Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
Vitam Horm ; 114: 23-51, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32723545

RESUMO

Glutamatergic synapses mediate fast synaptic transmission in the central nervous system. New developments highlight the importance of the synapse structural and molecular remodeling during development, aging and in neurological disorders. This chapter summarizes key structural and molecular aspects of the presynaptic and postsynaptic components of glutamatergic synapses in the brain. In addition, this chapter describes how the structure of the postsynaptic density and ionotropic glutamate content contribute to the function of auditory nerve synapses in the lower auditory brainstem.


Assuntos
Tronco Encefálico/citologia , Nervo Coclear/fisiologia , Glutamatos/metabolismo , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Nervo Coclear/ultraestrutura , Sinapses/ultraestrutura
2.
Int J Neurosci ; 129(6): 580-587, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30475092

RESUMO

AIMS: Hearing loss is the most common form of sensory impairment in humans. Short impulses of a high intensity noise can trigger sudden hearing loss, which is generally irreversible and associated with structural tissue damage of the cochlea and auditory nerve. It is well established that myelination is essential for the rapid propagation of action potentials along axons, and that Schwann cells are responsible for myelin sheath production in the peripheral nervous system. In the cochlea, spiral ganglion neuron axons are myelinated by Schwann cells. This myelin contributes to axonal protection and allows for efficient action potential transmission along the auditory nerve. For this reason, here we studie the morphological changes on cochlear hair cells and myelin sheaths of the auditory nerve, directly linked to hearing impairment induced by acoustic trauma. MATERIAL AND METHODS: To study the auditory functions, auditory brainstem responses and distortion products were measured at baseline, 2 days, and 21 days after trauma in rats. Then, scanning and transmission electron microscopy techniques were performed to analyze cochleae and the auditory nerve at 21 days after trauma. RESULTS: We observed that acoustic trauma induced cochlear outer hair cell loss and fusion of inner hair cell stereocilia. We also observed an axonal loss and myelin sheath disorganization of the auditory nerve. CONCLUSIONS: These data confirm that a strong acoustic trauma induced histological changes in the cochlea and auditory nerve, leading to permanent hearing loss.


Assuntos
Nervo Coclear/patologia , Células Ciliadas Auditivas/patologia , Perda Auditiva Provocada por Ruído/patologia , Bainha de Mielina/patologia , Animais , Nervo Coclear/ultraestrutura , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Células Ciliadas Auditivas/ultraestrutura , Perda Auditiva Provocada por Ruído/fisiopatologia , Masculino , Bainha de Mielina/ultraestrutura , Degeneração Neural/patologia , Ratos
3.
Brain Struct Funct ; 222(8): 3375-3393, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28397107

RESUMO

The neurotransmitter receptor subtype, number, density, and distribution relative to the location of transmitter release sites are key determinants of signal transmission. AMPA-type ionotropic glutamate receptors (AMPARs) containing GluA3 and GluA4 subunits are prominently expressed in subsets of neurons capable of firing action potentials at high frequencies, such as auditory relay neurons. The auditory nerve (AN) forms glutamatergic synapses on two types of relay neurons, bushy cells (BCs) and fusiform cells (FCs) of the cochlear nucleus. AN-BC and AN-FC synapses have distinct kinetics; thus, we investigated whether the number, density, and localization of GluA3 and GluA4 subunits in these synapses are differentially organized using quantitative freeze-fracture replica immunogold labeling. We identify a positive correlation between the number of AMPARs and the size of AN-BC and AN-FC synapses. Both types of AN synapses have similar numbers of AMPARs; however, the AN-BC have a higher density of AMPARs than AN-FC synapses, because the AN-BC synapses are smaller. A higher number and density of GluA3 subunits are observed at AN-BC synapses, whereas a higher number and density of GluA4 subunits are observed at AN-FC synapses. The intrasynaptic distribution of immunogold labeling revealed that AMPAR subunits, particularly GluA3, are concentrated at the center of the AN-BC synapses. The central distribution of AMPARs is absent in GluA3-knockout mice, and gold particles are evenly distributed along the postsynaptic density. GluA4 gold labeling was homogenously distributed along both synapse types. Thus, GluA3 and GluA4 subunits are distributed at AN synapses in a target-cell-dependent manner.


Assuntos
Nervo Coclear/metabolismo , Núcleo Coclear/metabolismo , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Animais , Nervo Coclear/ultraestrutura , Núcleo Coclear/ultraestrutura , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vias Neurais/metabolismo , Neurônios/ultraestrutura , Subunidades Proteicas , Receptores de AMPA/genética , Sinapses/ultraestrutura
4.
J Histochem Cytochem ; 65(3): 173-184, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28056182

RESUMO

In response to toxic stressors, cancer cells defend themselves by mobilizing one or more epidermal growth factor receptor (EGFR) cascades that employ xeroderma pigmentosum-A (XPA) to repair damaged genes. Recent experiments discovered that neurons within the auditory nerve exhibit basal levels of EGFR+XPA co-expression. This finding implied that auditory neurons in particular or neurons in general have the capacity to mobilize an EGFR+XPA defense. Therefore, the current study tested the hypothesis that noise stress would alter the expression pattern of EGFR/XPA within the auditory nerve. Design-based stereology was used to quantify the proportion of neurons that expressed EGFR, XPA, and EGFR+XPA with and without noise stress. The results revealed an intricate neuronal response that is suggestive of alterations to both co-expression and individual expression of EGFR and XPA. In both the apical and middle cochlear coils, the noise stress depleted EGFR+XPA expression. Furthermore, there was a reduction in the proportion of neurons that expressed XPA-alone in the middle coils. However, the noise stress caused a significant increase in the proportion of neurons that expressed EGFR-alone in the middle coils. The basal cochlear coils failed to mobilize a significant response to the noise stress. These results suggest that EGFR and XPA might be part of the molecular defense repertoire of the auditory nerve.


Assuntos
Nervo Coclear/fisiologia , Nervo Coclear/ultraestrutura , Receptores ErbB/análise , Ruído , Estresse Fisiológico , Proteína de Xeroderma Pigmentoso Grupo A/análise , Animais , Nervo Coclear/química , Receptores ErbB/metabolismo , Imuno-Histoquímica/métodos , Masculino , Neurônios/química , Neurônios/metabolismo , Neurônios/ultraestrutura , Ratos Long-Evans , Gânglio Espiral da Cóclea/química , Gânglio Espiral da Cóclea/fisiologia , Gânglio Espiral da Cóclea/ultraestrutura , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo
5.
Hear Res ; 344: 284-294, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28011083

RESUMO

AMPA glutamate receptor complexes with fast kinetics conferred by subunits like GluA3 and GluA4 are essential for temporal precision of synaptic transmission. The specific role of GluA3 in auditory processing and experience related changes in the auditory brainstem remain unknown. We investigated the role of the GluA3 in auditory processing by using wild type (WT) and GluA3 knockout (GluA3-KO) mice. We recorded auditory brainstem responses (ABR) to assess auditory function and used electron microscopy to evaluate the ultrastructure of the auditory nerve synapse on bushy cells (AN-BC synapse). Since labeling for GluA3 subunit increases on auditory nerve synapses within the cochlear nucleus in response to transient sound reduction, we investigated the role of GluA3 in experience-dependent changes in auditory processing. We induced transient sound reduction by plugging one ear and evaluated ABR threshold and peak amplitude recovery for up to 60 days after ear plug removal in WT and GluA3-KO mice. We found that the deletion of GluA3 leads to impaired auditory signaling that is reflected in decreased ABR peak amplitudes, an increased latency of peak 2, early onset hearing loss and reduced numbers and sizes of postsynaptic densities (PSDs) of AN-BC synapses. Additionally, the lack of GluA3 hampers ABR threshold recovery after transient ear plugging. We conclude that GluA3 is required for normal auditory signaling, normal ultrastructure of AN-BC synapses in the cochlear nucleus and normal experience-dependent changes in auditory processing after transient sound reduction.


Assuntos
Percepção Auditiva , Comportamento Animal , Nervo Coclear/metabolismo , Núcleo Coclear/metabolismo , Perda Auditiva de Alta Frequência/metabolismo , Audição , Receptores de AMPA/deficiência , Sinapses/metabolismo , Estimulação Acústica , Adaptação Fisiológica , Animais , Nervo Coclear/fisiopatologia , Nervo Coclear/ultraestrutura , Núcleo Coclear/fisiopatologia , Núcleo Coclear/ultraestrutura , Potenciais Evocados Auditivos do Tronco Encefálico , Predisposição Genética para Doença , Perda Auditiva de Alta Frequência/genética , Perda Auditiva de Alta Frequência/patologia , Perda Auditiva de Alta Frequência/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Tempo de Reação , Receptores de AMPA/genética , Sinapses/ultraestrutura , Fatores de Tempo
6.
Hear Res ; 343: 14-33, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27473502

RESUMO

Studies of congenital and early-onset deafness have demonstrated that an absence of peripheral sound-evoked activity in the auditory nerve causes pathological changes in central auditory structures. The aim of this study was to establish whether progressive acquired hearing loss could lead to similar brain changes that would degrade the precision of signal transmission. We used complementary physiologic hearing tests and microscopic techniques to study the combined effect of both magnitude and duration of hearing loss on one of the first auditory synapses in the brain, the endbulb of Held (EB), along with its bushy cell (BC) target in the anteroventral cochlear nucleus. We compared two hearing mouse strains (CBA/Ca and heterozygous shaker-2+/-) against a model of early-onset progressive hearing loss (DBA/2) and a model of congenital deafness (homozygous shaker-2-/-), examining each strain at 1, 3, and 6 months of age. Furthermore, we employed a frequency model of the mouse cochlear nucleus to constrain our analyses to regions most likely to exhibit graded changes in hearing function with time. No significant differences in the gross morphology of EB or BC structure were observed in 1-month-old animals, indicating uninterrupted development. However, in animals with hearing loss, both EBs and BCs exhibited a graded reduction in size that paralleled the hearing loss, with the most severe pathology seen in deaf 6-month-old shaker-2-/- mice. Ultrastructural pathologies associated with hearing loss were less dramatic: minor changes were observed in terminal size but mitochondrial fraction and postsynaptic densities remained relatively stable. These results indicate that acquired progressive hearing loss can have consequences on auditory brain structure, with prolonged loss leading to greater pathologies. Our findings suggest a role for early intervention with assistive devices in order to mitigate long-term pathology and loss of function.


Assuntos
Nervo Coclear/ultraestrutura , Núcleo Coclear/ultraestrutura , Perda Auditiva/patologia , Audição , Sinapses/ultraestrutura , Estimulação Acústica , Fatores Etários , Animais , Limiar Auditivo , Comportamento Animal , Nervo Coclear/fisiopatologia , Núcleo Coclear/fisiopatologia , Modelos Animais de Doenças , Progressão da Doença , Potenciais Evocados Auditivos do Tronco Encefálico , Feminino , Predisposição Genética para Doença , Audição/genética , Perda Auditiva/genética , Perda Auditiva/fisiopatologia , Perda Auditiva/psicologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Endogâmicos DBA , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Miosinas/deficiência , Miosinas/genética , Fenótipo , Índice de Gravidade de Doença , Fatores de Tempo
7.
Nutrients ; 8(8)2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27483303

RESUMO

We evaluated the role of iron deficiency (ID) without anemia on hearing function and cochlear pathophysiology of young rats before and after noise exposure. We used rats at developmental stages as an animal model to induce ID without anemia by dietary iron restriction. We have established this dietary restriction model in the rat that should enable us to study the effects of iron deficiency in the absence of severe anemia on hearing and ribbon synapses. Hearing function was measured on Postnatal Day (PND) 21 after induction of ID using auditory brainstem response (ABR). Then, the young rats were exposed to loud noise on PND 21. After noise exposure, hearing function was again measured. We observed the morphology of ribbon synapses, hair cells and spiral ganglion cells (SGCs), and assessed the expression of myosin VIIa, vesicular glutamate transporter 3 and prestin in the cochlea. ID without anemia did not elevate ABR threshold shifts, but reduced ABR wave I peak amplitude of young rats. At 70, 80, and 90 dB SPL, amplitudes of wave I (3.11 ± 0.96 µV, 3.52 ± 1.31 µV, and 4.37 ± 1.08 µV, respectively) in pups from the ID group were decreased compared to the control (5.92 ± 1.67 µV, 6.53 ± 1.70 µV, and 6.90 ± 1.76 µV, respectively) (p < 0.05). Moreover, ID without anemia did not impair the morphology hair cells and SGCs, but decreased the number of ribbon synapses. Before noise exposure, the mean number of ribbon synapses per inner hair cell (IHC) was significantly lower in the ID group (8.44 ± 1.21) compared to that seen in the control (13.08 ± 1.36) (p < 0.05). In addition, the numbers of ribbon synapses per IHC of young rats in the control (ID group) were 6.61 ± 1.59, 3.07 ± 0.83, 5.85 ± 1.63 and 12.25 ± 1.97 (3.75 ± 1.45, 2.03 ± 1.08, 3.81 ± 1.70 and 4.01 ± 1.65) at 1, 4, 7 and 14 days after noise exposure, respectively. Moreover, ABR thresholds at 4 and 8 kHz in young rats from the ID group were significantly elevated at 7 and 14 days after noise exposure compared to control (p < 0.05). The average number of young rat SGCs from the ID group were significantly decreased in the basal turn of the cochlea compared to the control (p < 0.05). Therefore, ID without anemia delayed the recovery from noise-induced hearing loss and ribbon synapses damage, increased SGCs loss, and upregulated prestin after noise exposure. Thus, the cochleae in rat pups with ID without anemia were potentially susceptible to loud noise exposure, and this deficit may be attributed to the reduction of ribbon synapses and SGCs.


Assuntos
Anemia Ferropriva/fisiopatologia , Cóclea/fisiopatologia , Nervo Coclear/fisiopatologia , Modelos Animais de Doenças , Perda Auditiva Provocada por Ruído/etiologia , Estado Nutricional , Anemia Ferropriva/dietoterapia , Anemia Ferropriva/metabolismo , Anemia Ferropriva/patologia , Animais , Córtex Auditivo/metabolismo , Córtex Auditivo/fisiopatologia , Córtex Auditivo/ultraestrutura , Limiar Auditivo/efeitos da radiação , Tronco Encefálico/metabolismo , Tronco Encefálico/fisiopatologia , Tronco Encefálico/ultraestrutura , Cóclea/inervação , Cóclea/metabolismo , Cóclea/ultraestrutura , Nervo Coclear/metabolismo , Nervo Coclear/efeitos da radiação , Nervo Coclear/ultraestrutura , Suscetibilidade a Doenças , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Perda Auditiva Provocada por Ruído/prevenção & controle , Ferro da Dieta/uso terapêutico , Masculino , Microscopia Eletrônica de Varredura , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Ruído/efeitos adversos , Distribuição Aleatória , Ratos Sprague-Dawley , Gânglio Espiral da Cóclea/metabolismo , Gânglio Espiral da Cóclea/fisiopatologia , Gânglio Espiral da Cóclea/ultraestrutura , Desmame
8.
J Neurophysiol ; 112(5): 1025-39, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24848461

RESUMO

Sound-evoked compound action potential (CAP), which captures the synchronous activation of the auditory nerve fibers (ANFs), is commonly used to probe deafness in experimental and clinical settings. All ANFs are believed to contribute to CAP threshold and amplitude: low sound pressure levels activate the high-spontaneous rate (SR) fibers, and increasing levels gradually recruit medium- and then low-SR fibers. In this study, we quantitatively analyze the contribution of the ANFs to CAP 6 days after 30-min infusion of ouabain into the round window niche. Anatomic examination showed a progressive ablation of ANFs following increasing concentration of ouabain. CAP amplitude and threshold plotted against loss of ANFs revealed three ANF pools: 1) a highly ouabain-sensitive pool, which does not participate in either CAP threshold or amplitude, 2) a less sensitive pool, which only encoded CAP amplitude, and 3) a ouabain-resistant pool, required for CAP threshold and amplitude. Remarkably, distribution of the three pools was similar to the SR-based ANF distribution (low-, medium-, and high-SR fibers), suggesting that the low-SR fiber loss leaves the CAP unaffected. Single-unit recordings from the auditory nerve confirmed this hypothesis and further showed that it is due to the delayed and broad first spike latency distribution of low-SR fibers. In addition to unraveling the neural mechanisms that encode CAP, our computational simulation of an assembly of guinea pig ANFs generalizes and extends our experimental findings to different species of mammals. Altogether, our data demonstrate that substantial ANF loss can coexist with normal hearing threshold and even unchanged CAP amplitude.


Assuntos
Potenciais de Ação/fisiologia , Cóclea/inervação , Nervo Coclear/fisiopatologia , Estimulação Acústica , Potenciais de Ação/efeitos dos fármacos , Animais , Cóclea/efeitos dos fármacos , Cóclea/ultraestrutura , Nervo Coclear/efeitos dos fármacos , Nervo Coclear/ultraestrutura , Gerbillinae , Cobaias , Modelos Neurológicos , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Ouabaína/toxicidade
9.
J Neurosci Res ; 90(11): 2201-13, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22847875

RESUMO

Bilirubin can cause temporary or permanent sensorineural deafness in newborn babies with hyperbilirubinemia. However, the underlying targets and physiological effects of bilirubin-induced damage in the peripheral auditory system are unclear. Using cochlear functional assays and electron microscopy imaging of the inner ear in neonatal guinea pigs, we show here that bilirubin exposure resulted in threshold elevation in both compound action potential (CAP) and auditory brainstem response (ABR), which was apparent at 1 hr and peaked 8 hr after drug administration. The threshold elevation was associated with delayed wave latencies and elongated interwave intervals in ABR and CAP. At 72 hr postinjection, these measures returned to control levels, except for the CAP amplitude. Cochlear microphonics remained unchanged during the experiment. Morphological abnormalities were consistent with the electrophysiological dysfunction, revealing fewer auditory nerve fibers (ANFs) in the basal turn, myelin sheath lesions of spiral ganglion neurons (SGNs) and ANFs, and loss of type 1 afferent endings beneath inner hair cells (IHCs) without loss of hair cells at 8 hr posttreatment. Similar to the electrophysiological findings, morphological changes were mostly reversed 10 days after treatment, except for the ANF reduction in the basal turn. These results suggest that hyperbilirubinemia in neonatal guinea pigs impaired auditory peripheral neuromechanisms that targeted mainly the IHC synapses and the myelin sheath of SGNs and their fibers. Our observations indicate a potential connection between hyperbilirubinemia and auditory neuropathy.


Assuntos
Nervo Coclear/ultraestrutura , Perda Auditiva Central/etiologia , Perda Auditiva Central/patologia , Hiperbilirrubinemia/complicações , Gânglio Espiral da Cóclea/ultraestrutura , Potenciais de Ação/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Bilirrubina/toxicidade , Nervo Coclear/efeitos dos fármacos , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Feminino , Cobaias , Masculino , Microscopia Eletrônica de Transmissão , Gânglio Espiral da Cóclea/efeitos dos fármacos
10.
PLoS One ; 7(4): e34500, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22496821

RESUMO

Age-related hearing loss (presbyacusis) is the most common type of hearing impairment. One of the most consistent pathological changes seen in presbyacusis is the loss of spiral ganglion neurons (SGNs). Defining the cellular and molecular basis of SGN degeneration in the human inner ear is critical to gaining a better understanding of the pathophysiology of presbyacusis. However, information on age-related cellular and molecular alterations in the human spiral ganglion remains scant, owing to the very limited availably of human specimens suitable for high resolution morphological and molecular analysis. This study aimed at defining age-related alterations in the auditory nerve in human temporal bones and determining if immunostaining for myelin basic protein (MBP) can be used as an alternative approach to electron microscopy for evaluating myelin degeneration. For comparative purposes, we evaluated ultrastructural alternations and changes in MBP immunostaining in aging CBA/CaJ mice. We then examined 13 temporal bones from 10 human donors, including 4 adults aged 38-46 years (middle-aged group) and 6 adults aged 63-91 years (older group). Similar to the mouse, intense immunostaining of MBP was present throughout the auditory nerve of the middle-aged human donors. Significant declines in MBP immunoreactivity and losses of MBP(+) auditory nerve fibers were observed in the spiral ganglia of both the older human and aged mouse ears. This study demonstrates that immunostaining for MBP in combination with confocal microscopy provides a sensitive, reliable, and efficient method for assessing alterations of myelin sheaths in the auditory nerve. The results also suggest that myelin degeneration may play a critical role in the SGN loss and the subsequent decline of the auditory nerve function in presbyacusis.


Assuntos
Envelhecimento/fisiologia , Nervo Coclear/metabolismo , Audição/fisiologia , Proteína Básica da Mielina/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Nervo Coclear/citologia , Nervo Coclear/ultraestrutura , Feminino , Humanos , Técnicas Imunoenzimáticas , Masculino , Camundongos , Camundongos Endogâmicos CBA , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade
11.
Int. j. morphol ; 30(1): 40-44, mar. 2012. ilus
Artigo em Inglês | LILACS | ID: lil-638756

RESUMO

The great auricular nerve (GAN) is the largest branch of the superficial cervical plexus that winds around the posterior border of the sternocleidomastoid muscle, accompanied by the external jugular vein. Forty fetuses (right side: 40/80; left: 40/80) with gestational ages between 15 to 28 weeks were microdissected to document the anatomy of the GAN. The results obtained were classified as: i) Incidence and morphometry: GAN was present in 100 percent of the fetal specimens with average length on the right and left sides recorded as 12.65 +/- 2.14 mm and 12.55 +/- 2.82 mm respectively. ii) Course: GAN was located parallel to the transverse cervical nerve and the external jugular vein. Duplicate external jugular veins were observed in 5 percent (4/80) with GAN located anterior to one of the tributaries; iii) Branching Pattern: 16 percent (13/80) of specimens depicted a single branch. Duplicate branches in 67 percent (54/80) (referred to as Type I: anterior and posterior branches and 33 percent (26/80) referred to as Type II: anterior and posterior branches; iv) Variation: the transverse cervical nerve formed a communication with GAN, inferior to the parotid gland in 1 percent. The anatomical knowledge of the course, bifurcation pattern and variations of GAN may prevent complications during surgical procedures such as parotidectomies.


El nervio auricular mayor (NAM) es el ramo más grande del plexo cervical superficial que gira alrededor del margen posterior del músculo esternocleidomastoideo, acompañado de la vena yugular externa. Cuarenta fetos (lado derecho: 40/80; izquierdo: 40/80), con edades gestacionales de 15 a 28 semanas fueron microdisecados para describir la anatomía del NAM. Los resultados obtenidos se clasificaron en: i) Incidencia y morfometría: NAM estaba presente en el 100 por ciento de las muestras fetales con una longitud media de los lados derecho e izquierdo de 12,65+/-2,14mm y 12,55+/-2,82mm, respectivamente. ii) Curso: NAM se encuentra paralelo al nervio cervical transverso y la vena yugular externa. Duplicación de las venas yugulares externas se observaron en el 5 por ciento (4/80) con el NAM situado por delante de uno de los afluentes, iii) Patrón de ramificación: 16 por ciento (13/80) de las muestras presentaba una solo ramo. Ramos duplicados en el 67 por ciento (54/80) de Tipo I, ramos anterior y posterior y, el 33 por ciento (26/80) Tipo II, ramos anterior y posterior, y iv) Variación: el nervio cervical transverso formando una comunicación con NAM, inferior a la glándula parótida en el 1 por ciento. El conocimiento anatómico del curso, patrón de bifurcación y variaciones del NAM pueden prevenir las complicaciones durante los procedimientos quirúrgicos como la parotidectomía.


Assuntos
Humanos , Feto/anatomia & histologia , Feto/anormalidades , Feto/ultraestrutura , Nervo Coclear/anatomia & histologia , Nervo Coclear/ultraestrutura
12.
Auris Nasus Larynx ; 39(1): 18-24, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21601398

RESUMO

OBJECTIVE: The aim of this study is to analyse the expression and distribution of myelin basic protein (MBP or Myelin A1 protein) in the human spiral ganglion and auditory nerve. MATERIALS AND METHODS: Cryostat sections were made from freshly fixed human cochlear specimens removed at surgery in patients with life-threatening petro-clival meningiomas compressing the brain stem. The sections were subjected to immunohistochemistry using antibodies against MBP, S-100 and Tubulin. The immunoreaction was documented using laser confocal microscopy. RESULTS: Type I spiral ganglion nerve somata (SGN) were surrounded by so-called "satellite glial cells" (SGCs) that lacked expression of MBP consistent with earlier light and electron microscopic findings indicating that these cells are non-myelinating. S-100 labeling showed that the SGCs form a continuous network in the apical region. CONCLUSIONS: The pattern of myelination in human spiral ganglion is different from that in other species' spiral ganglion. The striking differences in myelin outline should be investigated further in combination with its influence on signal coding and preservation properties in man.


Assuntos
Nervo Coclear/metabolismo , Proteína Básica da Mielina/metabolismo , Gânglio Espiral da Cóclea/metabolismo , Lâmina Espiral/metabolismo , Adulto , Animais , Nervo Coclear/ultraestrutura , Feminino , Cobaias , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Proteínas S100/metabolismo , Gânglio Espiral da Cóclea/ultraestrutura , Lâmina Espiral/ultraestrutura , Suínos , Tubulina (Proteína)/metabolismo
13.
Development ; 138(13): 2673-80, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21613327

RESUMO

In peripheral nerves, Schwann cells form the myelin sheath that insulates axons and allows rapid propagation of action potentials. Although a number of regulators of Schwann cell development are known, the signaling pathways that control myelination are incompletely understood. In this study, we show that Gpr126 is essential for myelination and other aspects of peripheral nerve development in mammals. A mutation in Gpr126 causes a severe congenital hypomyelinating peripheral neuropathy in mice, and expression of differentiated Schwann cell markers, including Pou3f1, Egr2, myelin protein zero and myelin basic protein, is reduced. Ultrastructural studies of Gpr126-/- mice showed that axonal sorting by Schwann cells is delayed, Remak bundles (non-myelinating Schwann cells associated with small caliber axons) are not observed, and Schwann cells are ultimately arrested at the promyelinating stage. Additionally, ectopic perineurial fibroblasts form aberrant fascicles throughout the endoneurium of the mutant sciatic nerve. This analysis shows that Gpr126 is required for Schwann cell myelination in mammals, and defines new roles for Gpr126 in axonal sorting, formation of mature non-myelinating Schwann cells and organization of the perineurium.


Assuntos
Nervos Periféricos/crescimento & desenvolvimento , Nervos Periféricos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Nervo Coclear/anormalidades , Nervo Coclear/metabolismo , Nervo Coclear/ultraestrutura , Proteína 2 de Resposta de Crescimento Precoce/genética , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo , Proteína P0 da Mielina/genética , Proteína P0 da Mielina/metabolismo , Fator 6 de Transcrição de Octâmero/genética , Fator 6 de Transcrição de Octâmero/metabolismo , Nervos Periféricos/patologia , Nervos Periféricos/ultraestrutura , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/metabolismo , Receptores Acoplados a Proteínas G/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células de Schwann/metabolismo
14.
Hear Res ; 277(1-2): 44-53, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21447373

RESUMO

The transition between the central (CNS) and peripheral nervous system (PNS) in cranial and spinal nerve roots, referred to here as the CNS-PNS border, is of relevance to nerve root disorders and factors that affect peripheral-central regeneration. Here, this border is described in the cat cochlear nerve using light microscopical sections, and scanning electron microscopy of the CNS-PNS interfaces exposed by fracture of the nerve either prior to or following critical point drying. The CNS-PNS border represents an abrupt change in type of myelin, supporting elements, and vascularization. Because central myelin is formed by oligodendrocytes and peripheral myelin by Schwann cells, the myelinated fibers are as a rule equipped with a node of Ranvier at the border passage. The border is shallower and smoother in cat cochlear nerve than expected from other nerves, and the borderline nodes are largely in register. The loose endoneurial connective tissue of the PNS compartment is closed at the border by a compact glial membrane, the mantle zone, of the CNS compartment. The mantle zone is penetrated by the nerve fibers, but is otherwise composed of astrocytes and their interwoven processes like the external limiting membrane of the brain surface with which it is continuous. The distal surface of the mantle zone is covered by a fenestrated basal lamina. Only occasional vessels traverse the border. From an anatomical point of view, the border might be expected to be a weak point along the cochlear nerve and thus vulnerable to trauma. In mature animals, the CNS-PNS border presents a barrier to regrowth of regenerating nerve fibers and to invasion of the CNS by Schwann cells. An understanding of this region in the cochlear nerve is therefore relevant to head injuries that lead to hearing loss, to surgery on acoustic Schwannomas, and to the possibility of cochlear nerve regeneration.


Assuntos
Sistema Nervoso Central/ultraestrutura , Nervo Coclear/ultraestrutura , Microscopia Eletrônica de Varredura , Sistema Nervoso Periférico/ultraestrutura , Animais , Astrócitos/ultraestrutura , Gatos , Sistema Nervoso Central/citologia , Nervo Coclear/citologia , Dissecação , Feminino , Técnicas de Preparação Histocitológica , Masculino , Fibras Nervosas/ultraestrutura , Neuroglia/ultraestrutura , Sistema Nervoso Periférico/citologia , Células de Schwann/ultraestrutura , Raízes Nervosas Espinhais/ultraestrutura
15.
J Comp Neurol ; 518(12): 2382-404, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20437534

RESUMO

Congenital deafness results in synaptic abnormalities in auditory nerve endings. These abnormalities are most prominent in terminals called endbulbs of Held, which are large, axosomatic synaptic endings whose size and evolutionary conservation emphasize their importance. Transmission jitter, delay, or failures, which would corrupt the processing of timing information, are possible consequences of the perturbations at this synaptic junction. We sought to determine whether electrical stimulation of the congenitally deaf auditory system via cochlear implants would restore the endbulb synapses to their normal morphology. Three and 6-month-old congenitally deaf cats received unilateral cochlear implants and were stimulated for a period of 10-19 weeks by using human speech processors. Implanted cats exhibited acoustic startle responses and were trained to approach their food dish in response to a specific acoustic stimulus. Endbulb synapses were examined by using serial section electron microscopy from cohorts of cats with normal hearing, congenital deafness, or congenital deafness with a cochlear implant. Synapse restoration was evident in endbulb synapses on the stimulated side of cats implanted at 3 months of age but not at 6 months. In the young implanted cats, postsynaptic densities exhibited normal size, shape, and distribution, and synaptic vesicles had density values typical of hearing cats. Synapses of the contralateral auditory nerve in early implanted cats also exhibited synapses with more normal structural features. These results demonstrate that electrical stimulation with a cochlear implant can help preserve central auditory synapses through direct and indirect pathways in an age-dependent fashion.


Assuntos
Implantes Cocleares , Surdez/fisiopatologia , Surdez/terapia , Lateralidade Funcional , Estimulação Acústica , Fatores Etários , Animais , Percepção Auditiva/fisiologia , Gatos , Nervo Coclear/patologia , Nervo Coclear/fisiopatologia , Nervo Coclear/ultraestrutura , Surdez/patologia , Estimulação Elétrica , Potenciais Evocados , Humanos , Microscopia Eletrônica , Reflexo de Sobressalto , Fala , Sinapses/patologia , Sinapses/fisiologia , Sinapses/ultraestrutura , Vesículas Sinápticas/patologia , Vesículas Sinápticas/fisiologia , Vesículas Sinápticas/ultraestrutura
16.
Brain Res ; 1328: 118-29, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20116368

RESUMO

We investigated the time course of the plasticity in fusiform cell (FC) and at auditory nerve (AN) synapse on FC (AN/FC synapse) following chronic kanamycin-induced deafness. Guinea pigs were treated with kanamycin sulfate by subcutaneous injection at dose of 500 mg/kg/day for 7 days. Ultrastructural changes in FC and AN/FC synapse were observed, and local insulin-like growth factor 1 (IGF-1) mRNA was quantified using quantitative real time PCR at 1, 7, 14, 28, 70 and 140 days after kanamycin treatment. The average threshold was 46.46+/-3.45, 80.63+/-5.95 and 103.95+/-6.59 dB SPL respectively at 1, 7 and 14 days, and the threshold was statistically unchanged at 28, 70 and 140 days in comparison with the 14 day group. Mitochondrial swelling in FC and at AN/FC synapse was progressive at 7, 14 and 28 days. Moreover, the thickness of the postsynaptic densities increased at 1, 7 and 14 days. Finally, there was a persistent upregulation in local IGF-1 mRNA at 7, 14, 28 and 70 days. These changes in the ultrastructure of AN/FC synapse and FC, and upregulation of local IGF-1 mRNA were no longer present at 140 days. Our results indicate that the effects of kanamycin on the ultrastructure of FC and AN/FC synapse are progressive. However, FC and AN/FC synapse are capable of reviving and remodeling after kanamycin-induced lesion and incomplete deafferentation. Additionally, local IGF-1 might play a role in the lesion- and deafness-induced plasticity in FC and at AN/FC synapse following chronic kanamycin-induced deafness.


Assuntos
Núcleo Coclear/metabolismo , Surdez/fisiopatologia , Plasticidade Neuronal/fisiologia , Terminações Pré-Sinápticas/metabolismo , Recuperação de Função Fisiológica/fisiologia , Sinapses/metabolismo , Animais , Limiar Auditivo/efeitos dos fármacos , Limiar Auditivo/fisiologia , Nervo Coclear/metabolismo , Nervo Coclear/ultraestrutura , Núcleo Coclear/ultraestrutura , Surdez/induzido quimicamente , Modelos Animais de Doenças , Cobaias , Audição/fisiologia , Fator de Crescimento Insulin-Like I/genética , Canamicina/toxicidade , Neurotoxinas/toxicidade , Terminações Pré-Sinápticas/ultraestrutura , RNA Mensageiro/metabolismo , Sinapses/ultraestrutura , Transmissão Sináptica/fisiologia , Fatores de Tempo , Regulação para Cima/fisiologia
17.
J Comp Neurol ; 518(7): 1046-63, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20127807

RESUMO

The effects of deafness on brain structure and function have been studied using animal models of congenital deafness that include surgical ablation of the organ of Corti, acoustic trauma, ototoxic drugs, and hereditary deafness. This report describes the morphologic plasticity of auditory nerve synapses in response to ototoxic deafening and chronic electrical stimulation of the auditory nerve. Normal kittens were deafened by neonatal administration of neomycin that eliminated auditory receptor cells. Some of these cats were raised deaf, whereas others were chronically implanted with cochlear electrodes at 2 months of age and electrically stimulated for up to 12 months. The large endings of the auditory nerve, endbulbs of Held, were studied because they hold a key position in the timing pathway for sound localization, are readily identifiable, and exhibit deafness-associated abnormalities. Compared with those of normal hearing cats, synapses of ototoxically deafened cats displayed expanded postsynaptic densities, a 35.4% decrease in synaptic vesicle (SV) density, and a reduction in the somatic size of spherical bushy cells (SBCs). In comparison with normal hearing cats, ototoxically deafened cats that received cochlear stimulation had endbulbs that expressed postsynaptic densities (PSDs) that were statistically identical in size, showed a 48.1% reduction in SV density, and whose target SBCs had a 25.5% reduction in soma area. These results demonstrate that electrical stimulation via a cochlear implant in chemically deafened cats preserves PSD size but not other aspects of synapse morphology. This determination further suggests that the effects of ototoxic deafness are not identical to those of hereditary deafness.


Assuntos
Nervo Coclear/fisiopatologia , Núcleo Coclear/ultraestrutura , Surdez/fisiopatologia , Plasticidade Neuronal , Sinapses/ultraestrutura , Animais , Antibacterianos/toxicidade , Gatos , Nervo Coclear/ultraestrutura , Núcleo Coclear/fisiopatologia , Surdez/induzido quimicamente , Modelos Animais de Doenças , Estimulação Elétrica/métodos , Eletrodos Implantados , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Feminino , Masculino , Microscopia Eletrônica , Neomicina/toxicidade , Terminações Nervosas/ultraestrutura
18.
J Comp Neurol ; 507(5): 1763-79, 2008 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-18260150

RESUMO

Cochlear root neurons (CRNs) are involved in the acoustic startle reflex, which is widely used in behavioral models of sensorimotor integration. A short-latency component of this reflex, the auricular reflex, promotes pinna movements in response to unexpected loud sounds. However, the pathway involved in the auricular component of the startle reflex is not well understood. We hypothesized that the auricular reflex is mediated by direct and indirect inputs from CRNs to the motoneurons responsible for pinna movement, which are located in the medial subnucleus of the facial motor nucleus (Mot7). To assess whether there is a direct connection between CRNs and auricular motoneurons in the rat, two neuronal tracers were used in conjunction: biotinylated dextran amine, which was injected into the cochlear nerve root, and Fluoro-Gold, which was injected into the levator auris longus muscle. Under light microscopy, close appositions were observed between axon terminals of CRNs and auricular motoneurons. The presence of direct synaptic contact was confirmed at the ultrastructural level. To confirm the indirect connection, biotinylated dextran amine was injected into the auditory-responsive portion of the caudal pontine reticular nucleus, which receives direct input from CRNs. The results confirm that the caudal pontine reticular nucleus also targets the Mot7 and that its terminals are concentrated in the medial subnucleus. Therefore, it is likely that CRNs innervate auricular motoneurons both directly and indirectly, suggesting that these connections participate in the rapid auricular reflex that accompanies the acoustic startle reflex.


Assuntos
Nervo Coclear/ultraestrutura , Pavilhão Auricular/inervação , Vias Eferentes/ultraestrutura , Neurônios Motores/ultraestrutura , Neurônios/ultraestrutura , Reflexo Acústico/fisiologia , Animais , Feminino , Córtex Motor/ultraestrutura , Ratos , Ratos Wistar , Reflexo de Sobressalto/fisiologia
19.
J Trauma ; 62(1): 189-92, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17215753

RESUMO

BACKGROUND: There have been reports that maxillofacial firearm wounds could induce hearing loss. The effects on the ultrastructure of the cochlea and cochlear nerves after oral and maxillofacial firearm wounds are still unclear. This experiment investigates the ultrastructural changes of the cochlea and cochlear nerve after oral and maxillofacial firearm wounds. METHODS: Twenty dogs were wounded by steel spheres or detonators to establish animal models of oral and maxillofacial firearms wound. At different times after trauma, the wounds were examined and the specimens of the cochlea and cochlear nerve were taken to study the ultrastructural changes. RESULTS: The ultrastructural changes of the cochlea and cochlear nerve at 1 hour after trauma were cilia disorganization, edema of the nerve, and mitochondrial denaturalization. At 6 hours, there was extensive degeneration in the cochlea and cochlear nerve, cilia falling off of hair cells, and dissolution of the nerve sheath structure. CONCLUSIONS: The ultrastructure of the cochlea and cochlear nerve after injury is severe, but in the early period the injury is reversible.


Assuntos
Cóclea/ultraestrutura , Doenças Cocleares/etiologia , Nervo Coclear/ultraestrutura , Traumatismos Maxilofaciais/complicações , Boca/lesões , Ferimentos por Arma de Fogo/complicações , Animais , Cóclea/lesões , Cóclea/inervação , Doenças Cocleares/patologia , Nervo Coclear/lesões , Cães
20.
Hear Res ; 215(1-2): 97-107, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16684592

RESUMO

Neuronal development and neurite regeneration depends on the locomotion and navigation of nerve growth cones (GCs). There are few detailed descriptions of the GC function and structure in the adult auditory system. In this study, GCs of adult dissociated and cultured spiral ganglion (SG) neurons were analyzed in vitro utilizing combined high resolution scanning electron microscopy (SEM) and time lapse video microscopy (TLVM). Axon kinesis was assessed on planar substratum with growth factors BDNF, NT-3 and GDNF. At the nano-scale level, lamellipodial abdomen of the expanding GC was found to be decorated with short surface specializations, which at TLVM were considered to be related to their crawling capacity. Filopodia were devoid of these surface structures, supporting its generally described sensory role. Microspikes appearing on lamellipodia and axons, showed circular adhesions, which at TLVM were found to provide anchorage of the navigating and turning axon. Neurons and GCs expressed the DCC-receptor for the guidance molecule netrin-1. Asymmetric ligand-based stimulation initiated turning responses suggest that this attractant cue influences steering of GC in adult regenerating auditory neurites. Hopefully, these findings may be used for ensuing tentative navigation of spiral ganglion neurons to induce regenerative processes in the human ear.


Assuntos
Movimento Celular/fisiologia , Cones de Crescimento/fisiologia , Perda Auditiva Neurossensorial/fisiopatologia , Regeneração Nervosa/fisiologia , Gânglio Espiral da Cóclea/fisiologia , Adulto , Animais , Nervo Coclear/fisiologia , Nervo Coclear/ultraestrutura , Cones de Crescimento/ultraestrutura , Cobaias , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Microscopia Eletrônica de Varredura , Microscopia de Vídeo , Neuritos/fisiologia , Neuritos/ultraestrutura , Neurônios/fisiologia , Neurônios/ultraestrutura , Gânglio Espiral da Cóclea/ultraestrutura , Gravação de Videoteipe
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...