Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 741
Filtrar
1.
Elife ; 132024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748470

RESUMO

Acetylcholine is widely believed to modulate the release of dopamine in the striatum of mammals. Experiments in brain slices clearly show that synchronous activation of striatal cholinergic interneurons is sufficient to drive dopamine release via axo-axonal stimulation of nicotinic acetylcholine receptors. However, evidence for this mechanism in vivo has been less forthcoming. Mohebi, Collins and Berke recently reported that, in awake behaving rats, optogenetic activation of striatal cholinergic interneurons with blue light readily evokes dopamine release measured with the red fluorescent sensor RdLight1 (Mohebi et al., 2023). Here, we show that blue light alone alters the fluorescent properties of RdLight1 in a manner that may be misconstrued as phasic dopamine release, and that this artefactual photoactivation can account for the effects attributed to cholinergic interneurons. Our findings indicate that measurements of dopamine using the red-shifted fluorescent sensor RdLight1 should be interpreted with caution when combined with optogenetics. In light of this and other publications that did not observe large acetylcholine-evoked dopamine transients in vivo, the conditions under which such release occurs in behaving animals remain unknown.


Assuntos
Neurônios Colinérgicos , Dopamina , Interneurônios , Optogenética , Dopamina/metabolismo , Animais , Interneurônios/metabolismo , Interneurônios/fisiologia , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/fisiologia , Ratos , Optogenética/métodos , Motivação , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiologia , Acetilcolina/metabolismo
2.
Int J Mol Sci ; 25(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732223

RESUMO

Alzheimer's disease (AD) is characterized by a loss of neurons in the cortex and subcortical regions. Previously, we showed that the progressive degeneration of subcortical monoaminergic (MAergic) neurons seen in human AD is recapitulated in the APPswe/PS1ΔE9 (APP/PS) transgenic mouse model. Because degeneration of cholinergic (Ach) neurons is also a prominent feature of AD, we examined the integrity of the Ach system in the APP/PS model. The overall density of Ach fibers is reduced in APP/PS1 mice at 12 and 18 months of age but not at 4 months of age. Analysis of basal forebrain Ach neurons shows no loss of Ach neurons in the APP/PS model. Thus, since MAergic systems show overt cell loss at 18 months of age, the Ach system is less vulnerable to neurodegeneration in the APP/PS1 model. We also examined whether the proximity to Aß deposition affected the degeneration of Ach and 5-HT afferents. We found that the areas closer to the edges of compact Aß deposits exhibit a more severe loss of afferents than the areas that are more distal to Aß deposits. Collectively, the results indicate that the APP/PS model recapitulates the degeneration of multiple subcortical neurotransmitter systems, including the Ach system. In addition, the results indicate that Aß deposits cause global as well as local toxicity to subcortical afferents.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Neurônios Colinérgicos , Modelos Animais de Doenças , Camundongos Transgênicos , Placa Amiloide , Presenilina-1 , Animais , Placa Amiloide/patologia , Placa Amiloide/metabolismo , Camundongos , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/patologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Presenilina-1/genética , Presenilina-1/metabolismo , Humanos , Peptídeos beta-Amiloides/metabolismo
3.
Cells ; 13(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38607082

RESUMO

Basal forebrain cholinergic dysfunction, most likely linked with tau protein aggregation, is a characteristic feature of Alzheimer's disease (AD). Recent evidence suggests that tau protein is a putative target for the treatment of dementia, and the tau aggregation inhibitor, hydromethylthionine mesylate (HMTM), has emerged as a potential disease-modifying treatment. However, its efficacy was diminished in patients already receiving approved acetylcholinesterase inhibitors. In this study, we ask whether this negative interaction can also be mimicked in experimental tau models of AD and whether the underlying mechanism can be understood. From a previous age profiling study, 6-month-old line 1 (L1) tau transgenic mice were characterized by a severe reduction in several cholinergic markers. We therefore assessed whether long-term pre-exposure with the acetylcholinesterase inhibitor rivastigmine alone and in conjunction with the tau aggregation inhibitor HMTM can reverse cholinergic deficits in L1. Rivastigmine and HMTM, and combinations of the two compounds were administered orally for 11 weeks to both L1 and wild-type mice. The brains were sectioned with a focus on the basal forebrain, motor cortex and hippocampus. Immunohistochemical staining and quantification of choline acetyltransferase (ChAT), tyrosine kinase A (TrkA)-positive neurons and relative optical intensity (ROI) for vesicular acetylcholine transporter (VAChT), and acetylcholinesterase (AChE) reactivity confirmed reversal of the diminished cholinergic phenotype of interneurons (nucleus accumbens, striatum) and projection neurons (medial septum, nucleus basalis magnocellularis) by HMTM, to a greater extent than by rivastigmine alone in L1 mice. Combined administration did not yield additivity but, in most proxies, led to antagonistic effects in which rivastigmine decreased the benefits shown with HMTM alone. Local markers (VAChT and AChE) in target structures of the basal forebrain, motor cortex and hippocampal CA3 seemed to be normalized by HMTM, but not by rivastigmine or the combination of both drugs. HMTM, which was developed as a tau aggregation inhibitor, strongly decreased the tau load in L1 mice, however, not in combination with rivastigmine. Taken together, these data confirm a cholinergic phenotype in L1 tau transgenic mice that resembles the deficits observed in AD patients. This phenotype is reversible by HMTM, but at the same time appears to be subject to a homeostatic regulation induced by chronic pre-treatment with an acetylcholinesterase inhibitor, which interferes with the efficacy of HMTM. The strongest phenotypic reversal coincided with a normalization of the tau load in the cortex and hippocampus of L1, suggesting that tau accumulation underpins the loss of cholinergic markers in the basal forebrain and its projection targets.


Assuntos
Doença de Alzheimer , Tauopatias , Humanos , Camundongos , Animais , Lactente , Rivastigmina/farmacologia , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Inibidores da Colinesterase/farmacologia , Acetilcolinesterase/metabolismo , Neuroproteção , Neurônios Colinérgicos/metabolismo , Tauopatias/tratamento farmacológico , Colinérgicos , Camundongos Transgênicos
4.
Elife ; 122024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38655918

RESUMO

Obstructive sleep apnea (OSA) is a prevalent sleep-related breathing disorder that results in multiple bouts of intermittent hypoxia. OSA has many neurological and systemic comorbidities, including dysphagia, or disordered swallow, and discoordination with breathing. However, the mechanism in which chronic intermittent hypoxia (CIH) causes dysphagia is unknown. Recently, we showed the postinspiratory complex (PiCo) acts as an interface between the swallow pattern generator (SPG) and the inspiratory rhythm generator, the preBötzinger complex, to regulate proper swallow-breathing coordination (Huff et al., 2023). PiCo is characterized by interneurons co-expressing transporters for glutamate (Vglut2) and acetylcholine (ChAT). Here we show that optogenetic stimulation of ChATcre:Ai32, Vglut2cre:Ai32, and ChATcre:Vglut2FlpO:ChR2 mice exposed to CIH does not alter swallow-breathing coordination, but unexpectedly disrupts swallow behavior via triggering variable swallow motor patterns. This suggests that glutamatergic-cholinergic neurons in PiCo are not only critical for the regulation of swallow-breathing coordination, but also play an important role in the modulation of swallow motor patterning. Our study also suggests that swallow disruption, as seen in OSA, involves central nervous mechanisms interfering with swallow motor patterning and laryngeal activation. These findings are crucial for understanding the mechanisms underlying dysphagia, both in OSA and other breathing and neurological disorders.


Assuntos
Deglutição , Hipóxia , Animais , Camundongos , Deglutição/fisiologia , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Masculino , Optogenética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/genética , Apneia Obstrutiva do Sono/fisiopatologia , Apneia Obstrutiva do Sono/metabolismo , Neurônios Colinérgicos/fisiologia , Neurônios Colinérgicos/metabolismo , Interneurônios/fisiologia , Interneurônios/metabolismo , Respiração , Feminino
6.
Cell Rep ; 43(4): 113999, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38554281

RESUMO

Motor neuron (MN) demise is a hallmark of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Post-transcriptional gene regulation can control RNA's fate, and defects in RNA processing are critical determinants of MN degeneration. N6-methyladenosine (m6A) is a post-transcriptional RNA modification that controls diverse aspects of RNA metabolism. To assess the m6A requirement in MNs, we depleted the m6A methyltransferase-like 3 (METTL3) in cells and mice. METTL3 depletion in embryonic stem cell-derived MNs has profound and selective effects on survival and neurite outgrowth. Mice with cholinergic neuron-specific METTL3 depletion display a progressive decline in motor behavior, accompanied by MN loss and muscle denervation, culminating in paralysis and death. Reader proteins convey m6A effects, and their silencing phenocopies METTL3 depletion. Among the m6A targets, we identified transactive response DNA-binding protein 43 (TDP-43) and discovered that its expression is under epitranscriptomic control. Thus, impaired m6A signaling disrupts MN homeostasis and triggers neurodegeneration conceivably through TDP-43 deregulation.


Assuntos
Neurônios Colinérgicos , Metiltransferases , Doenças Neuromusculares , Animais , Humanos , Camundongos , Adenosina/metabolismo , Adenosina/análogos & derivados , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/genética , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/patologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Metiltransferases/metabolismo , Metiltransferases/genética , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Doenças Neuromusculares/metabolismo , Doenças Neuromusculares/patologia
7.
J Comp Neurol ; 532(2): e25587, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38335048

RESUMO

We examined the presence/absence and parcellation of cholinergic neurons in the hypothalami of five birds: a Congo grey parrot (Psittacus erithacus), a Timneh grey parrot (P. timneh), a pied crow (Corvus albus), a common ostrich (Struthio camelus), and an emu (Dromaius novaehollandiae). Using immunohistochemistry to an antibody raised against the enzyme choline acetyltransferase, hypothalamic cholinergic neurons were observed in six distinct clusters in the medial, lateral, and ventral hypothalamus in the parrots and crow, similar to prior observations made in the pigeon. The expression of cholinergic nuclei was most prominent in the Congo grey parrot, both in the medial and lateral hypothalamus. In contrast, no evidence of cholinergic neurons in the hypothalami of either the ostrich or emu was found. It is known that the expression of sleep states in the ostrich is unusual and resembles that observed in the monotremes that also lack hypothalamic cholinergic neurons. It has been proposed that the cholinergic system acts globally to produce and maintain brain states, such as those of arousal and rapid-eye-movement sleep. The hiatus in the cholinergic system of the ostrich, due to the lack of hypothalamic cholinergic neurons, may explain, in part, the unusual expression of sleep states in this species. These comparative anatomical and sleep studies provide supportive evidence for global cholinergic actions and may provide an important framework for our understanding of one broad function of the cholinergic system and possible dysfunctions associated with global cholinergic neural activity.


Assuntos
Dromaiidae , Struthioniformes , Animais , Dromaiidae/metabolismo , Struthioniformes/metabolismo , Encéfalo/metabolismo , Hipotálamo/metabolismo , Neurônios Colinérgicos/metabolismo , Sono/fisiologia , Colinérgicos , Colina O-Acetiltransferase/metabolismo
8.
Brain Behav Immun ; 117: 347-355, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38266662

RESUMO

Human Immunodeficiency Virus-1 (HIV) infection of the brain induces HIV-associated neurocognitive disorders (HAND). The set of molecular events employed by HIV to drive cognitive impairments in people living with HIV are diverse and remain not completely understood. We have shown that the HIV envelope protein gp120 promotes loss of synapses and decreases performance on cognitive tasks through the p75 neurotrophin receptor (p75NTR). This receptor is abundant on cholinergic neurons of the basal forebrain and contributes to cognitive impairment in various neurological disorders. In this study, we examined cholinergic neurons of gp120 transgenic (gp120tg) mice for signs of degeneration. We observed that the number of choline acetyltransferase-expressing cells is decreased in old (12-14-month-old) gp120tg mice when compared to age matched wild type. In the same animals, we observed an increase in the levels of pro-nerve growth factor, a ligand of p75NTR, as well as a disruption of consolidation of extinction of conditioned fear, a behavior regulated by cholinergic neurons of the basal forebrain. Both biochemical and behavioral outcomes of gp120tg mice were rescued by the deletion of the p75NTR gene, strongly supporting the role that this receptor plays in the neurotoxic effects of gp120. These data indicate that future p75NTR-directed pharmacotherapies could provide an adjunct therapy against synaptic simplification caused by HIV.


Assuntos
Prosencéfalo Basal , Infecções por HIV , HIV-1 , Camundongos , Animais , Humanos , Lactente , Receptor de Fator de Crescimento Neural/metabolismo , Camundongos Transgênicos , HIV-1/metabolismo , Prosencéfalo Basal/metabolismo , Neurônios Colinérgicos/metabolismo , Infecções por HIV/metabolismo
9.
Eur J Neurosci ; 59(9): 2240-2255, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38258622

RESUMO

Spatial memory encoding depends in part on cholinergic modulation. How acetylcholine supports spatial memory encoding is not well understood. Prior studies indicate that acetylcholine release is correlated with exploration, including epochs of rearing onto hind legs. Here, to test whether elevated cholinergic tone increases the probability of rearing, we tracked rearing frequency and duration while optogenetically modulating the activity of choline acetyltransferase containing (i.e., acetylcholine producing) neurons of the medial septum in rats performing a spatial working memory task (n = 17 rats). The cholinergic neurons were optogenetically inhibited using halorhodopsin for the duration that rats occupied two of the four open arms during the study phase of an 8-arm radial arm maze win-shift task. Comparing rats' behaviour in the two arm types showed that rearing frequency was not changed, but the average duration of rearing epochs became significantly longer. This effect on rearing was observed during optogenetic inhibition but not during sham inhibition or in rats that received infusions of a fluorescent reporter virus (i.e., without halorhodopsin; n = 6 rats). Optogenetic inhibition of cholinergic neurons during the pretrial waiting phase had no significant effect on rearing, indicating a context-specificity of the observed effects. These results are significant in that they indicate that cholinergic neuron activity in the medial septum is correlated with rearing not because it motivates an exploratory state but because it contributes to the processing of information acquired while rearing.


Assuntos
Neurônios Colinérgicos , Optogenética , Memória Espacial , Animais , Neurônios Colinérgicos/fisiologia , Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Colinérgicos/metabolismo , Memória Espacial/fisiologia , Memória Espacial/efeitos dos fármacos , Masculino , Ratos , Optogenética/métodos , Ratos Long-Evans , Colina O-Acetiltransferase/metabolismo , Colina O-Acetiltransferase/genética , Acetilcolina/metabolismo , Memória de Curto Prazo/fisiologia , Memória de Curto Prazo/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Aprendizagem em Labirinto/efeitos dos fármacos
10.
Sci Rep ; 14(1): 46, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168499

RESUMO

Ethanol engages cholinergic signaling and elicits endogenous acetylcholine release. Acetylcholine input to the midbrain originates from the mesopontine tegmentum (MPT), which is composed of the laterodorsal tegmentum (LDT) and the pedunculopontine tegmental nucleus (PPN). We investigated the effect of acute and chronic ethanol administration on cholinergic and glutamatergic neuron activation in the PPN and LDT in male and female mice. We show that ethanol activates neurons of the PPN and not the LDT in male mice. Chronic 15 daily injections of 2 g/kg ethanol induced Fos expression in cholinergic and glutamatergic PPN neurons in male mice, whereas ethanol did not increase cholinergic and glutamatergic neuronal activation in the LDT. A single acute 4 g/kg injection, but not a single 2 g/kg injection, induced cholinergic neuron activation in the male PPN but not the LDT. In contrast, acute or chronic ethanol at either dose or duration had no effect on the activation of cholinergic or glutamatergic neurons in the MPT of female mice. Female mice had higher baseline level of activation in cholinergic neurons compared with males. We also found a population of co-labeled cholinergic and glutamatergic neurons in the PPN and LDT which were highly active in the saline- and ethanol-treated groups in both sexes. These findings illustrate the complex differential effects of ethanol across dose, time point, MPT subregion and sex.


Assuntos
Acetilcolina , Caracteres Sexuais , Feminino , Masculino , Camundongos , Animais , Acetilcolina/metabolismo , Tegmento Mesencefálico/fisiologia , Neurônios Colinérgicos/metabolismo , Colinérgicos/metabolismo
11.
J Comp Neurol ; 532(2): e25570, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38108576

RESUMO

The brainstem pedunculopontine (PPN) and laterodorsal tegmental (LDTg) nuclei are involved in multifarious activities, including motor control. Yet, their exact cytoarchitectural boundaries are still uncertain. We therefore initiated a comparative study of the topographical and neurochemical organization of the PPN and LDTg in cynomolgus monkeys (Macaca fascicularis) and humans. The distribution and morphological characteristics of neurons expressing choline acetyltransferase (ChAT) and/or nicotinamide adenine dinucleotide phosphate diaphorase (Nadph-δ) were documented. The number and density of the labeled neurons were obtained by stringent stereological methods, whereas their topographical distribution was reported upon corresponding magnetic resonance imaging (MRI) planes. In both human and nonhuman primates, the PPN and LDTg are populated by three neurochemically distinct types of neurons (ChAT-/Nadph-δ+, ChAT+/Nadph-δ-, and ChAT+/Nadph-δ+), which are distributed according to a complex spatial interplay. Three-dimensional reconstructions reveal that ChAT+ neurons in the PPN and LDTg form a continuum with some overlaps with pigmented neurons of the locus coeruleus, dorsally, and of the substantia nigra (SN) complex, ventrally. The ChAT+ neurons in the PPN and LDTg are -two to three times more numerous in humans than in monkeys but their density is -three to five times higher in monkeys than in humans. Neurons expressing both ChAT and Nadph-δ have a larger cell body and a longer primary dendritic arbor than singly labeled neurons. Stereological quantification reveals that 25.6% of ChAT+ neurons in the monkey PPN are devoid of Nadph-δ staining, a finding that questions the reliability of Nadph-δ as a marker for cholinergic neurons in primate brainstem.


Assuntos
Tronco Encefálico , Tegmento Mesencefálico , Animais , Humanos , Reprodutibilidade dos Testes , Tronco Encefálico/metabolismo , Neurônios Colinérgicos/metabolismo , Colinérgicos , Colina O-Acetiltransferase/metabolismo
12.
Nature ; 623(7985): 122-131, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37722602

RESUMO

A fundamental and unresolved question in regenerative biology is how tissues return to homeostasis after injury. Answering this question is essential for understanding the aetiology of chronic disorders such as inflammatory bowel diseases and cancer1. We used the Drosophila midgut2 to investigate this and discovered that during regeneration a subpopulation of cholinergic3 neurons triggers Ca2+ currents among intestinal epithelial cells, the enterocytes, to promote return to homeostasis. We found that downregulation of the conserved cholinergic enzyme acetylcholinesterase4 in the gut epithelium enables acetylcholine from specific Egr5 (TNF in mammals)-sensing cholinergic neurons to activate nicotinic receptors in innervated enterocytes. This activation triggers high Ca2+, which spreads in the epithelium through Innexin2-Innexin7 gap junctions6, promoting enterocyte maturation followed by reduction of proliferation and inflammation. Disrupting this process causes chronic injury consisting of ion imbalance, Yki (YAP in humans) activation7, cell death and increase of inflammatory cytokines reminiscent of inflammatory bowel diseases8. Altogether, the conserved cholinergic pathway facilitates epithelial Ca2+ currents that heal the intestinal epithelium. Our findings demonstrate nerve- and bioelectric9-dependent intestinal regeneration and advance our current understanding of how a tissue returns to homeostasis after injury.


Assuntos
Sinalização do Cálcio , Cálcio , Neurônios Colinérgicos , Drosophila melanogaster , Enterócitos , Intestinos , Animais , Humanos , Acetilcolina/metabolismo , Acetilcolinesterase/metabolismo , Cálcio/metabolismo , Neurônios Colinérgicos/metabolismo , Drosophila melanogaster/enzimologia , Drosophila melanogaster/metabolismo , Enterócitos/metabolismo , Homeostase , Inflamação/enzimologia , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Intestinos/citologia , Intestinos/metabolismo , Receptores Nicotínicos/metabolismo , Modelos Animais de Doenças
13.
Nature ; 621(7979): 577-585, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37557915

RESUMO

Striatal dopamine and acetylcholine are essential for the selection and reinforcement of motor actions and decision-making1. In vitro studies have revealed an intrastriatal circuit in which acetylcholine, released by cholinergic interneurons (CINs), drives the release of dopamine, and dopamine, in turn, inhibits the activity of CINs through dopamine D2 receptors (D2Rs). Whether and how this circuit contributes to striatal function in vivo is largely unknown. Here, to define the role of this circuit in a living system, we monitored acetylcholine and dopamine signals in the ventrolateral striatum of mice performing a reward-based decision-making task. We establish that dopamine and acetylcholine exhibit multiphasic and anticorrelated transients that are modulated by decision history and reward outcome. Dopamine dynamics and reward encoding do not require the release of acetylcholine by CINs. However, dopamine inhibits acetylcholine transients in a D2R-dependent manner, and loss of this regulation impairs decision-making. To determine how other striatal inputs shape acetylcholine signals, we assessed the contribution of cortical and thalamic projections, and found that glutamate release from both sources is required for acetylcholine release. Altogether, we uncover a dynamic relationship between dopamine and acetylcholine during decision-making, and reveal multiple modes of CIN regulation. These findings deepen our understanding of the neurochemical basis of decision-making and behaviour.


Assuntos
Acetilcolina , Corpo Estriado , Tomada de Decisões , Dopamina , Ácido Glutâmico , Animais , Camundongos , Acetilcolina/metabolismo , Corpo Estriado/citologia , Corpo Estriado/metabolismo , Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Neostriado/citologia , Neostriado/metabolismo , Tomada de Decisões/fisiologia , Recompensa , Receptores de Dopamina D2/metabolismo , Neurônios Colinérgicos/metabolismo , Vias Neurais
14.
eNeuro ; 10(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37558465

RESUMO

Traumatic brain injury (TBI) elicits neuronal loss at the site of injury and progressive neuronal loss in the penumbra. However, the consequences of TBI on afferent neurons projecting to the injured tissue from distal locations is unknown. Basal forebrain cholinergic neurons (BFCNs) extend long projections to multiple brain regions including the cortex, regulate many cognitive functions, and are compromised in numerous neurodegenerative disorders. To determine the consequence of cortical injury on these afferent neurons, we used the fluid percussion injury model of traumatic brain injury and assessed the effects on BFCN survival and axon integrity in male and female mice. Survival or death of BF neurons can be regulated by neurotrophins or proneurotrophins, respectively. The injury elicited an induction of proNGF and proBDNF in the cortex and a loss of BFCNs ipsilateral to the injury compared with sham uninjured mice. The p75NTR knock-out mice did not show loss of BFCN neurons, indicating a retrograde degenerative effect of the cortical injury on the afferent BFCNs mediated through p75NTR. In contrast, locus ceruleus neurons, which also project throughout the cortex, were unaffected by the injury, suggesting specificity in retrograde degeneration after cortical TBI. Proneurotrophins (proNTs) provided directly to basal forebrain axons in microfluidic cultures triggered retrograde axonal degeneration and cell death, which did not occur in the absence of p75NTR. This study shows that after traumatic brain injury, proNTs induced in the injured cortex promote BFCN axonal degeneration and retrograde neuron loss through p75NTR.


Assuntos
Prosencéfalo Basal , Lesões Encefálicas Traumáticas , Receptores de Fator de Crescimento Neural , Animais , Feminino , Masculino , Camundongos , Lesões Encefálicas Traumáticas/metabolismo , Neurônios Colinérgicos/metabolismo , Neurônios Aferentes , Degeneração Retrógrada/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo
15.
Proc Natl Acad Sci U S A ; 120(28): e2218830120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399414

RESUMO

The cholinergic system of the basal forebrain plays an integral part in behaviors ranging from attention to learning, partly by altering the impact of noise in neural populations. The circuit computations underlying cholinergic actions are confounded by recent findings that forebrain cholinergic neurons corelease both acetylcholine (ACh) and GABA. We have identified that corelease of ACh and GABA by cholinergic inputs to the claustrum, a structure implicated in the control of attention, has opposing effects on the electrical activity of claustrum neurons that project to cortical vs. subcortical targets. These actions differentially alter neuronal gain and dynamic range in the two types of neurons. In model networks, the differential effects of ACh and GABA toggle network efficiency and the impact of noise on population dynamics between two different projection subcircuits. Such cholinergic switching between subcircuits provides a potential logic for neurotransmitter corelease in implementing behaviorally relevant computations.


Assuntos
Acetilcolina , Colinérgicos , Acetilcolina/metabolismo , Prosencéfalo/metabolismo , Neurônios Colinérgicos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Lógica
16.
Alzheimers Dement ; 19(11): 5159-5172, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37158312

RESUMO

INTRODUCTION: Females with Alzheimer's disease (AD) suffer accelerated dementia and loss of cholinergic neurons compared to males, but the underlying mechanisms are unknown. Seeking causal contributors to both these phenomena, we pursued changes in transfer RNS (tRNA) fragments (tRFs) targeting cholinergic transcripts (CholinotRFs). METHODS: We analyzed small RNA-sequencing (RNA-Seq) data from the nucleus accumbens (NAc) brain region which is enriched in cholinergic neurons, compared to hypothalamic or cortical tissues from AD brains; and explored small RNA expression in neuronal cell lines undergoing cholinergic differentiation. RESULTS: NAc CholinotRFs of mitochondrial genome origin showed reduced levels that correlated with elevations in their predicted cholinergic-associated mRNA targets. Single-cell RNA seq from AD temporal cortices showed altered sex-specific levels of cholinergic transcripts in diverse cell types; inversely, human-originated neuroblastoma cells under cholinergic differentiation presented sex-specific CholinotRF elevations. DISCUSSION: Our findings support CholinotRFs contributions to cholinergic regulation, predicting their involvement in AD sex-specific cholinergic loss and dementia.


Assuntos
Doença de Alzheimer , Masculino , Feminino , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Núcleo Accumbens/metabolismo , Neurônios Colinérgicos/metabolismo , Colinérgicos/metabolismo , RNA/metabolismo , RNA de Transferência/metabolismo
17.
FASEB J ; 37(6): e22944, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37191946

RESUMO

Basal forebrain cholinergic neuron (BFCN) degeneration is a hallmark of Down syndrome (DS) and Alzheimer's disease (AD). Current therapeutics in these disorders have been unsuccessful in slowing disease progression, likely due to poorly understood complex pathological interactions and dysregulated pathways. The Ts65Dn trisomic mouse model recapitulates both cognitive and morphological deficits of DS and AD, including BFCN degeneration and has shown lifelong behavioral changes due to maternal choline supplementation (MCS). To test the impact of MCS on trisomic BFCNs, we performed laser capture microdissection to individually isolate choline acetyltransferase-immunopositive neurons in Ts65Dn and disomic littermates, in conjunction with MCS at the onset of BFCN degeneration. We utilized single population RNA sequencing (RNA-seq) to interrogate transcriptomic changes within medial septal nucleus (MSN) BFCNs. Leveraging multiple bioinformatic analysis programs on differentially expressed genes (DEGs) by genotype and diet, we identified key canonical pathways and altered physiological functions within Ts65Dn MSN BFCNs, which were attenuated by MCS in trisomic offspring, including the cholinergic, glutamatergic and GABAergic pathways. We linked differential gene expression bioinformatically to multiple neurological functions, including motor dysfunction/movement disorder, early onset neurological disease, ataxia and cognitive impairment via Ingenuity Pathway Analysis. DEGs within these identified pathways may underlie aberrant behavior in the DS mice, with MCS attenuating the underlying gene expression changes. We propose MCS ameliorates aberrant BFCN gene expression within the septohippocampal circuit of trisomic mice through normalization of principally the cholinergic, glutamatergic, and GABAergic signaling pathways, resulting in attenuation of underlying neurological disease functions.


Assuntos
Doença de Alzheimer , Prosencéfalo Basal , Síndrome de Down , Camundongos , Animais , Síndrome de Down/genética , Síndrome de Down/metabolismo , Camundongos Transgênicos , Prosencéfalo Basal/metabolismo , Prosencéfalo Basal/patologia , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/patologia , Doença de Alzheimer/metabolismo , Modelos Animais de Doenças , Colina/metabolismo , Suplementos Nutricionais
18.
Int J Mol Sci ; 24(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37240306

RESUMO

Alzheimer's disease (AD) is a chronic neurological condition characterized by the severe loss of cholinergic neurons. Currently, the incomplete understanding of the loss of neurons has prevented curative treatments for familial AD (FAD). Therefore, modeling FAD in vitro is essential for studying cholinergic vulnerability. Moreover, to expedite the discovery of disease-modifying therapies that delay the onset and slow the progression of AD, we depend on trustworthy disease models. Although highly informative, induced pluripotent stem cell (iPSCs)-derived cholinergic neurons (ChNs) are time-consuming, not cost-effective, and labor-intensive. Other sources for AD modeling are urgently needed. Wild-type and presenilin (PSEN)1 p.E280A fibroblast-derived iPSCs, menstrual blood-derived menstrual stromal cells (MenSCs), and umbilical cord-derived Wharton Jelly's mesenchymal stromal cells (WJ-MSCs) were cultured in Cholinergic-N-Run and Fast-N-Spheres V2 medium to obtain WT and PSEN 1 E280A cholinergic-like neurons (ChLNs, 2D) and cerebroid spheroids (CSs, 3D), respectively, and to evaluate whether ChLNs/CSs can reproduce FAD pathology. We found that irrespective of tissue source, ChLNs/CSs successfully recapitulated the AD phenotype. PSEN 1 E280A ChLNs/CSs show accumulation of iAPPß fragments, produce eAß42, present TAU phosphorylation, display OS markers (e.g., oxDJ-1, p-JUN), show loss of ΔΨm, exhibit cell death markers (e.g., TP53, PUMA, CASP3), and demonstrate dysfunctional Ca2+ influx response to ACh stimuli. However, PSEN 1 E280A 2D and 3D cells derived from MenSCs and WJ-MSCs can reproduce FAD neuropathology more efficiently and faster (11 days) than ChLNs derived from mutant iPSCs (35 days). Mechanistically, MenSCs and WJ-MSCs are equivalent cell types to iPSCs for reproducing FAD in vitro.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Células-Tronco Mesenquimais , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Doença de Alzheimer/metabolismo , Neurônios Colinérgicos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Colinérgicos/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo
19.
PLoS Biol ; 21(3): e3002012, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36862736

RESUMO

Sleep is a complex and plastic behavior regulated by multiple brain regions and influenced by numerous internal and external stimuli. Thus, to fully uncover the function(s) of sleep, cellular resolution of sleep-regulating neurons needs to be achieved. Doing so will help to unequivocally assign a role or function to a given neuron or group of neurons in sleep behavior. In the Drosophila brain, neurons projecting to the dorsal fan-shaped body (dFB) have emerged as a key sleep-regulating area. To dissect the contribution of individual dFB neurons to sleep, we undertook an intersectional Split-GAL4 genetic screen focusing on cells contained within the 23E10-GAL4 driver, the most widely used tool to manipulate dFB neurons. In this study, we demonstrate that 23E10-GAL4 expresses in neurons outside the dFB and in the fly equivalent of the spinal cord, the ventral nerve cord (VNC). Furthermore, we show that 2 VNC cholinergic neurons strongly contribute to the sleep-promoting capacity of the 23E10-GAL4 driver under baseline conditions. However, in contrast to other 23E10-GAL4 neurons, silencing these VNC cells does not block sleep homeostasis. Thus, our data demonstrate that the 23E10-GAL4 driver contains at least 2 different types of sleep-regulating neurons controlling distinct aspects of sleep behavior.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Sono/fisiologia , Encéfalo/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Neurônios Colinérgicos/metabolismo
20.
Int J Mol Sci ; 24(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36901896

RESUMO

Mild thiamine deficiency aggravates Zn accumulation in cholinergic neurons. It leads to the augmentation of Zn toxicity by its interaction with the enzymes of energy metabolism. Within this study, we tested the effect of Zn on microglial cells cultivated in a thiamine-deficient medium, containing 0.003 mmol/L of thiamine vs. 0.009 mmol/L in a control medium. In such conditions, a subtoxic 0.10 mmol/L Zn concentration caused non-significant alterations in the survival and energy metabolism of N9 microglial cells. Both activities of the tricarboxylic acid cycle and the acetyl-CoA level were not decreased in these culture conditions. Amprolium augmented thiamine pyrophosphate deficits in N9 cells. This led to an increase in the intracellular accumulation of free Zn and partially aggravated its toxicity. There was differential sensitivity of neuronal and glial cells to thiamine-deficiency-Zn-evoked toxicity. The co-culture of neuronal SN56 with microglial N9 cells reduced the thiamine-deficiency-Zn-evoked inhibition of acetyl-CoA metabolism and restored the viability of the former. The differential sensitivity of SN56 and N9 cells to borderline thiamine deficiency combined with marginal Zn excess may result from the strong inhibition of pyruvate dehydrogenase in neuronal cells and no inhibition of this enzyme in the glial ones. Therefore, ThDP supplementation can make any brain cell more resistant to Zn excess.


Assuntos
Microglia , Deficiência de Tiamina , Humanos , Microglia/metabolismo , Acetilcoenzima A/metabolismo , Deficiência de Tiamina/metabolismo , Neurônios Colinérgicos/metabolismo , Tiamina Pirofosfato/metabolismo , Colinérgicos/metabolismo , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...