Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 25(22)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187172

RESUMO

EXAFS spectroscopy is one of the most used techniques to solve the structure of actinoid solutions. In this work a systematic analysis of the EXAFS spectra of four actinyl cations, [UO2]2+, [NpO2]2+, [NpO2]+ and [PuO2]2+ has been carried out by comparing experimental results with theoretical spectra. These were obtained by averaging individual contributions from snapshots taken from classical Molecular Dynamics simulations which employed a recently developed [AnO2]2+/+ -H2O force field based on the hydrated ion model using a quantum-mechanical (B3LYP) potential energy surface. Analysis of the complex EXAFS signal shows that both An-Oyl and An-OW single scattering paths as well as multiple scattering ones involving [AnO2]+/2+ molecular cation and first-shell water molecules are mixed up all together to produce a very complex signal. Simulated EXAFS from the B3LYP force field are in reasonable agreement for some of the cases studied, although the k= 6-8 Å-1 region is hard to be reproduced theoretically. Except uranyl, all studied actinyls are open-shell electron configurations, therefore it has been investigated how simulated EXAFS spectra are affected by minute changes of An-O bond distances produced by the inclusion of static and dynamic electron correlation in the quantum mechanical calculations. A [NpO2]+-H2O force field based on a NEVPT2 potential energy surface has been developed. The small structural changes incorporated by the electron correlation on the actinyl aqua ion geometry, typically smaller than 0.07 Å, leads to improve the simulated spectrum with respect to that obtained from the B3LYP force field. For the other open-shell actinyls, [NpO2]2+ and [PuO2]2+, a simplified strategy has been adopted to improve the simulated EXAFS spectrum. It is computed taking as reference structure the NEVPT2 optimized geometry and including the DW factors of their corresponding MD simulations employing the B3LYP force field. A better agreement between the experimental and the simulated EXAFS spectra is found, confirming the a priori guess that the inclusion of dynamic and static correlation refine the structural description of the open-shell actinyl aqua ions.


Assuntos
Netúnio/química , Óxidos/química , Espectrofotometria/métodos , Compostos de Urânio/química , Urânio/química , Água/química , Cátions , Simulação por Computador , Concentração de Íons de Hidrogênio , Íons , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Teoria Quântica , Reprodutibilidade dos Testes
2.
J Environ Radioact ; 205-206: 72-78, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31121423

RESUMO

Kinetics analyses of sorption and desorption provide important insight into reaction mechanisms occurring at the mineral-water interface. They are also needed to determine when equilibrium is achieved, identify intermediate chemical species, and inform models describing neptunium mobility. Neptunium sorption to and desorption from four different aluminum (hydr)oxides - bayerite (α-Al(OH)3), gibbsite (γ-Al(OH)3), corundum (α-Al2O3), and γ-alumina (γ-Al2O3) - were investigated as a function of mineral concentration (5 - 170 m2 L-1), neptunium concentration (10-9 - 10-7 M), and pH (5.5 - 10.5). Neptunium sorption was characterized by a two-step reaction with an initial fast sorption step occurring within minutes followed by a slower equilibrium process, which was attributed to initial sorption of neptunium to a small number of strong sorption sites followed by sorption of neptunium to a larger number of weak sorption sites. The kinetics data were modeled using the linear and non-linear forms of the pseudo-first and pseudo-second order rate equations and the goodness of fit parameters were compared. Non-linear pseudo-second order rate constants described neptunium sorption to aluminum (hydr)oxides most accurately and were used to determine the reaction orders with respect to mineral concentration and [H+]. Neptunium desorption experiments demonstrated that the desorption mechanism changed as a function of pH and that the forward and reverse reactions were not equivalent. At pH ≥ 7.5, desorption reached steady-state within an hour and was accurately described by the non-linear pseudo-second order rate equations. A desorption plateau was observed at pH 5.5 that could not be described by either pseudo-first or -second order kinetics, suggesting the possibility of a multi-step desorption reaction. The comparatively slow desorption kinetics observed here suggests that sorbed neptunium could be slowly released back into the aqueous phase and act as a continuous source of contamination to the environment.


Assuntos
Hidróxido de Alumínio/análise , Óxido de Alumínio/análise , Minerais/análise , Netúnio/química , Adsorção , Concentração de Íons de Hidrogênio , Cinética
3.
Electrophoresis ; 39(23): 3013-3021, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30192411

RESUMO

The rate constants k of the reduction of 5 × 10-5  M Np(V) to Np(IV) by hydroxylamine hydrochloride (HAHCl) in 1 M HCl have been determined by CE-ICP-MS in the temperature range of ϑ = 30-70°C and with varying concentrations of HAHCl from 1 to 7.2 M. The reaction was found to have (pseudo)first order kinetics with respect to HAHCl. The experimental results for k ranged from 0.0029(1) min-1 (ϑ = 40°C, c(HAHCl) = 3 M) to 0.039(7) min-1 (ϑ = 60°C, c(HAHCl) = 7.2 M). The activation energy of the reaction was determined as EA  = (72 ± 10) kJ/mol. These results and a comparison with literature data show that the coupling of CE to ICP-MS provides a powerful analytical tool for the investigation of the kinetic aspects of redox reactions of actinides at low concentrations. On the basis of this proof-of-principle study, the method presented here can be extended to the investigation of the kinetic parameters of other redox systems containing different actinides (or transition metals) and oxidants/reductants.


Assuntos
Eletroforese Capilar/métodos , Hidroxilamina/química , Espectrometria de Massas/métodos , Netúnio , Substâncias Redutoras/química , Cinética , Netúnio/análise , Netúnio/química , Netúnio/metabolismo , Oxirredução , Temperatura
4.
Chem Commun (Camb) ; 54(62): 8645-8648, 2018 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-30022209

RESUMO

As an extension of actinide-rotaxane complexes from uranium to transuranium, we report the first crystal structure of a neptunium-rotaxane complex, NRCP-1, in which an interwoven neptunium(v)-rotaxane coordination network incorporating a mechanically-interlocked [c2]daisy chain unit is promoted via the simultaneous coordination of cucurbituril (CB6) and axle molecules in [2]pseudorotaxane to NpV.


Assuntos
Complexos de Coordenação/química , Netúnio/química , Rotaxanos/química , Urânio/química , Elementos da Série Actinoide/química , Complexos de Coordenação/síntese química , Modelos Moleculares , Conformação Molecular
5.
J Sci Food Agric ; 98(1): 240-252, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28580581

RESUMO

BACKGROUND: Neptunia oleracea is a plant consumed as a vegetable and which has been used as a folk remedy for several diseases. Herein, two regression models (partial least squares, PLS; and random forest, RF) in a metabolomics approach were compared and applied to the evaluation of the relationship between phenolics and bioactivities of N. oleracea. In addition, the effects of different extraction conditions on the phenolic constituents were assessed by pattern recognition analysis. RESULTS: Comparison of the PLS and RF showed that RF exhibited poorer generalization and hence poorer predictive performance. Both the regression coefficient of PLS and the variable importance of RF revealed that quercetin and kaempferol derivatives, caffeic acid and vitexin-2-O-rhamnoside were significant towards the tested bioactivities. Furthermore, principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) results showed that sonication and absolute ethanol are the preferable extraction method and ethanol ratio, respectively, to produce N. oleracea extracts with high phenolic levels and therefore high DPPH scavenging and α-glucosidase inhibitory activities. CONCLUSION: Both PLS and RF are useful regression models in metabolomics studies. This work provides insight into the performance of different multivariate data analysis tools and the effects of different extraction conditions on the extraction of desired phenolics from plants. © 2017 Society of Chemical Industry.


Assuntos
Netúnio/química , Fenóis/análise , Extratos Vegetais/análise , Ácidos Cafeicos/análise , Flavonoides/análise , Glicosídeos/análise , Análise dos Mínimos Quadrados , Metabolômica
6.
J Inorg Biochem ; 172: 46-54, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28427004

RESUMO

The threat of a dirty bomb which could cause internal contamination has been of major concern for the past decades. Because of their high chemical toxicity and their presence in the nuclear fuel cycle, uranium and neptunium are two actinides of high interest. Calmodulin (CaM) which is a ubiquitous protein present in all eukaryotic cells and is involved in calcium-dependent signaling pathways has a known affinity for uranyl and neptunyl ions. The impact of the complexation of these actinides on the physiological response of the protein remains, however, largely unknown. An isothermal titration calorimetry (ITC) was developed to monitor in vitro the enzymatic activity of the phosphodiesterase enzyme which is known to be activated by CaM and calcium. This approach showed that addition of actinyl ions (AnO2n+), uranyl (UO22+) and neptunyl (NpO2+), resulted in a decrease of the enzymatic activity, due to the formation of CaM-actinide complexes, which inhibit the enzyme and alter its interaction with the substrate by direct interaction. Results from dynamic light scattering rationalized this result by showing that the CaM-actinyl complexes adopted a specific conformation different from that of the CaM-Ca2+ complex. The effect of actinides could be reversed using a hydroxypyridonate actinide decorporation agent (5-LIO(Me-3,2-HOPO)) in the experimental medium demonstrating its capacity to efficiently bind the actinides and restore the calcium-dependent enzyme activation.


Assuntos
Elementos da Série Actinoide/química , Calmodulina/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/metabolismo , Elementos da Série Actinoide/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/enzimologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Ativação Enzimática/efeitos dos fármacos , Íons/química , Íons/farmacologia , Cinética , Netúnio/química , Ligação Proteica , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Environ Sci Technol ; 50(19): 10413-10420, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27585550

RESUMO

The NpV retention by siderite, an FeII carbonate mineral with relevance for the near-field of high-level radioactive waste repositories, was investigated under anoxic conditions. Batch sorption experiments show that siderite has a high affinity for aqueous NpVO2+ across pH 7 to 13 as expressed by solid-water distribution coefficients, log Rd, > 5, similar to the log Rd determined for the (solely) tetravalent actinide Th on calcite, suggesting reduction of NpV to NpIV by siderite. Np L3-edge X-ray absorption near edge (XANES) spectroscopy conducted in a pH range typical for siderite-containing host rocks (7-8), confirmed the tetravalent Np oxidation state. Extended X-ray absorption fine-structure (EXAFS) spectroscopy revealed a local structure in line with NpO2-like nanoparticles with diameter < 1 nm, a result further corroborated by high-resolution transmission electron microscopy (HRTEM). The low solubility of these NpO2-like nanoparticles (∼10-9 M), along with their negligible surface charge at neutral pH conditions which favors particle aggregation, suggest an efficient retention of Np in the near-field of radioactive waste repositories. When NpV was added to ferrous carbonate solution, the subsequent precipitation of siderite did not lead to a structural incorporation of NpIV by siderite, but caused precipitation of a NpIV pentacarbonate phase.


Assuntos
Carbonato de Cálcio/química , Netúnio/química , Minerais/química , Nanopartículas , Oxirredução , Espectroscopia por Absorção de Raios X
8.
Environ Sci Technol ; 50(7): 3382-90, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26913955

RESUMO

The speciation and fate of neptunium as Np(V)O2(+) during the crystallization of ferrihydrite to hematite and goethite was explored in a range of systems. Adsorption of NpO2(+) to iron(III) (oxyhydr)oxide phases was reversible and, for ferrihydrite, occurred through the formation of mononuclear bidentate surface complexes. By contrast, chemical extractions and X-ray absorption spectroscopy (XAS) analyses showed the incorporation of Np(V) into the structure of hematite during its crystallization from ferrihydrite (pH 10.5). This occurred through direct replacement of octahedrally coordinated Fe(III) by Np(V) in neptunate-like coordination. Subsequent analyses on mixed goethite and hematite crystallization products (pH 9.5 and 11) showed that Np(V) was incorporated during crystallization. Conversely, there was limited evidence for Np(V) incorporation during goethite crystallization at the extreme pH of 13.3. This is likely due to the formation of a Np(V) hydroxide precipitate preventing incorporation into the goethite particles. Overall these data highlight the complex behavior of Np(V) during the crystallization of iron(III) (oxyhydr)oxides, and demonstrate clear evidence for neptunium incorporation into environmentally important mineral phases. This extends our knowledge of the range of geochemical conditions under which there is potential for long-term immobilization of radiotoxic Np in natural and engineered environments.


Assuntos
Compostos Férricos/química , Netúnio/química , Adsorção , Cristalização , Concentração de Íons de Hidrogênio , Compostos de Ferro/química , Microscopia Eletrônica de Transmissão , Minerais/química , Resíduos Radioativos , Temperatura , Espectroscopia por Absorção de Raios X , Difração de Raios X
9.
Environ Sci Technol ; 50(4): 1853-8, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26756748

RESUMO

Neptunium-237 is a radionuclide of great interest owing to its long half-life (2.14 × 10(6) years) and relative mobility as the neptunyl ion (NpO2(+)) under many surface and groundwater conditions. Reduction to tetravalent neptunium (Np(IV)) effectively immobilizes the actinide in many instances due to its low solubility and strong interactions with natural minerals. One such mineral that may facilitate the reduction of neptunium is magnetite (Fe(2+)Fe(3+)2O4). Natural magnetites often contain titanium impurities which have been shown to enhance radionuclide sorption via titanium's influence on the Fe(2+)/Fe(3+) ratio (R) in the absence of oxidation. Here, we provide evidence that Ti-substituted magnetite reduces neptunyl species to Np(IV). Titanium-substituted magnetite nanoparticles were synthesized and reacted with NpO2(+) under reducing conditions. Batch sorption experiments indicate that increasing Ti concentration results in higher Np sorption/reduction values at low pH. High-resolution transmission electron microscopy of the Ti-magnetite particles provides no evidence of NpO2 nanoparticle precipitation. Additionally, X-ray absorption spectroscopy confirms the nearly exclusive presence of Np(IV) on the titanomagnetite surface and provides supporting data indicating preferential binding of Np to terminal Ti-O sites as opposed to Fe-O sites.


Assuntos
Óxido Ferroso-Férrico/química , Nanopartículas Metálicas/química , Netúnio/química , Titânio/química , Poluentes Químicos da Água/química , Adsorção , Espectroscopia por Absorção de Raios X
10.
J Environ Radioact ; 153: 237-244, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26808225

RESUMO

With regard to environmental monitoring of certain nuclear facilities, pentavalent actinides, in particular neptunium and plutonium, play a key role, as the chief soluble, mobile forms of actinides. In the past five years, investigations carried out by hyphenating capillary electrophoresis to ICP-MS (CE-ICP-MS) have allowed a number of hitherto unknown thermodynamic data to be determined for Np(V) and Pu(V) interactions with the chief environmentally abundant anions. For the first time, data were provided for Pu(V) interactions with carbonate, sulfate, oxalate, chloride, and nitrate ions, allowing the Np(V)/Pu(V) analogy to be verified experimentally. Knowledge of Np(V) chemistry, especially in carbonate, and sulfate media, was also refined. These CE-ICP-MS studies, combined with some earlier findings, have brought about a renewal in the knowledge of An(V) chemistry in solution.


Assuntos
Elementos da Série Actinoide/química , Netúnio/química , Plutônio/química , Monitoramento de Radiação , Elementos da Série Actinoide/análise , Eletroforese Capilar , Espectrometria de Massas , Soluções/química , Termodinâmica
11.
Dalton Trans ; 45(12): 5030-7, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-26632613

RESUMO

Uranium (as UO2(2+)), technetium (as TcO4(-)) and neptunium (as NpO2(+)) are highly mobile radionuclides that can be reduced enzymatically by a range of anaerobic and facultatively anaerobic microorganisms, including Shewanella oneidensis MR-1, to poorly soluble species. The redox chemistry of Pu is more complicated, but the dominant oxidation state in most environments is highly insoluble Pu(IV), which can be reduced to Pu(III) which has a potentially increased solubility which could enhance migration of Pu in the environment. Recently it was shown that flavins (riboflavin and flavin mononucleotide (FMN)) secreted by Shewanella oneidensis MR-1 can act as electron shuttles, promoting anoxic growth coupled to the accelerated reduction of poorly-crystalline Fe(III) oxides. Here, we studied the role of riboflavin in mediating the reduction of radionuclides in cultures of Shewanella oneidensis MR-1. Our results demonstrate that the addition of 10 µM riboflavin enhances the reduction rate of Tc(VII) to Tc(IV), Pu(IV) to Pu(III) and to a lesser extent, Np(V) to Np(IV), but has no significant influence on the reduction rate of U(VI) by Shewanella oneidensis MR-1. Thus riboflavin can act as an extracellular electron shuttle to enhance rates of Tc(VII), Np(V) and Pu(IV) reduction, and may therefore play a role in controlling the oxidation state of key redox active actinides and fission products in natural and engineered environments. These results also suggest that the addition of riboflavin could be used to accelerate the bioremediation of radionuclide-contaminated environments.


Assuntos
Riboflavina/química , Shewanella/metabolismo , Biodegradação Ambiental , Compostos Férricos/química , Netúnio/química , Oxirredução , Radioisótopos/química , Tecnécio/química , Urânio/química , Espectroscopia por Absorção de Raios X
12.
Environ Sci Technol ; 49(22): 13139-48, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26488884

RESUMO

Technetium, uranium, and neptunium are contaminants that cause concern at nuclear facilities due to their long half-life, environmental mobility, and radiotoxicity. Here we investigate the impact of microbial reduction of Fe(III) in biotite and chlorite and the role that this has in enhancing mineral reactivity toward soluble TcO4(-), UO2(2+), and NpO2(+). When reacted with unaltered biotite and chlorite, significant sorption of U(VI) occurred in low carbonate (0.2 mM) buffer, while U(VI), Tc(VII), and Np(V) showed low reactivity in high carbonate (30 mM) buffer. On reaction with the microbially reduced minerals, all radionuclides were removed from solution with U(VI) reactivity influenced by carbonate. Analysis by X-ray absorption spectroscopy (XAS) confirmed reductive precipitation to poorly soluble U(IV) in low carbonate conditions and both Tc(VII) and Np(V) in high carbonate buffer were also fully reduced to poorly soluble Tc(IV) and Np(IV) phases. U(VI) reduction was inhibited under high carbonate conditions. Furthermore, EXAFS analysis suggested that in the reaction products, Tc(IV) was associated with Fe, Np(IV) formed nanoparticulate NpO2, and U(IV) formed nanoparticulate UO2 in chlorite and was associated with silica in biotite. Overall, microbial reduction of the Fe(III) associated with biotite and chlorite primed the minerals for reductive scavenging of radionuclides: this has clear implications for the fate of radionuclides in the environment.


Assuntos
Silicatos de Alumínio/metabolismo , Bactérias/metabolismo , Cloretos/metabolismo , Compostos Ferrosos/metabolismo , Netúnio/química , Tecnécio/química , Urânio/química , Minerais/química , Netúnio/isolamento & purificação , Oxirredução , Soluções , Tecnécio/isolamento & purificação , Urânio/isolamento & purificação , Espectroscopia por Absorção de Raios X
13.
J Phys Chem A ; 119(34): 9178-88, 2015 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-26226188

RESUMO

Actinyl(VI, V) (An = U, Np and Pu) complexes of the recently reported hybrid macrocycle, cyclo[1]furan[1]pyridine[4]pyrrole (denoted as H4L), have been studied using density functional theory in combination with the small-core scalar-relativistic effective core potentials and corresponding (14s13p10d8f6g)/[ 10s9p5d4f3g] basis sets in the segmented contraction scheme. On the basis of our calculations, the pyrrole nitrogen atoms that possess the shortest An-L bonds and strongest basicity are the main donor atoms that contribute to the formation of actinyl(VI, V) complexes. The natural population analysis (NPA) suggests higher ligand-to-actinyl charge transfer in the actinyl(VI) complexes than in their actinyl(V) analogues, which account for the higher decomposition energies of the former. A significant actinide-to-ligand spin density delocalization in the uranyl(V) and neptunyl(V) complexes was observed owing to the redistribution of spin density caused by complexation. A thermodynamic analysis indicates that the formation of the actinyl(VI, V) complexes are exothermic reactions in CH2Cl2 solvent, where the uranyl cations show the highest selectivity. In aqueous solution containing chloride ions, for complexing with macrocycle H4L, the plutonyl(VI) and uranyl(V) cations possess the highest selectivity among actinyl(VI) and (V) cations, respectively. This work can shed light on the design of macrocycle complexes for actinide recognition and extraction in the future.


Assuntos
Compostos Macrocíclicos/química , Compostos Organometálicos/química , Teoria Quântica , Elétrons , Furanos/química , Ligantes , Cloreto de Metileno/química , Modelos Moleculares , Conformação Molecular , Netúnio/química , Plutônio/química , Piridinas/química , Pirróis/química , Solventes/química , Urânio/química , Água/química
14.
Phys Chem Chem Phys ; 17(11): 7537-47, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25706188

RESUMO

Four types of reaction mechanisms for the oxo ligand exchange of monomeric and dimeric neptunyl(VI) hydroxide in aqueous solution were explored computationally using density functional theory (DFT) and ab initio classical molecular dynamics. The obtained results were compared with previous studies on the oxo exchange of uranyl hydroxide, as well as with experiments. It is found that the stable T-shaped [NpO3(OH)3](3-) intermediate is a key species for oxo exchange in the proton transfer in mononuclear Path I and binuclear Path IV, similar to the case of uranyl(VI) hydroxide. Path I is thought to be the preferred oxo exchange mechanism for neptunyl(VI) hydroxide in our calculations, due to the lower activation energy (22.7 and 13.1 kcal mol(-1) for ΔG(‡) and ΔH(‡), respectively) of the overall reaction. Path II via a cis-neptunyl structure assisted by a water molecule might be a competitive channel against Path I with a mononuclear mechanism, owing to a rapid dynamical process occurring in Path II. In Path IV with the binuclear mechanism, oxo exchange is accomplished via the interaction between [NpO2(OH)4](2-) and T-shaped [NpO3(OH)3](3-) with a low activation energy for the rate-determining step, however, the overall energy required to fulfill the reaction is slightly higher than that in mononuclear Path I, suggesting a possible binuclear process in the higher energy region. The chemical bonding evolution along the reaction pathways was discussed by using topological methodologies of the electron localization function (ELF).


Assuntos
Elementos da Série Actinoide/química , Simulação de Dinâmica Molecular , Netúnio/química , Oxigênio/química , Água/química , Conformação Molecular , Prótons , Soluções , Termodinâmica
15.
Environ Sci Technol ; 49(4): 2560-7, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25597326

RESUMO

Hematite plays a decisive role in regulating the mobility of contaminants in rocks and soils. The Np(V) reactions at the hematite-water interface were comprehensively investigated by a combined approach of in situ vibrational spectroscopy, X-ray absorption spectroscopy and surface complexation modeling. A variety of sorption parameters such as Np(V) concentration, pH, ionic strength, and the presence of bicarbonate was considered. Time-resolved IR spectroscopic sorption experiments at the iron oxide-water interface evidenced the formation of a single monomer Np(V) inner-sphere sorption complex. EXAFS provided complementary information on bidentate edge-sharing coordination. In the presence of atmospherically derived bicarbonate the formation of the bis-carbonato inner-sphere complex was confirmed supporting previous EXAFS findings.1 The obtained molecular structure allows more reliable surface complexation modeling of recent and future macroscopic data. Such confident modeling is mandatory for evaluating water contamination and for predicting the fate and migration of radioactive contaminants in the subsurface environment as it might occur in the vicinity of a radioactive waste repository or a reprocessing plant.


Assuntos
Compostos Férricos/química , Netúnio/química , Análise Espectral/métodos , Adenosina Trifosfatases , Proteínas de Transporte , Proteínas de Membrana , ATPases Mitocondriais Próton-Translocadoras , Água/química , Poluição Química da Água , Espectroscopia por Absorção de Raios X
16.
Environ Sci Technol ; 49(1): 665-71, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25401282

RESUMO

The reducing conditions in a nuclear waste repository render neptunium tetravalent. Thus, Np is often assumed to be immobile in the subsurface. However, tetravalent actinides can also become mobile if they occur as colloids. We show that Np(IV) is able to form silica-rich colloids in solutions containing silicic acid at concentrations of both the regions above and below the "mononuclear wall" of silicic acid at 2 × 10(-3) M (where silicic acid is expected to start polymerization). These Np(IV)-silica colloids have a size of only very few nanometers and can reach significantly higher concentrations than Np(IV) oxyhydroxide colloids. They can be stable in the waterborne form over longer spans of time. In the Np(IV)-silica colloids, the actinide--oxygen--actinide bonds are increasingly replaced by actinide--oxygen--silicon bonds due to structural incorporation of Si. Possible implications of the formation of such colloids for environmental scenarios are discussed.


Assuntos
Álcalis/química , Coloides/química , Netúnio/química , Dióxido de Silício/química , Concentração de Íons de Hidrogênio , Luz , Nefelometria e Turbidimetria , Tamanho da Partícula , Fótons , Espalhamento de Radiação , Espectrofotometria Ultravioleta , Fatores de Tempo , Ultracentrifugação , Ultrafiltração , Espectroscopia por Absorção de Raios X
17.
J Phys Chem A ; 118(44): 10273-80, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25302669

RESUMO

Due to the vast application potential of graphene oxide (GO)-based materials in nuclear waste processing, it is of pivotal importance to investigate the interaction mechanisms between actinide cations such as Np(V) and Pu(IV, VI) ions and GO. In this work, we have considered four types of GOs modified by hydroxyl, carboxyl, and carbonyl groups at the edge and epoxy group on the surface, respectively. The structures, bonding nature, and binding energies of Np(V) and Pu(IV, VI) complexes with GOs have been investigated systematically using scalar-relativistic density functional theory (DFT). Geometries and harmonic frequencies suggest that Pu(IV) ions coordinate more easily with GOs compared to Np(V) and Pu(VI) ions. NBO and electron density analyses reveal that the coordination bond between Pu(IV) ions and GO possesses more covalency, whereas for Np(V) and Pu(VI) ions electrostatic interaction dominates the An-OG bond. The binding energies in aqueous solution reveal that the adsorption abilities of all GOs for actinide ions follow the order of Pu(IV) > Pu(VI) > Np(V), which is in excellent agreement with experimental observations. It is expected that this study can provide useful information for developing more efficient GO-based materials for radioactive wastewater treatment.


Assuntos
Grafite/química , Netúnio/química , Óxidos/química , Plutônio/química , Teoria Quântica , Íons/química
18.
Inorg Chem ; 53(20): 10846-53, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25268674

RESUMO

The preorganized tetradentate 2,9-diamido-1,10-phenanthroline ligand with hard-soft donors combined in the same molecule has been found to possess high selectivity toward actinides in an acidic aqueous solution. In this work, density functional theory (DFT) coupled with the quasi-relativistic small-core pseudopotential method was used to investigate the structures, bonding nature, and thermodynamic behavior of uranium(VI), neptunium(V), and plutonium(IV,VI) with phenanthrolineamides. Theoretical optimization shows that Et-Tol-DAPhen and Et-Et-DAPhen ligands are both coordinated with actinides in a tetradentate chelating mode through two N donors of the phenanthroline moiety and two O donors of the amide moieties. It is found that [AnO2L(NO3)](n+) (An = U(VI), Np(V), Pu(VI); n = 0, 1) and PuL(NO3)4 are the main 1:1 complexes. With respect to 1:2 complexes, the reaction [Pu(H2O)9](4+)(aq) + 2L(org) + 2NO3(-)(aq) → [PuL2(NO3)2](2+)(org) + 9H2O(aq) might be another probable extraction mechanism for Pu(IV). From the viewpoint of energy, the phenanthrolineamides extract actinides in the order of Pu(IV) > U(VI) > Pu(VI) > Np(V), which agrees well with the experimental results. Additionally, all of the thermodynamic reactions are more energetically favorable for the Et-Tol-DAPhen ligand than the Et-Et-DAPhen ligand, indicating that substitution of one ethyl group with one tolyl group can enhance the complexation abilities toward actinide cations (anomalous aryl strengthening).


Assuntos
Netúnio/química , Compostos Organometálicos/química , Fenantrolinas/química , Plutônio/química , Teoria Quântica , Urânio/química , Ligantes , Estrutura Molecular , Compostos Organometálicos/síntese química
19.
Talanta ; 128: 75-82, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25059133

RESUMO

This paper describes improvement and comparison of analytical methods for simultaneous determination of trace-level plutonium and neptunium in urine samples by inductively coupled plasma mass spectrometry (ICP-MS). Four sample pre-concentration techniques, including calcium phosphate, iron hydroxide and manganese dioxide co-precipitation and evaporation were compared and the applicability of different techniques was discussed in order to evaluate and establish the optimal method for in vivo radioassay program. The analytical results indicate that the various sample pre-concentration approaches afford dissimilar method performances and care should be taken for specific experimental parameters for improving chemical yields. The best analytical performances in terms of turnaround time (6h) and chemical yields for plutonium (88.7 ± 11.6%) and neptunium (94.2 ± 2.0%) were achieved by manganese dioxide co-precipitation. The need of drying ashing (≥ 7h) for calcium phosphate co-precipitation and long-term aging (5d) for iron hydroxide co-precipitation, respectively, rendered time-consuming analytical protocols. Despite the fact that evaporation is also somewhat time-consuming (1.5d), it endows urinalysis methods with better reliability and repeatability compared with co-precipitation techniques. In view of the applicability of different pre-concentration techniques proposed previously in the literature, the main challenge behind relevant method development is pointed to be the release of plutonium and neptunium associated with organic compounds in real urine assays. In this work, different protocols for decomposing organic matter in urine were investigated, of which potassium persulfate (K2S2O8) treatment provided the highest chemical yield of neptunium in the iron hydroxide co-precipitation step, yet, the occurrence of sulfur compounds in the processed sample deteriorated the analytical performance of the ensuing extraction chromatographic separation with chemical yields of ≤ 50%.


Assuntos
Cromatografia/métodos , Espectrometria de Massas/métodos , Netúnio/urina , Plutônio/urina , Urinálise/métodos , Fosfatos de Cálcio/química , Precipitação Química , Dessecação/métodos , Compostos Férricos/química , Temperatura Alta , Humanos , Compostos de Manganês/química , Espectrometria de Massas/instrumentação , Netúnio/química , Netúnio/isolamento & purificação , Óxidos/química , Plutônio/química , Plutônio/isolamento & purificação , Monitoramento de Radiação/instrumentação , Monitoramento de Radiação/métodos , Reprodutibilidade dos Testes , Urinálise/instrumentação
20.
J Environ Radioact ; 138: 315-22, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24731718

RESUMO

Radiochemical analysis of (237)Np is important in a number of fields, such as nuclear forensics, environmental analysis and measurements throughout the nuclear fuel cycle. However analysis is complicated by the lack of a stable isotope of neptunium. Although various tracers have been used, including (235)Np, (239)Np and even (236)Pu, none are entirely satisfactory. However, (236g)Np would be a better candidate for a neptunium yield tracer, as its long half-life means that it is useable as both a radiometric and mass spectrometric measurements. This radionuclide is notoriously difficult to prepare, and limited in scope. In this paper, we examine the options for the production of (236g)Np, based on work carried out at NPL since 2011. However, this work was primarily aimed at the production of (236)Pu, and not (236g)Np and therefore the rate of production are based on the levels of (236)Pu generated in the irradiation of (i) (238)U with protons, (ii) (235)U with deuterons, (iii) (236)U with protons and (iv) (236)U with deuterons. The derivation of a well-defined cross section is complicated by the relevant paucity of information on the variation of the (236m)Np:(236g)Np production ratio with incident particle energy. Furthermore, information on the purity of (236g)Np so produced is similarly sparse. Accordingly, the existing data is assessed and a plan for future work is presented.


Assuntos
Espectrometria de Massas/métodos , Netúnio/química , Radiometria/métodos , Urânio/química , Traçadores Radioativos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA