MCL-1) loss as key anti-MM mechanisms and reveal impaired MYC and AKT signalling activity due to BMI-1 modulator treatment. Moreover, we observed a complete eradication of MM after PTC596 treatment in the 5TGM.1 in vivo model and define epigenetic compounds and B cell leukaemia/lymphoma 2 homology domain 3 (BH3) mimetics as promising combination partners. These results bring into question the postulated role of BMI-1 as an essential MM gene and confirm BMI-1 modulators as potent anti-mitotic agents with encouraging pre-clinical activity that supports their rapid translation into clinical trials.


Assuntos
Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , Mitose/efeitos dos fármacos , Mieloma Múltiplo , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias Experimentais , Complexo Repressor Polycomb 1/antagonistas & inibidores , Pirazinas/farmacologia , Animais , Feminino , Humanos , Masculino , Camundongos , Mieloma Múltiplo/dietoterapia , Mieloma Múltiplo/enzimologia , Mieloma Múltiplo/patologia , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/enzimologia , Neoplasias Experimentais/patologia , Complexo Repressor Polycomb 1/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Transl Res ; 217: 11-22, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31954097

RESUMO

Metabolic remodeling contributes to the development and progression of some cancers and exposes them to vulnerabilities, including specific nutrient dependencies that can be targeted therapeutically. Arginine is a semiessential amino acid, and several cancers are unable to endogenously synthesize sufficient levels of arginine for survival and proliferation, most commonly due to reduced expression of argininosuccinate synthase (ASS1). Such cancers are dependent on arginine and they can be targeted via enzyme-mediated depletion of systemic arginine. We report the preclinical safety, antitumor efficacy, and immune-potentiating effects of pegzilarginase, a highly potent human arginine-degrading enzyme. Toxicology studies showed that pegzilarginase-mediated arginine depletion is well tolerated at therapeutic levels that elicit an antitumor growth effect. To determine which tumor types are best suited for clinical development, we profiled clinical tumor samples for ASS1 expression, which correlated with pegzilarginase sensitivity in vivo in patient-derived xenograft (PDx) models. Among the histologies tested, malignant melanoma, small cell lung cancer and Merkel cell carcinoma had the highest prevalence of low ASS1 expression, the highest proportion of PDx models responding to pegzilarginase, and the strongest correlation between low or no ASS1 expression and sensitivity to pegzilarginase. In an immune-competent syngeneic mouse model, pegzilarginase slowed tumor growth and promoted the recruitment of CD8+ tumor infiltrating lymphocytes. This is consistent with the known autophagy-inducing effects of arginine depletion, and the link between autophagy and major histocompatibility complex antigen presentation to T cells. Our work supports the ongoing clinical investigations of pegzilarginase in solid tumors and clinical combination of pegzilarginase with immune checkpoint inhibitors.


Assuntos
Antineoplásicos/farmacologia , Arginase/farmacologia , Animais , Arginase/análise , Arginase/toxicidade , Feminino , Humanos , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos ICR , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/enzimologia , Proteínas Recombinantes/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Nanoscale ; 12(3): 1886-1893, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31904049

RESUMO

The aggregation of superparamagnetic iron oxide (SPIO) nanoparticles (NPs) can greatly enhance magnetic resonance imaging (MRI) T2-weighted imaging and near-infrared (NIR) absorption in experiments. In this study, an Ac-Arg-Val-Arg-Arg-Cys(StBu)-Lys-CBT probe was designed and coupled with monodispersed carboxyl-decorated SPIO NPs to form SPIO@1NPs, which use it for intracellular self-aggregation. In vitro experiments showed that the self-aggregation of SPIO@1NPs was induced by a condensation reaction mediated by the enzyme furin in furin-overexpressing tumor cells. Moreover, the NPs in the aggregated state showed significantly higher MR r2 values and photothermal conversion efficiency than the NPs in the monodisperse state. Then, the in vivo SPIO@1NP self-aggregation in tumors can facilitate accurate MRI T2 imaging-guided photothermal therapy for effectively killing cancer cells. We believe that this basic technique, based on tumor-specific enzyme-instructed intracellular self-aggregation of NPs, could be useful for the rational synthesis of other inorganic NPs for use in the fields of tumor diagnosis and treatment.


Assuntos
Furina/metabolismo , Hipertermia Induzida , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentais , Fototerapia , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Experimentais/diagnóstico , Neoplasias Experimentais/enzimologia , Neoplasias Experimentais/terapia
17.
Cancer Immunol Res ; 8(1): 32-45, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31806638

RESUMO

Tryptophan 2,3-dioxygenase (TDO) is an enzyme that degrades tryptophan into kynurenine and thereby induces immunosuppression. Like indoleamine 2,3-dioxygenase (IDO1), TDO is considered as a relevant drug target to improve the efficacy of cancer immunotherapy. However, its role in various immunotherapy settings has not been fully characterized. Here, we described a new small-molecule inhibitor of TDO that can modulate kynurenine and tryptophan in plasma, liver, and tumor tissue upon oral administration. We showed that this compound improved the ability of anti-CTLA4 to induce rejection of CT26 tumors expressing TDO. To better characterize TDO as a therapeutic target, we used TDO-KO mice and found that anti-CTLA4 or anti-PD1 induced rejection of MC38 tumors in TDO-KO, but not in wild-type mice. As MC38 tumors did not express TDO, we related this result to the high systemic tryptophan levels in TDO-KO mice, which lack the hepatic TDO needed to contain blood tryptophan. The antitumor effectiveness of anti-PD1 was abolished in TDO-KO mice fed on a tryptophan-low diet that normalized their blood tryptophan level. MC38 tumors expressed IDO1, which could have limited the efficacy of anti-PD1 in wild-type mice and could have been overcome in TDO-KO mice due to the high levels of tryptophan. Accordingly, treatment of mice with an IDO1 inhibitor improved the efficacy of anti-PD1 in wild-type, but not in TDO-KO, mice. These results support the clinical development of TDO inhibitors to increase the efficacy of immunotherapy of TDO-expressing tumors and suggest their effectiveness even in the absence of tumoral TDO expression.See article by Hoffmann et al., p. 19.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Antígeno CTLA-4/antagonistas & inibidores , Neoplasias do Colo/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Neoplasias Experimentais/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Triptofano Oxigenase/antagonistas & inibidores , Animais , Antígeno CTLA-4/imunologia , Linhagem Celular Tumoral , Neoplasias do Colo/enzimologia , Neoplasias do Colo/imunologia , Sinergismo Farmacológico , Humanos , Cinurenina/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Experimentais/enzimologia , Neoplasias Experimentais/imunologia , Receptor de Morte Celular Programada 1/imunologia , Bibliotecas de Moléculas Pequenas/farmacologia , Triptofano/metabolismo , Triptofano Oxigenase/imunologia
18.
Genetics ; 214(1): 109-120, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31740452

RESUMO

Receptor tyrosine kinase signaling plays prominent roles in tumorigenesis, and activating oncogenic point mutations in the core pathway components Ras, Raf, or MEK are prevalent in many types of cancer. Intriguingly, however, analogous oncogenic mutations in the downstream effector kinase ERK have not been described or validated in vivo To determine if a point mutation could render ERK intrinsically active and oncogenic, we have assayed in Drosophila the effects of a mutation that confers constitutive activity upon a yeast ERK ortholog and has also been identified in a few human tumors. Our analyses indicate that a fly ERK ortholog harboring this mutation alone (RolledR80S), and more so in conjunction with the known sevenmaker mutation (RolledR80S+D334N), suppresses multiple phenotypes caused by loss of Ras-Raf-MEK pathway activity, consistent with an intrinsic activity that is independent of upstream signaling. Moreover, expression of RolledR80S and RolledR80S+D334N induces tissue overgrowth in an established Drosophila cancer model. Our findings thus demonstrate that activating mutations can bestow ERK with pro-proliferative, tumorigenic capabilities and suggest that Drosophila represents an effective experimental system for determining the oncogenicity of ERK mutants and their response to therapy.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , Proteínas de Membrana/genética , Neoplasias Experimentais/genética , Animais , Carcinogênese/genética , Carcinogênese/patologia , Proliferação de Células/fisiologia , Drosophila melanogaster/metabolismo , Feminino , Mutação com Ganho de Função , Hiperplasia , Masculino , Neoplasias Experimentais/enzimologia , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Mutação Puntual , Transdução de Sinais
19.
Genesis ; 57(10): e23323, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31218818

RESUMO

Neuroblastoma, an embryonal tumor arising from the sympathetic ganglia and adrenal medulla, is among the most intractable pediatric cancers. Although a variety of genetic changes have been identified in neuroblastoma, how they contribute to its pathogenesis remains largely unclear. Recent studies have identified alterations of the anaplastic lymphoma kinase (ALK) gene in neuroblastoma; ALK F1174L (a phenylalanine-to-leucine substitution at codon 1174) represents one of the most frequent of these somatic mutations, and is associated with amplification of the MYCN gene, the most reliable marker for the poor survival. We engineered the mouse Alk locus so that ALK F1174L is expressed by its endogenous promoter and can be induced in a spatiotemporally controlled fashion using Cre-loxP system. Although expression of ALK F1174L resulted in enhanced proliferation of sympathetic ganglion progenitors and increased the size of the sympathetic ganglia, it was insufficient to cause neuroblastoma. However, lethal neuroblastoma frequently developed in mice co-expressing ALK F1174L and MYCN, even in a genetic background where MYCN alone does not cause overt tumors. These data reveal that physiological expression of ALK F1174L significantly potentiates the oncogenic ability of MYCN in vivo. Our conditional mutant mice provide a valuable platform for investigating the pathogenesis of neuroblastoma.


Assuntos
Quinase do Linfoma Anaplásico/genética , Neoplasias Experimentais/genética , Neuroblastoma/etiologia , Animais , Carcinogênese/genética , Feminino , Gânglios Simpáticos/crescimento & desenvolvimento , Engenharia Genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes/genética , Mutagênese Insercional , Proteína Proto-Oncogênica N-Myc/biossíntese , Neoplasias Experimentais/enzimologia , Neoplasias Experimentais/etiologia , Neuroblastoma/enzimologia , Neuroblastoma/genética
20.
PLoS Comput Biol ; 15(4): e1006878, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31026276

RESUMO

Drosophila provides an inexpensive and quantitative platform for measuring whole animal drug response. A complementary approach is virtual screening, where chemical libraries can be efficiently screened against protein target(s). Here, we present a unique discovery platform integrating structure-based modeling with Drosophila biology and organic synthesis. We demonstrate this platform by developing chemicals targeting a Drosophila model of Medullary Thyroid Cancer (MTC) characterized by a transformation network activated by oncogenic dRetM955T. Structural models for kinases relevant to MTC were generated for virtual screening to identify unique preliminary hits that suppressed dRetM955T-induced transformation. We then combined features from our hits with those of known inhibitors to create a 'hybrid' molecule with improved suppression of dRetM955T transformation. Our platform provides a framework to efficiently explore novel kinase inhibitors outside of explored inhibitor chemical space that are effective in inhibiting cancer networks while minimizing whole body toxicity.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Neuroendócrino , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases , Neoplasias da Glândula Tireoide , Animais , Carcinoma Neuroendócrino/enzimologia , Carcinoma Neuroendócrino/metabolismo , Biologia Computacional/métodos , Drosophila , Modelos Biológicos , Neoplasias Experimentais/enzimologia , Neoplasias Experimentais/metabolismo , Proteínas Quinases/efeitos dos fármacos , Proteínas Quinases/metabolismo , Neoplasias da Glândula Tireoide/enzimologia , Neoplasias da Glândula Tireoide/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...