Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 450
Filtrar
1.
Sci Rep ; 14(1): 9571, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671086

RESUMO

Primary vitreoretinal lymphoma (PVRL) is a rare subtype of DLBCL and can progress into primary central nervous system lymphoma (PCNSL). To investigate the role of chronic antigenic stimulation in PVRL, we cloned and expressed B-cell receptors (BCR) from PVRL patients and tested for binding against human auto-antigens. SEL1L3, a protein with multiple glycosylation sites, was identified as the BCR target in 3/20 PVRL cases. SEL1L3 induces proliferation and BCR pathway activation in aggressive lymphoma cell lines. Moreover, SEL1L3 conjugated to a toxin killed exclusively lymphoma cells with respective BCR-reactivity. Western Blot analysis indicates the occurrence of hyper-N-glycosylation of SEL1L3 at aa 527 in PVRL patients with SEL1L3-reactive BCRs. The BCR of a PVRL patient with serum antibodies against SEL1L3 was cloned from a vitreous body biopsy at diagnosis and of a systemic manifestation at relapse. VH4-04*07 was used in both lymphoma manifestations with highly conserved CDR3 regions. Both BCRs showed binding to SEL1L3, suggesting continued dependence of lymphoma cells on antigen stimulation. These results indicate an important role of antigenic stimulation by post-translationally modified auto-antigens in the genesis of PVRL. They also provide the basis for a new treatment approach targeting unique lymphoma BCRs with ultimate specificity.


Assuntos
Receptores de Antígenos de Linfócitos B , Humanos , Receptores de Antígenos de Linfócitos B/metabolismo , Glicosilação , Linhagem Celular Tumoral , Neoplasias da Retina/genética , Neoplasias da Retina/metabolismo , Neoplasias da Retina/patologia , Neoplasias da Retina/imunologia , Autoantígenos/imunologia , Autoantígenos/metabolismo , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/imunologia , Linfoma Difuso de Grandes Células B/patologia , Linfoma Difuso de Grandes Células B/metabolismo , Feminino , Masculino , Corpo Vítreo/metabolismo , Corpo Vítreo/patologia , Pessoa de Meia-Idade , Idoso
2.
Int J Mol Sci ; 25(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38674157

RESUMO

Protein tyrosine phosphatase receptor type E (PTPRE) is a member of the "classical" protein tyrosine phosphatase subfamily and regulates a variety of cellular processes in a tissue-specific manner by antagonizing the function of protein tyrosine kinases. PTPRE plays a tumorigenic role in different human cancer cells, but its role in retinoblastoma (RB), the most common malignant eye cancer in children, remains to be elucidated. Etoposide-resistant RB cell lines and RB patients display significant higher PTPRE expression levels compared to chemosensitive counterparts and the healthy human retina, respectively. PTPRE promotor methylation analyses revealed that PTPRE expression in RB is not regulated via this mechanism. Lentiviral PTPRE knockdown (KD) induced a significant decrease in growth kinetics, cell viability, and anchorage-independent growth of etoposide-resistant Y79 and WERI RB cells. Caspase-dependent apoptosis rates were significantly increased and a re-sensitization for etoposide could be observed after PTPRE depletion. In vivo chicken chorioallantoic membrane (CAM) assays revealed decreased tumor formation capacity as well as reduced tumor size and weight following PTPRE KD. Expression levels of miR631 were significantly downregulated in etoposide-resistant RB cells and patients. Transient miR631 overexpression resulted in significantly decreased PTPRE levels and concomitantly decreased proliferation and increased apoptosis levels in etoposide-resistant RB cells. These impacts mirror PTPRE KD effects, indicating a regulation of PTPRE via this miR. Additionally, PTPRE KD led to altered phosphorylation of protein kinase SGK3 and-dependent on the cell line-AKT and ERK1/2, suggesting potential PTPRE downstream signaling pathways. In summary, these results indicate an oncogenic role of PTPRE in chemoresistant retinoblastoma.


Assuntos
Apoptose , Resistencia a Medicamentos Antineoplásicos , Etoposídeo , Neoplasias da Retina , Retinoblastoma , Humanos , Retinoblastoma/metabolismo , Retinoblastoma/genética , Retinoblastoma/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Animais , Apoptose/efeitos dos fármacos , Etoposídeo/farmacologia , Etoposídeo/uso terapêutico , Neoplasias da Retina/metabolismo , Neoplasias da Retina/genética , Neoplasias da Retina/patologia , Neoplasias da Retina/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino
3.
Stem Cell Res ; 76: 103373, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452707

RESUMO

Complete loss of RB1 causes retinoblastoma. Here, we report the generation of three RB1-/- iPSC lines using CRISPR/Cas9 based editing at exon 18 of RB1 in a healthy control hiPSC line. The edited cells were clonally expanded, genotyped and characterized to establish the mutant lines. Two of the mutant lines are compound heterozygous, with different in-del mutations in each of their alleles, while the third mutant line is homozygous, with identical edits in both alleles. All lines maintained their stemness, pluripotency, formed embryoid bodies with cell types of all three lineages, displayed a normal karyotype and lost RB1 expression.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neoplasias da Retina , Retinoblastoma , Humanos , Retinoblastoma/genética , Retinoblastoma/metabolismo , Sistemas CRISPR-Cas/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Neoplasias da Retina/genética , Neoplasias da Retina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Ligação a Retinoblastoma/genética
4.
Biomed Pharmacother ; 174: 116437, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522240

RESUMO

Retinoblastoma (RB) is a type of pediatric solid tumor in the fundus. The lack of precision therapies combined with the difficulty of delivering small interfering RNA (siRNA) into the eyes means that there is currently no nucleic acid-based therapy for RB in clinical practice. Here, we reported on anti-GD2 and glutathione-responsive spherical nucleic acids (SNAs), loaded with siRNA and the inhibitor NVP-CGM097, which jointly blocked the oncogenic factor n in RB cells (Y79 and WERI-RB-1). The SNAs were formed through the self-assembly of bifunctional cholesterol amphiphiles containing aptamers that specifically targeted GD2-positive RB cells, allowing for the formation of an SNA with a dense DNA shell. The aptamer/siRNA component functioned both as a carrier and a payload, enhancing the specific recognition and delivery of both components and constituting an active agent for MDM2 regulation. Following SNA endocytosis by RB cells, siRNA and NVP-CGM097 were released from the SNA particles by glutathione, which synergistically blocked the MDM2-p53 pathway, increasing p53 protein content and inducing cell apoptosis. This study showed a potent antitumor effect following intravitreal injection of SNAs in Y79 tumor-bearing mice through clinical manifestation and tumor pathological analysis. In hematological analysis and hepatotoxicity assays, SNAs were safer for mice than melphalan, the favored drug for treating RB in clinical practice. Our results illustrated the potential of intravitreally injected SNAs as a precision medicine for treating RB.


Assuntos
Aptâmeros de Nucleotídeos , Proteínas Proto-Oncogênicas c-mdm2 , RNA Interferente Pequeno , Retinoblastoma , Animais , Humanos , Camundongos , Apoptose/efeitos dos fármacos , Aptâmeros de Nucleotídeos/farmacologia , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/química , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Neoplasias da Retina/tratamento farmacológico , Neoplasias da Retina/patologia , Neoplasias da Retina/metabolismo , Neoplasias da Retina/genética , Retinoblastoma/tratamento farmacológico , Retinoblastoma/patologia , Retinoblastoma/metabolismo , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Endogâmicos ICR , Feminino
5.
Stem Cell Res ; 76: 103329, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38335663

RESUMO

Retinoblastoma is a pediatric intraocular cancer caused by biallelic inactivation of RB1 gene in retinal progenitor cells. Here, we report the generation of a patient-specific induced pluripotent stem cell (iPSC) line (LVPEIi002-A) from a patient diagnosed with retinoblastoma and showing familial inheritance of a nonsense mutation (c.1735C > T) within exon 18 of one of the two alleles. This RB1+/- iPSC line, LVPEIi002-A was generated by reprogramming the peri-orbital fat tissue derived mesenchymal cells and was stably expanded and characterized. It maintains the stemness, pluripotency, normal karyotype, and forms embryoid bodies comprising of all three lineage committed progenitor cells.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neoplasias da Retina , Retinoblastoma , Criança , Humanos , Retinoblastoma/genética , Retinoblastoma/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , Retina/metabolismo , Neoplasias da Retina/genética , Neoplasias da Retina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Ligação a Retinoblastoma/genética
6.
Glia ; 72(5): 872-884, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38258347

RESUMO

RB1 deficiency leads to retinoblastoma (Rb), the most prevalent intraocular malignancy. Tumor-associated macrophages (TAMs) are related to local inflammation disorder, particularly by increasing cytokines and immune escape. Microglia, the unique resident macrophages for retinal homeostasis, are the most important immune cells of Rb. However, whether RB1 deficiency affects microglial function remain unknown. In this study, microglia were successfully differentiated from Rb patient- derived human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs), and then we investigated the function of RB1 in microglia by live imaging phagocytosis assay, immunofluorescence, RNA-seq, qRT-PCR, ELISA and retina organoids/microglia co-culturing. RB1 was abundantly expressed in microglia and predominantly located in the nucleus. We then examined the phagocytosis ability and secretion function of iMGs in vitro. We found that RB1 deficiency did not affect the expression of microglia-specific markers or the phagocytic abilities of these cells by live-imaging. Upon LPS stimulation, RB1-deficient microglia displayed enhanced innate immune responses, as evidenced by activated MAPK signaling pathway and elevated expression of IL-6 and TNF-α at both mRNA and protein levels, compared to wildtype microglia. Furthermore, retinal structure disruption was observed when retinal organoids were co-cultured with RB1-deficient microglia, highlighting the potential contribution of microglia to Rb development and potential therapeutic strategies for retinoblastoma.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neoplasias da Retina , Retinoblastoma , Humanos , Retinoblastoma/genética , Retinoblastoma/metabolismo , Retinoblastoma/patologia , Microglia/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Retina , Neoplasias da Retina/genética , Neoplasias da Retina/metabolismo , Neoplasias da Retina/patologia
7.
Curr Med Sci ; 44(1): 223-231, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38277016

RESUMO

OBJECTIVE: Retinoblastoma (RB) is a prevalent type of eye cancer in youngsters. Prospero homeobox 1 (Prox1) is a homeobox transcriptional repressor and downstream target of the proneural gene that is relevant in lymphatic, hepatocyte, pancreatic, heart, lens, retinal, and cancer cells. The goal of this study was to investigate the role of Prox1 in RB cell proliferation and drug resistance, as well as to explore the underlying Notch1 mechanism. METHODS: Human RB cell lines (SO-RB50 and Y79) and a primary human retinal microvascular endothelial cell line (ACBRI-181) were used in this study. The expression of Prox1 and Notch1 mRNA and protein in RB cells was detected using quantitative real time-polymerase chain reaction (RT-qPCR) and Western blotting. Cell proliferation was assessed after Prox1 overexpression using the Cell Counting Kit-8 and the MTS assay. Drug-resistant cell lines (SO-RB50/vincristine) were generated and treated with Prox1 to investigate the role of Prox1 in drug resistance. We employed pcDNA-Notch1 to overexpress Notch1 to confirm the role of Notch1 in the protective function of Prox1. Finally, a xenograft model was constructed to assess the effect of Prox1 on RB in vivo. RESULTS: Prox1 was significantly downregulated in RB cells. Overexpression of Prox1 effectively decreased RB cell growth while increasing the sensitivity of drug-resistant cells to vincristine. Notch1 was involved in Prox1's regulatory effects. Notch1 was identified as a target gene of Prox1, which was found to be upregulated in RB cells and repressed by increased Prox1 expression. When pcDNA-Notch1 was transfected, the effect of Prox1 overexpression on RB was removed. Furthermore, by downregulating Notch1, Prox1 overexpression slowed tumor development and increased vincristine sensitivity in vivo. CONCLUSION: These data show that Prox1 decreased RB cell proliferation and drug resistance by targeting Notch1, implying that Prox1 could be a potential therapeutic target for RB.


Assuntos
Neoplasias da Retina , Retinoblastoma , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Resistência a Medicamentos , Neoplasias da Retina/tratamento farmacológico , Neoplasias da Retina/genética , Neoplasias da Retina/metabolismo , Retinoblastoma/tratamento farmacológico , Retinoblastoma/genética , Retinoblastoma/metabolismo , Vincristina/farmacologia
8.
Mol Biotechnol ; 66(1): 102-111, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37041423

RESUMO

Retinoblastoma (RB) is a malignant ocular cancer that affects children. Several microRNAs (miRNAs) have been implicated in RB regulation. The present study aimed to investigate the role of miR-4529-3p in RB pathogenesis. Scratch, Transwell, and Cell Counting Kit (CCK)-8 assays were conducted to assess the migratory, invasive, and proliferative abilities of RB cells. The expression levels of miR-4529-3p, RB1, and ERK pathway-related proteins were analyzed using western blotting and real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). Target relationships were verified using dual-luciferase reporter experiments. A murine RB model was developed to analyze the effects of miR-4529-3p on RB tumor growth in vivo. Our experiments revealed high levels of miR-4529-3p and low levels of RB1 in RB tissues. Functional analyses revealed that the migratory, invasive, and proliferative abilities of RB cells were repressed by miR-4529-3p inhibition. Similarly, p-ERK 1/2 protein levels were suppressed by miR-4529-3p inhibition. Furthermore, downregulation of miR-4529-3p limited tumor growth in vivo. Mechanistically, miR-4259-3p targets RB1. Interestingly, RB1 silencing abrogated the alleviative effects of miR-4529-3p downregulation in RB cells. MiR-4529-3p promotes RB progression by inhibiting RB1 and activating the ERK pathway. This evidence suggests that the miR-4529-3p/RB1 regulatory axis may be a prospective target for RB treatment in clinical settings.


Assuntos
MicroRNAs , Neoplasias da Retina , Retinoblastoma , Criança , Humanos , Animais , Camundongos , Retinoblastoma/genética , Retinoblastoma/metabolismo , Retinoblastoma/patologia , Sistema de Sinalização das MAP Quinases/genética , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais , Neoplasias da Retina/genética , Neoplasias da Retina/metabolismo , Neoplasias da Retina/patologia , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Ligação a Retinoblastoma/genética , Proteínas de Ligação a Retinoblastoma/metabolismo
9.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 1003-1013, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37555853

RESUMO

Retinoblastoma is a prevalent pediatric intraocular tumor. The suppressive effect of gentiopicroside (GPS) has been reported on various tumors. This study sought to determine the effect of GPS on retinoblastoma cell proliferation, apoptosis, invasion, and epithelial-mesenchymal transition (EMT), and tumorigenesis in nude mice. The effect and mechanism of GPS on growth, apoptosis, invasion, and EMT were determined by cell counting kit-8 (CCK-8), western blot, flow cytometry, and transwell assays in retinoblastoma cells. Y79 cells were injected into the vitreous cavity of BALB/c­nude mice to construct a retinoblastoma mouse model. Tumor growth and mouse weight were monitored for sequential 5 weeks. The effect of GPS in vivo was assessed by immunohistochemistry (IHC), terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL), and western blot assays. GPS decreased the cell viability of both Y79 and Weri-Rb1 cells with the IC50 of 18.85 µM and 27.57 µM, respectively. Besides, GPS reduced the relative expression of proteins involved in proliferation and EMT, and the number of invading cells, while increased the apoptosis rate and the relative expressions of apoptosis proteins in retinoblastoma cells. Mechanically, GPS decreased the relative protein level of PI3K/AKT pathway, which was then recovered after 740 Y-P was applied. Correspondingly, 740 Y-P reversed the inhibitory effect of GPS on growth, invasion, and EMT, and the increased effect of GPS on apoptosis. Additionally, GPS decreased tumor volume and weight as well as the relative level of Ki-67, VEGF, p-PI3K/PI3K, and p-AKT/AKT, while increased the apoptosis rate in vivo. GPS inhibited retinoblastoma cell proliferation and invasion via deactivating the PI3K/AKT pathway in both cell and animal models.


Assuntos
Glucosídeos Iridoides , Neoplasias da Retina , Retinoblastoma , Criança , Humanos , Animais , Camundongos , Retinoblastoma/tratamento farmacológico , Retinoblastoma/metabolismo , Retinoblastoma/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Proliferação de Células , Apoptose , Carcinogênese , Neoplasias da Retina/tratamento farmacológico , Neoplasias da Retina/metabolismo , Neoplasias da Retina/patologia , Movimento Celular
10.
Cutan Ocul Toxicol ; 43(1): 69-74, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37908111

RESUMO

PURPOSE: Retinoblastoma (RB) is one of the most important cancers in children with a higher rate of prevalence in developing countries. Despite different approaches to the treatment of RB, it seems necessary to discover a new approach to its treatment. Today, mitochondria are recognised as an important target in the treatment of cancer. Superparamagnetic iron oxide nanoparticles (SPIONs) have been studied by researchers due to their important biological effects. METHODS: In this study, the effects of SPIONs on mitochondria isolated from Y79 retinoblastoma cells were investigated. RESULTS: The results showed that SPIONs were able to increase the reactive oxygen species (ROS) level and subsequently damage the mitochondrial membrane and release cytochrome c a as one of the important pro-apoptotic proteins of RB mitochondria. Furthermore, the results indicated a decrease in cell viability and an increase in caspase-3 activity in Y79 retinoblastoma cells. CONCLUSIONS: These events can lead to the killing of cancerous mitochondria. Our results suggest that SPIONs can cause mitochondrial dysfunction and death in RB mitochondria.


Assuntos
Neoplasias da Retina , Retinoblastoma , Criança , Humanos , Retinoblastoma/tratamento farmacológico , Retinoblastoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Nanopartículas Magnéticas de Óxido de Ferro/toxicidade , Mitocôndrias , Neoplasias da Retina/tratamento farmacológico , Neoplasias da Retina/metabolismo
11.
Stem Cell Res ; 72: 103200, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37708614

RESUMO

Retinoblastoma (RB) is a common intraocular malignancy mostly caused by variation of the tumour suppressor gene RB1. In this study, we successfully generated two induced pluripotent stem cell (iPSC) lines from an infant with non-heritable RB. Both cell clones exhibited typical iPSC characteristics with normal karyotypes, consistent pluripotency markers expression and the capability of trilineage differentiation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neoplasias da Retina , Retinoblastoma , Lactente , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Retinoblastoma/genética , Retinoblastoma/metabolismo , Diferenciação Celular/genética , Neoplasias da Retina/genética , Neoplasias da Retina/metabolismo , Neoplasias da Retina/patologia , Túnica Conjuntiva/metabolismo , Túnica Conjuntiva/patologia
12.
Exp Eye Res ; 233: 109542, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37331647

RESUMO

Retinoblastoma (Rb) is a rare malignant disorder affecting the developing retina of children under the age of five. Chemotherapeutic agents used for treating Rb have been associated with defects of the retinal pigment epithelium (RPE), such as hyperplasia, gliosis, and mottling. Herein, we have developed two pluripotent stem cell (PSC)-RPE models to assess the cytotoxicity of known Rb chemotherapeutics such as Melphalan, Topotecan and TW-37. Our findings demonstrate that these drugs alter the RPE by decreasing the monolayer barrier's trans-epithelial resistance and affecting the cells' phagocytic activity. Transcriptional analyses demonstrate an altered expression of genes involved in melanin and retinol processing, tight junction and apical-basal polarity pathways in both models. When applied within the clinical range, none of the drug treatments caused significant cytotoxic effects, changes to the apical-basal polarity, tight junction network or cell cycle. Together, our results demonstrate that although the most commonly used Rb chemotherapeutic drugs do not cause cytotoxicity in RPE, their application in vitro leads to compromised phagocytosis and strength of the barrier function, in addition to changes in gene expression that could alter the visual cycle in vivo. Our data demonstrate that widely used Rb chemotherapeutic drugs can have a deleterious impact on RPE cells and thus great care has to be exercised with regard to their delivery so the adjacent healthy RPE is not damaged during the course of tumor eradication.


Assuntos
Neoplasias da Retina , Retinoblastoma , Criança , Humanos , Epitélio Pigmentado da Retina/metabolismo , Retinoblastoma/tratamento farmacológico , Retinoblastoma/genética , Retinoblastoma/metabolismo , Retina , Neoplasias da Retina/tratamento farmacológico , Neoplasias da Retina/genética , Neoplasias da Retina/metabolismo , Expressão Gênica , Diferenciação Celular
13.
Retina ; 43(6): 1005-1009, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36735414

RESUMO

PURPOSE: Primary vitreoretinal lymphoma is the most common intraocular lymphoproliferative disorder. We evaluated the diagnostic yield of pars plana vitrectomy, specifically using modern high cut rate dual-cycle cutters, on in vitro cell viability and diagnostic yield. METHODS: Human Burkitt lymphoma cell line Namalwa at 2 x 10^5 cells/mL was aspirated by 25-gauge dual-blade guillotine-type vitrectomy at five speeds (500, 1,000, 4,000, 7,500, or 15,000 cuts per minute). Cell viability and diagnostic yield in each subtype group were determined using hemocytometry, viable cell count using Cell Counting Kit-8, and pathologist-guided manual count. RESULTS: No significant deviation in cell count was identified in any cut rate by ANOVA ( P = 0.61), and no trends in the number of viable cells were identified across cut rates (R 2 = 0.188, P = 0.47). Among histologic cell counts per cut-rate, neither linear regression (R = 0.531, P = 0.16) nor ANOVA ( P = 0.096) were statistically significant. CONCLUSION: There was no significant degradation in the number of viable cells with increasing cut speed. These results suggest that in contrast to previous findings using 20g or 23g vitrectomy for diagnostic vitrectomy, modern vitrectomy systems may be used at up to 15,000 cpm without compromising the viability of lymphoma cells.


Assuntos
Neoplasias Oculares , Linfoma Intraocular , Linfoma , Neoplasias da Retina , Humanos , Vitrectomia/métodos , Corpo Vítreo/patologia , Linfoma Intraocular/diagnóstico , Linfoma Intraocular/cirurgia , Linfoma Intraocular/metabolismo , Neoplasias da Retina/diagnóstico , Neoplasias da Retina/cirurgia , Neoplasias da Retina/metabolismo , Neoplasias Oculares/diagnóstico , Neoplasias Oculares/cirurgia , Neoplasias Oculares/metabolismo , Linfoma/diagnóstico , Linfoma/cirurgia , Biópsia
14.
Biotechnol J ; 18(5): e2200518, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36808896

RESUMO

BACKGROUND: Retinoblastoma (Rb) is a rare cancer of the retina that occurs during early childhood. The disease is relatively rare but aggressive, accounting for ∼3% of childhood cancers. Treatment modalities encompass the administration of large doses of chemotherapeutic drugs, which result in multiple side-effects. Therefore, it is essential to have safe and effective newer therapies and suitable physiologically relevant, alternative-to-animal, in vitro cell culture-based models to enable rapid and efficient evaluation of potential therapies. METHODOLOGY: This investigation was focused on the development of a triple co-culture model comprising Rb, retinal epithelium, and choroid endothelial cells, using a protein coating cocktail, to recapitulate this ocular cancer under in vitro conditions. This resulting model was used for screening drug toxicity, based on the growth profile of Rb cells, using carboplatin as the model drug. Further, a combination of bevacizumab and carboplatin was evaluated using the developed model, to lower the concentration of carboplatin and thereby reduce its physiological side-effects. MAJOR RESULTS: The effect of drug treatment on the triple co-culture was assessed by increase in the apoptotic profile of Rb cells. Further, the barrier properties were found to be lower with a decrease in the angiogenetic signals that included expression of vimentin. Measurement of cytokine levels signified reduced inflammatory signals due to the combinatorial drug treatment. CONCLUSIONS: These findings validated that the triple co-culture Rb model was suitable for evaluating anti-Rb therapeutics and could thereby decrease the immense load on animal trials, which are the primary screens employed for evaluating retinal therapies.


Assuntos
Neoplasias da Retina , Retinoblastoma , Animais , Humanos , Retinoblastoma/tratamento farmacológico , Retinoblastoma/metabolismo , Carboplatina/uso terapêutico , Células Endoteliais/metabolismo , Retina/metabolismo , Neoplasias da Retina/tratamento farmacológico , Neoplasias da Retina/metabolismo
15.
Exp Eye Res ; 226: 109340, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36476400

RESUMO

Retinoblastoma (RB) is the most common neoplasm found in the eye of children. There are increasing interests to develop targeted gene therapy for this disease. This study was performed to investigate the impact of long non-coding RNA (lncRNA) MEG3 on the biological features of RB cells. Vector overexpressing MEG3 was constructed and introduced into two RB cell lines. Transfected RB cells were assessed for proliferation, apoptosis, migration ability, expression levels of important genes in the PI3K/Akt/mTOR signaling pathway using qRT-PCR and Western blot analysis. Xenograft mouse models were constructed to determine the tumorigenicity of RB cells overexpressing MEG3. MEG3 mRNA level was significantly lower in RB cells than in non-cancer cells (p < 0.01). Overexpressing MEG3 resulted in significant reduction in cell proliferation (p < 0.05), migration (p < 0.01) and significant increase in apoptosis (p < 0.01). After overexpressing MEG3, p-PI3K, p-Akt and p-mTOR levels were significantly downregulated (p < 0.01). Furthermore, in the xenograft model, RB cells overexpressing MEG3 generated significantly smaller tumors as compared to RB cells that did not overexpress MEG3 (p < 0.05). Our data suggest that MEG3 increases apoptosis and reduces tumorigenicity of RB cells through inactivating the PI3K/Akt/mTOR pathway. Therefore, MEG3 could be further investigated as a potential new therapeutic agent and target for RB therapy.


Assuntos
RNA Longo não Codificante , Retinoblastoma , Animais , Humanos , Camundongos , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias da Retina/genética , Neoplasias da Retina/metabolismo , Neoplasias da Retina/patologia , Retinoblastoma/genética , Retinoblastoma/metabolismo , Retinoblastoma/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo
16.
Ocul Immunol Inflamm ; 31(3): 506-514, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35404750

RESUMO

OBJECTIVE: LINC00488 confers oncogenic activity in the progression of some tumors. Hence, the target of the study was about to specify LINC00488-mediated network in retinoblastoma (RB). METHODS: LINC00488 expression was tested in RB clinical tissues. siRNA targeting LINC00488 or miR-30a-5p mimic was introduced into RB cell line (Y79) to observe cellular biological functions. The relationship between LINC00488, miR-30a-5p and EPHB2 was verified. Afterward, the role of miR-30a-5p involved in RB through targeted regulation of EPHB2 was probed in vitro and in vivo. RESULTS: LINC00488 was induced in RB tissue and cells. LINC00488 knockdown or miR-30a-5p upregulation depressed the malignant activities of Y79 cells. LINC00488 could sponge miR-30a-5p that targeted EPHB2. EPHB2, and EPHB2 overexpression counteracted miR-30a-5p restoration-induced inhibition of Y79 cell development in vitro and in vivo. CONCLUSION: LINC00488 induces tumorigenicity in RB by binding to miR-30a-5p to target EPHB2, which may offer a new clue of RB treatment from an lncRNA-miRNA-mRNA network.


Assuntos
MicroRNAs , RNA Longo não Codificante , Receptor EphB2 , Neoplasias da Retina , Retinoblastoma , Humanos , Linhagem Celular Tumoral , Proliferação de Células , MicroRNAs/metabolismo , Neoplasias da Retina/metabolismo , Neoplasias da Retina/patologia , Retinoblastoma/metabolismo , Retinoblastoma/patologia , RNA Longo não Codificante/metabolismo , Receptor EphB2/metabolismo
17.
Funct Integr Genomics ; 23(1): 13, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36547723

RESUMO

Retinoblastoma (RB), the most common malignant retinal tumor among children under 3 years old, is lethal if left untreated. Early diagnosis, together with timely and effective treatment, is important to improve retinoblastoma-related outcomes. Circular RNAs (circRNAs), a new class of non-coding RNAs with the capacity to regulate cellular activities, have great potential in retinoblastoma diagnosis and treatment. Recent studies have identified circular RNAs that regulate multiple cellular processes involved in retinoblastoma, including cell viability, proliferation, apoptosis, autophagy, migration, and invasion. Six circular RNAs (circ-FAM158A, circ-DHDDS, circ-E2F3, circ-TRHDE, circ-E2F5, and circ-RNF20) promote disease progression and metastasis in retinoblastoma and function as oncogenic factors. Other circular RNAs, such as circ-TET1, circ-SHPRH, circ-MKLN1, and circ-CUL2, play tumor suppressive roles in retinoblastoma. At present, the studies on the regulatory mechanism of circular RNAs in retinoblastoma are not very clear. The purpose of this review is to summarize recent studies on the functional roles and molecular mechanisms of circular RNAs in retinoblastoma and highlight novel strategies for retinoblastoma diagnosis, prognosis, and treatment.


Assuntos
MicroRNAs , RNA Circular , Neoplasias da Retina , Retinoblastoma , Criança , Pré-Escolar , Humanos , Apoptose , Linhagem Celular Tumoral , Proliferação de Células/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Retina/diagnóstico , Neoplasias da Retina/metabolismo , Neoplasias da Retina/terapia , Retinoblastoma/diagnóstico , Retinoblastoma/metabolismo , Retinoblastoma/terapia , RNA Circular/genética , RNA Circular/metabolismo
18.
Mol Metab ; 66: 101630, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36343919

RESUMO

OBJECTIVE: Bone is a highly dynamic organ that undergoes constant bone formation and remodeling, and glucose as a major nutrient is necessary for bone formation and remodeling. Retinoblastoma (Rb1) is a critical regulator of mesenchymal stem cells (MSCs) fate, but how Rb1 regulates bone formation and remodeling is poorly understood. METHODS: We generated MSCs- and osteoprogenitors-specific Rb1 knockout mouse models and utilized these models to explore the function and mechanism of Rb1 in regulating bone formation and remodeling in vivo and in vitro primary cell culture. RESULTS: Rb1 deficiency in MSCs significantly increased bone mass and impaired osteoclastogenesis. Consistently, depletion of Rb1 in osteoprogenitors significantly promoted bone formation. Mechanistically, loss of Rb1 in MSCs elevated YAP nuclear translocation and transcriptional activity of YAP/TEAD1 complex, thereby increasing the transcriptional expression of Glut1 and OPG. Moreover Prx1-Cre; Rb1f/f mice displayed hypoglycemia with increased systemic glucose tolerance instead of increased insulin level. In vitro data revealed that Rb1-mutant MSCs enhanced glucose uptake and lactate and ATP production. Increased osteogenesis caused by increased glucose metabolism and decreased osteoclastogenesis caused by increased expression of OPG eventually resulted in increased bone formation and remodeling. CONCLUSIONS: Collectively, these findings demonstrated that Rb1 in MSCs inhibits YAP-medicated Glut1 and OPG expression to control glucose metabolism, osteogenesis and osteoclastogenesis during bone formation and remodeling, which provide new insights that controlling Rb1 signaling may be a potential strategy for osteopetrosis.


Assuntos
Células-Tronco Mesenquimais , Neoplasias da Retina , Retinoblastoma , Masculino , Camundongos , Animais , Osteogênese/fisiologia , Retinoblastoma/metabolismo , Células-Tronco Mesenquimais/metabolismo , Neoplasias da Retina/metabolismo , Glucose/metabolismo
19.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36362243

RESUMO

Aqueous humor (AH) can be easily and safely used to evaluate disease-specific biomarkers in ocular disease. The aim of this study was to identify specific proteins biomarkers in the AH of retinoblastoma (RB) patients at various stages of the disease. We analyzed the proteome of 53 AH samples using high-resolution mass spectrometry. We grouped the samples according to active vitreous seeding (Group 1), active aqueous seeding (Group 2), naive RB (group 3), inactive RB (group 4), and congenital cataracts as the control (Group 5). We found a total of 889 proteins in all samples. Comparative parametric analyses among the different groups revealed three additional proteins expressed in the RB groups that were not expressed in the control group. These were histone H2B type 2-E (HISTH2B2E), InaD-like protein (PATJ), and ubiquitin conjugating enzyme E2 V1 (UBE2V1). Upon processing the data of our study with the OpenTarget Tool software, we found that glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and CD44 were more highly expressed in the RB groups. Our results provide a proteome database regarding AH related to RB disease that may be used as a source of biomarkers. Further prospective studies should validate our finding in a large cohort of RB patients.


Assuntos
Neoplasias da Retina , Retinoblastoma , Humanos , Retinoblastoma/metabolismo , Humor Aquoso/metabolismo , Proteômica , Proteoma/metabolismo , Estudos Prospectivos , Biomarcadores/metabolismo , Neoplasias da Retina/metabolismo
20.
Sheng Wu Gong Cheng Xue Bao ; 38(10): 3809-3824, 2022 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-36305411

RESUMO

Retinoblastoma (RB) is the most common intraocular malignant tumor in infants and young children. The key causative factors in the progression of RB remain unclear. Therefore, identifying genes closely associated with RB progression may provide important clues for disease diagnosis and gene therapy. However, tumor tissues have strong cellular heterogeneity. There may be significant differences in cell function and gene expression among cells in different pathological states. In this study, we downloaded single-cell transcriptome sequencing data of RB tumors and adjacent tissues from the GEO public database. Subsequently, we analyzed RB tumor transcriptional profiles with different disease duration at the single-cell level and identified cell groups and gene sets potentially associated with RB progression. The results showed that the tumor tissue and the adjacent tissues had overall consistency in the single-cell transcriptional map, but there were obvious differences in the distribution proportions of G1 phase cells, G2 phase cells, and microglia cells of cone precursors in RB tumor and the adjacent tissues. Furthermore, the role of three cell populations in the progression of RB tumors was emphatically analyzed. We found that in the early stage of RB tumors, cone precursor cells proliferated abnormally in G1 phase. With the progression of RB tumors, the proportion of cone precursor cells in G2 phase increased significantly. Meanwhile, the results of differential analysis of microglial populations during RB progression showed that the key genes mainly involved in immune response include RPL23, B2M, and HLA superfamily genes. This study provides new perspectives and data resources for the research of RB pathogenesis and progress.


Assuntos
Neoplasias da Retina , Retinoblastoma , Criança , Lactente , Humanos , Pré-Escolar , Retinoblastoma/genética , Retinoblastoma/metabolismo , Retinoblastoma/patologia , Transcriptoma , Neoplasias da Retina/genética , Neoplasias da Retina/metabolismo , Neoplasias da Retina/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...