Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 617
Filtrar
1.
J Neuroinflammation ; 21(1): 73, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528529

RESUMO

BACKGROUND: Guillain-Barré syndrome (GBS), a post-infectious, immune-mediated, acute demyelinating disease of the peripheral nerves and nerve roots, represents the most prevalent and severe acute paralyzing neuropathy. Purinergic P2X7 receptors (P2X7R) play a crucial role in central nervous system inflammation. However, little is known about their role in the immune-inflammatory response within the peripheral nervous system. METHODS: Initially, we assessed the expression of purinergic P2X7R in the peripheral blood of patients with GBS using flow cytometry and qRT-PCR. Next, we explored the expression of P2 X7R in CD4+ T cells, CD8+ T cells, and macrophages within the sciatic nerves and spleens of rats using immunofluorescence labeling and flow cytometry. The P2X7R antagonist brilliant blue G (BBG) was employed to examine its therapeutic impact on rats with experimental autoimmune neuritis (EAN) induced by immunization with the P0180 - 199 peptide. We analyzed CD4+ T cell differentiation in splenic mononuclear cells using flow cytometry, assessed Th17 cell differentiation in the sciatic nerve through immunofluorescence staining, and examined the expression of pro-inflammatory cytokine mRNA using RT-PCR. Additionally, we performed protein blotting to assess the expression of P2X7R and NLRP3-related inflammatory proteins within the sciatic nerve. Lastly, we utilized flow cytometry and immunofluorescence labeling to examine the expression of NLRP3 on CD4+ T cells in rats with EAN. RESULTS: P2X7R expression was elevated not only in the peripheral blood of patients with GBS but also in rats with EAN. In rats with EAN, inhibiting P2X7R with BBG alleviated neurological symptoms, reduced demyelination, decreased inflammatory cell infiltration of the peripheral nerves, and improved nerve conduction. BBG also limited the production of pro-inflammatory molecules, down-regulated the expression of P2X7R and NLRP3, and suppressed the differentiation of Th1 and Th17 cells, thus protecting against EAN. These effects collectively contribute to modifying the inflammatory environment and enhancing outcomes in EAN rats. CONCLUSIONS: Suppression of P2X7R relieved EAN manifestation by regulating CD4+ T cell differentiation and NLRP3 inflammasome activation. This finding underscores the potential significance of P2X7R as a target for anti-inflammatory treatments, advancing research and management of GBS.


Assuntos
Síndrome de Guillain-Barré , Neurite Autoimune Experimental , Antagonistas do Receptor Purinérgico P2X , Animais , Humanos , Ratos , Linfócitos T CD8-Positivos , Diferenciação Celular/efeitos dos fármacos , Síndrome de Guillain-Barré/tratamento farmacológico , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Antagonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Nervo Isquiático/metabolismo , Células Th17/efeitos dos fármacos , Células Th17/metabolismo , Células Th1/efeitos dos fármacos , Células Th1/metabolismo
2.
Neurosci Lett ; 814: 137456, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37648059

RESUMO

OBJECTIVE: We evaluated the potential neuro-regenerative effects of the mitochondrial uncoupler 2,4-Dinitrophenol in experimental autoimmune neuritis, an animal model for an acute autoimmune neuropathy. METHODS: Experimental autoimmune neuritis was induced in Lewis rats. Different concentrations of 2,4-Dinitrophenol (1 mg/kg, 0.1 mg/kg and 0.01 mg/kg) were applied during the recovery phase of the neuritis (at days 18, 22 and 26) and compared to the vehicle. Any effects were assessed through functional, electrophysiological, and morphological analysis via electron microscopy of all groups at day 30. Additional immune-histochemical analysis of inflammation markers and remyelination of the sciatic nerves were performed for the dosage of 1 mg/kg and control. RESULTS: No enhancement of functional or electrophysiological recovery was observed in all 2,4-Dinitrophenol-treated groups. Cellular inflammation markers of T cells (CD3+) were comparable to control, and an increase of macrophages (IbA1+) invasion in the sciatic nerves was observed. Treatment with 2,4-Dinitrophenol reduced axonal swelling in myelinated and unmyelinated fibers with an increased production of brain-derived neurotrophic factor. CONCLUSION: Our findings do not support the hypothesis that repurposing of the mitochondrial uncoupler 2,4-Dinitrophenol exerts functionally relevant neuro-regenerative effects in autoimmune neuritis.


Assuntos
Neurite Autoimune Experimental , Neurite (Inflamação) , Ratos , Animais , Ratos Endogâmicos Lew , Neurite Autoimune Experimental/tratamento farmacológico , 2,4-Dinitrofenol/farmacologia , Dinitrofenóis , Inflamação
3.
J Neuroinflammation ; 20(1): 139, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296476

RESUMO

BACKGROUND: Autoimmune neuropathies can result in long-term disability and incomplete recovery, despite adequate first-line therapy. Kinesin-5 inhibition was shown to accelerate neurite outgrowth in different preclinical studies. Here, we evaluated the potential neuro-regenerative effects of the small molecule kinesin-5 inhibitor monastrol in a rodent model of acute autoimmune neuropathies, experimental autoimmune neuritis. METHODS: Experimental autoimmune neuritis was induced in Lewis rats with the neurogenic P2-peptide. At the beginning of the recovery phase at day 18, the animals were treated with 1 mg/kg monastrol or sham and observed until day 30 post-immunisation. Electrophysiological and histological analysis for markers of inflammation and remyelination of the sciatic nerve were performed. Neuromuscular junctions of the tibialis anterior muscles were analysed for reinnervation. We further treated human induced pluripotent stem cells-derived secondary motor neurons with monastrol in different concentrations and performed a neurite outgrowth assay. RESULTS: Treatment with monastrol enhanced functional and histological recovery in experimental autoimmune neuritis. Motor nerve conduction velocity at day 30 in the treated animals was comparable to pre-neuritis values. Monastrol-treated animals showed partially reinnervated or intact neuromuscular junctions. A significant and dose-dependent accelerated neurite outgrowth was observed after kinesin-5 inhibition as a possible mode of action. CONCLUSION: Pharmacological kinesin-5 inhibition improves the functional outcome in experimental autoimmune neuritis through accelerated motor neurite outgrowth and histological recovery. This approach could be of interest to improve the outcome of autoimmune neuropathy patients.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neurite Autoimune Experimental , Ratos , Animais , Humanos , Neurite Autoimune Experimental/tratamento farmacológico , Neurite Autoimune Experimental/patologia , Cinesinas/uso terapêutico , Ratos Endogâmicos Lew , Células-Tronco Pluripotentes Induzidas/patologia
4.
Zhonghua Yi Xue Za Zhi ; 103(17): 1334-1339, 2023 May 09.
Artigo em Chinês | MEDLINE | ID: mdl-37150684

RESUMO

Objective: To investigate the expression of glycolytic genes in immune cells and the changes of related immune cells in experimental autoimmune neuritis (EAN), and deepen the understanding of pathogenesis of EAN. Methods: Twenty-four male C57BL/6 mice (6-8 weeks old, 18-20 g) were divided into four groups according to the random number table method: control group (P0180-199 was replaced by PBS during modeling and mice were sacrificed on the 16th day), EAN mice were sacrificed on the 8th day after the end of modeling (EAN 8 d), EAN mice were sacrificed on the 16th day after the end of modeling (EAN 16 d), and EAN mice received drug intervention and were sacrificed on the 16th day after the end of modeling (2-DG was intraperitoneally injected since the day of the first immunization, 550 mg/kg; EAN 16 d+2-DG), with 6 rats in each group. The clinical symptoms and clinical scores were observed and recorded daily. At the end of the experiment, the mice were sacrificed under chloral hydrate anesthesia, and the serum, spleen, sciatic nerve and other tissues of each group were collected. The degree of inflammatory cell infiltration and demyelination of sciatic nerve were observed by hematoxylin and eosin (HE) staining and luxol fast blue (LFB) staining. Flow cytometry was used to detect the proportion of M1 macrophages, Th17 cells and Tregs cells. The mRNA expression levels of glycolysis-related genes (mTORC1, HIF1α, GLUT1 and LDHA) were detected by RT-PCR. Western blotting was used to detect the level of pan-lysine lactate in macrophages and sciatic nerve tissue. Results: The expression of glycolysis-related genes (mTORC1, HIF1α, GLUT1 and LDHA) in spleen M1 macrophages and sciatic nerve was significantly up-regulated in EAN 16 d group, compared with control, EAN 8 d and EAN 16 d+2-DG groups (all P<0.05). The relative pan-lysine lactate (pankla) expression level of spleen M1 macrophages (1.25±0.02) and sciatic nerve tissue (1.23±0.26) significantly increased in EAN 16 d group, compared with control, EAN 8 d and EAN 16 d+2-DG groups (M1 macrophages: 0.12±0.10, 1.07±0.12 and 0.42±0.07; sciatic nerve: 0.10±0.12, 0.87±0.20 and 0.36±0.05) (all P<0.05). The expression of glycolytic genes in splenic CD4+T cells showed an increasing trend, but there were no statistically significant differences among the groups, and the expression of glycolytic genes did not decrease significantly after 2-DG treatment (all P>0.05). The proportion of spleen M1 macrophages in the control group, EAN 8 d group, EAN 16 d group and EAN 16 d+2-DG group was 4.28±0.13, 7.54±0.25, 13.16±0.33 and 4.13±0.38 respectively, which was significantly higher in the EAN 16 d group (all P<0.05). The proportion of spleen Th17 cells in the four groups was 3.78±0.03, 8.24±0.55, 12.30±1.34 and 4.83±0.01, respectively, which was significantly higher in the EAN 16 d group (all P<0.05). The proportion of spleen Tregs cells in the four groups was 10.01±1.05, 7.54±0.70, 3.82±0.47 and 8.22±1.21, respectively, which was significantly lower in the EAN 16 d group (all P<0.05). Conclusions: The expression of glycolytic genes in splenic macrophages significantly increases during EAN, but not in CD4+T cells. The proportion of M1 macrophages and Th17 cells in spleen gradually increases, while the proportion of Tregs cells gradually decreases.


Assuntos
Neurite Autoimune Experimental , Ratos , Camundongos , Masculino , Animais , Transportador de Glucose Tipo 1/metabolismo , Neurite Autoimune Experimental/tratamento farmacológico , Neurite Autoimune Experimental/patologia , Lisina/metabolismo , Lisina/uso terapêutico , Camundongos Endogâmicos C57BL , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia , Glicólise
5.
J Neuroinflammation ; 20(1): 122, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217991

RESUMO

BACKGROUND: Autoimmune neuropathies are common peripheral nervous system (PNS) disorders. Environmental influences and dietary components are known to affect the course of autoimmune diseases. Intestinal microorganisms can be dynamically regulated through diet, and this study combines intestinal microorganisms with diseases to open up new therapeutic ideas. METHODS: In Lewis rats, a model of EAN was established with P0 peptide, Lactobacillus were used as treatment, serum T-cell ratio, inflammatory factors, sciatic neuropathological changes, and pathological inflammatory effects on intestinal mucosa were detected, and fecal metabolomics and 16 s microbiome analysis were performed to further explore the mechanism. RESULTS: In the EAN rat model, Lactobacillus paracasei L9 (LP) could dynamically regulate the CD4+/CD8+T balance in serum, reduce serum IL-1, IL-6 and TNF-α expression levels, improve sciatic nerve demyelination and inflammatory infiltration, and reduce nervous system score. In the rat model of EAN, intestinal mucosa was damaged. Occludin and ZO-1 were downregulated. IL-1, TNF-α and Reg3γ were upregulated. LP gavage induced intestinal mucosa recovery; occludin and ZO-1 upregulation; IL-1, TNF-α and Reg3γ downregulation. Finally, metabolomics and 16 s microbiome analysis were performed, and differential metabolites were enriched with an important metabolic pathway, arginine and proline metabolism. CONCLUSION: LP improved EAN in rats by influencing intestinal community and the lysine and proline metabolism.


Assuntos
Microbioma Gastrointestinal , Lacticaseibacillus paracasei , Neurite Autoimune Experimental , Ratos , Animais , Neurite Autoimune Experimental/patologia , Fator de Necrose Tumoral alfa/metabolismo , Ocludina/metabolismo , Ratos Endogâmicos Lew , Nervo Isquiático/patologia , Progressão da Doença , Interleucina-1/metabolismo , Prolina/metabolismo , Prolina/farmacologia , Prolina/uso terapêutico
6.
Brain Behav ; 13(4): e2965, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36917739

RESUMO

OBJECTIVE: Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is an immune-mediated disease that targets the myelin sheaths of the peripheral nerves. Fingolimod is a sphingosine 1 phosphate (S1P) receptor antagonist with a high affinity for S1P receptors through the Akt-mTOR pathway, and prior research has suggested that it might be helpful in autoimmune illnesses. METHODS: Chronic experimental autoimmune neuritis (c-EAN) was induced by immunizing Lewis rats with the S-palm P0(180-199) peptide, and then the treatment group was intraperitoneally injected with fingolimod (1 mg/kg) daily. Hematoxylin and eosin staining was used to assess the severity of nerve injury. Immunohistochemistry staining showed that fingolimod's anti-inflammatory effects on c-EAN rats might be realized through the NF-κB signaling pathway. Tumor necrosis factor-α (TNF-α), interferon-γ (INF-γ), interleukin-1beta (IL-1ß), interleukin 6 (IL-6), inducible nitric oxide synthase (iNOS), and intercellular adhesion molecule-1 (ICAM-1) were measured to evaluate the inflammation levels, and pAkt, p-S6, and p-p65 were used to measure the abundance of downstream activation markers to determine whether the Akt/mTOR/NF-κB signaling pathway was activated in the c-EAN model. RESULTS: Fingolimod treatment reduced the inflammatory reaction and the expression of NF-κB in sciatic nerves. It also decreased the mRNA levels of the proinflammatory cytokines TNF-α, IFN-γ, IL-1ß, IL-6, iNOS, and ICAM-1 and pAkt, p-S6, and p-p65, representing the Akt/mTOR/NF-κB signaling pathway. CONCLUSION: Our data showed that fingolimod could improve the disease course, alleviate the decrease in inflammation, and reduce proinflammatory cytokines through the Akt/mTOR/NF-κB axis in c-EAN rats, which could be beneficial for the development of CIDP-related research.


Assuntos
Neurite Autoimune Experimental , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica , Ratos , Animais , Citocinas/metabolismo , NF-kappa B/metabolismo , Cloridrato de Fingolimode/efeitos adversos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Molécula 1 de Adesão Intercelular/efeitos adversos , Molécula 1 de Adesão Intercelular/genética , Fator de Necrose Tumoral alfa , Interleucina-6 , Neurite Autoimune Experimental/tratamento farmacológico , Ratos Endogâmicos Lew , Transdução de Sinais , Serina-Treonina Quinases TOR/efeitos adversos , Serina-Treonina Quinases TOR/metabolismo , Inflamação/tratamento farmacológico
7.
J Neuroinflammation ; 20(1): 35, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788526

RESUMO

BACKGROUND: Guillain-Barré syndrome (GBS) and chronic inflammatory demyelinating polyneuropathy (CIDP) are human autoimmune peripheral neuropathy. Besides humoral immunity, cellular immunity is also believed to contribute to these pathologies, especially CIDP. Sphingosine-1-phosphate receptor 1 (S1PR1) regulates the maturation, migration, and trafficking of lymphocytes. As of date, the therapeutic effect of sphingosine-1-phosphate receptor (S1PR) agonists on patients with GBS or CIDP remains unclear. METHODS: To evaluate the effect of siponimod, an agonist of S1PR1 and S1PR5, on experimental autoimmune neuritis (EAN), an animal model of autoimmune peripheral neuropathy, was used. Lewis rats were immunized with 125 µg of synthetic peptide from bovine P2 protein. Rats in the siponimod group were orally administered 1.0 mg/kg siponimod and those in the EAN group were administrated the vehicle on days 5-27 post-immunization (p.i.) daily. The symptom severity was recorded daily. The changes in the expression of cytokines and transcription factors in the lymph nodes and cauda equina (CE) which correlate with the pathogenesis of EAN and recovery of injured nerve were measured using reverse transcription quantitative PCR. Histological study of CE was also performed. RESULTS: Flaccid paralysis developed on day 11 p.i. in both groups. Siponimod relieved the symptom severity and decreased the expression of interferon-gamma and IL-10 mRNAs in lymph nodes and CE compared with that in the EAN group. The expression of Jun proto-oncogene (c-Jun) mRNA increased from the peak to the recovery phase and that of Sonic hedgehog signaling molecule (Shh) and Glial cell line-derived neurotrophic factor (Gdnf) increased prior to increase in c-Jun with no difference observed between the two groups. Histologically, siponimod also reduced demyelinating lesions and inflammatory cell invasion in CE. CONCLUSIONS: Siponimod has a potential to ameliorate EAN. Shh and Gdnf, as well as C-Jun played a significant role during the recovery of injured nerves.


Assuntos
Síndrome de Guillain-Barré , Neurite Autoimune Experimental , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica , Humanos , Ratos , Animais , Bovinos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Nervo Isquiático/patologia , Proteínas Hedgehog/metabolismo , Ratos Endogâmicos Lew , Síndrome de Guillain-Barré/tratamento farmacológico
8.
Front Immunol ; 13: 1038411, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569912

RESUMO

Guillain Barré syndrome (GBS) and its variants, and chronic inflammatory demyelinating polyradiculoneuropathy (CIDP and its variants, are regarded as immune mediated neuropathies. Unlike in many autoimmune disorders, GBS and CIDP are more common in males than females. Sex is not a clear predictor of outcome. Experimental autoimmune neuritis (EAN) is an animal model of these diseases, but there are no studies of the effects of sex in EAN. The pathogenesis of GBS and CIDP involves immune response to non-protein antigens, antigen presentation through non-conventional T cells and, in CIDP with nodopathy, IgG4 antibody responses to antigens. There are some reported sex differences in some of these elements of the immune system and we speculate that these sex differences could contribute to the male predominance of these diseases, and suggest that sex differences in peripheral nerves is a topic worthy of further study.


Assuntos
Doenças Autoimunes , Síndrome de Guillain-Barré , Neurite Autoimune Experimental , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica , Animais , Masculino , Feminino , Caracteres Sexuais
9.
Neurología (Barc., Ed. impr.) ; 37(6): 466-479, Jul.-Aug. 2022. ilus
Artigo em Espanhol | IBECS | ID: ibc-206002

RESUMO

Introducción: El síndrome de Guillain-Barré (SGB) es un trastorno agudo e inmuno-mediado del sistema nervioso periférico. Sus dos subtipos básicos son el desmielinizante (AIDP) y el axonal (AMAN). El objetivo de este trabajo es abordar los mecanismos de daño axonal en la fase precoz del síndrome (≤ 10 días del inicio sintomático). Desarrollo: Se han revisado aspectos histológicos, neurofisiológicos y de imagen descritos tanto en la AIDP como en la AMAN. Los hallazgos en la patología humana han sido contrastados con lo reportado en la neuritis alérgica experimental inducida por el componente P2 de la mielina. El edema inflamatorio de las raíces raquídeas y de los nervios espinales constituye la lesión inicial en el SGB. En los nervios espinales de casos fatales de AIDP se ha demostrado la presencia de lesiones isquémicas endoneurales, lo cual sugiere que la inflamación puede condicionar un incremento de su presión con reducción del flujo sanguíneo transperineural, que puede desencadenar fallo de la conducción y eventualmente degeneración axonal secundaria. En la AMAN con anticuerpos antigangliósido el bloqueo de la conducción por disfunción de los canales del sodio nodales puede afectar a troncos nerviosos proximales, intermedios y distales. Además de los mecanismos que operan en la AIDP, la degeneración axonal activa en la AMAN puede ir ligada a la disrupción del axolema nodal inducida por los anticuerpos anti-gangliósido. Conclusión: En la fase precoz del SGB hay edema inflamatorio de los troncos nerviosos proximales, que puede condicionar fallo de la conducción nerviosa y degeneración axonal activa. (AU)


Introduction: Guillain-Barré syndrome (GBS) is an acute-onset, immune-mediated disease of the peripheral nervous system. It may be classified into 2 main subtypes: demyelinating (AIDP) and axonal (AMAN). This study aims to analyse the mechanisms of axonal damage in the early stages of GBS (within 10 days of onset). Development: We analysed histological, electrophysiological, and imaging findings from patients with AIDP and AMAN, and compared them to those of an animal model of myelin P2 protein-induced experimental allergic neuritis. Inflammatory oedema of the spinal nerve roots and spinal nerves is the initial lesion in GBS. The spinal nerves of patients with fatal AIDP may show ischaemic lesions in the endoneurium, which suggests that endoneurial inflammation may increase endoneurial fluid pressure, reducing transperineurial blood flow, potentially leading to conduction failure and eventually to axonal degeneration. In patients with AMAN associated with anti-ganglioside antibodies, nerve conduction block secondary to nodal sodium channel dysfunction may affect the proximal, intermediate, and distal nerve trunks. In addition to the mechanisms involved in AIDP, active axonal degeneration in AMAN may be associated with nodal axolemma disruption caused by anti-ganglioside antibodies. Conclusion: Inflammatory oedema of the proximal nerve trunks can be observed in early stages of GBS, and it may cause nerve conduction failure and active axonal degeneration. (AU)


Assuntos
Humanos , Animais , Ratos , Axônios/patologia , Síndrome de Guillain-Barré , Condução Nervosa/fisiologia , Nervos Periféricos/patologia , Degeneração Retrógrada , Neurite Autoimune Experimental
10.
J Neuroinflammation ; 18(1): 293, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34920725

RESUMO

BACKGROUND: Lysophosphatidic acid (LPA) is a pleiotropic lipid messenger that addresses at least six specific G-protein coupled receptors. Accumulating evidence indicates a significant involvement of LPA in immune cell regulation as well as Schwann cell physiology, with potential relevance for the pathophysiology of peripheral neuroinflammation. However, the role of LPA signaling in inflammatory neuropathies has remained completely undefined. Given the broad expression of LPA receptors on both Schwann cells and cells of the innate and adaptive immune system, we hypothesized that inhibition of LPA signaling may ameliorate the course of disease in experimental autoimmune neuritis (EAN). METHODS: We induced active EAN by inoculation of myelin protein 2 peptide (P255-78) in female Lewis rats. Animals received the orally available LPA receptor antagonist AM095, specifically targeting the LPA1 receptor subtype. AM095 was administered daily via oral gavage in a therapeutic regimen from 10 until 28 days post-immunization (dpi). Analyses were based on clinical testing, hemogram profiles, immunohistochemistry and morphometric assessment of myelination. RESULTS: Lewis rats treated with AM095 displayed a significant improvement in clinical scores, most notably during the remission phase. Cellular infiltration of sciatic nerve was only discretely affected by AM095. Hemogram profiles indicated no impact on circulating leukocytes. However, sciatic nerve immunohistochemistry revealed a reduction in the number of Schwann cells expressing the dedifferentiation marker Sox2 paralleled by a corresponding increase in differentiating Sox10-positive Schwann cells. In line with this, morphometric analysis of sciatic nerve semi-thin sections identified a significant increase in large-caliber myelinated axons at 28 dpi. Myelin thickness was unaffected by AM095. CONCLUSION: Thus, LPA1 signaling may present a novel therapeutic target for the treatment of inflammatory neuropathies, potentially affecting regenerative responses in the peripheral nerve by modulating Schwann cell differentiation.


Assuntos
Desdiferenciação Celular/fisiologia , Neurite Autoimune Experimental/imunologia , Receptores de Ácidos Lisofosfatídicos/imunologia , Células de Schwann/imunologia , Transdução de Sinais/fisiologia , Animais , Compostos de Bifenilo/farmacologia , Compostos de Bifenilo/uso terapêutico , Desdiferenciação Celular/efeitos dos fármacos , Feminino , Isoxazóis/farmacologia , Isoxazóis/uso terapêutico , Neurite Autoimune Experimental/tratamento farmacológico , Neurite Autoimune Experimental/metabolismo , Ratos , Ratos Endogâmicos Lew , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Receptores de Ácidos Lisofosfatídicos/metabolismo , Células de Schwann/efeitos dos fármacos , Células de Schwann/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
Front Immunol ; 12: 720733, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484228

RESUMO

One hallmark of Guillain-Barre syndrome (GBS), a prototypic autoimmune peripheral neuropathy (APN) is infiltration of leukocytes (macrophages and T cells) into peripheral nerves, where chemokines and their receptors play major roles. In this study, we aimed to understand the potential contribution of chemokine receptors CCR2 and CX3CR1 in APN by using a well-established mouse model, B7.2 transgenic (L31) mice, which possesses a predisposed inflammatory background. We crossbred respectively CCR2KO and CX3CR1KO mice with L31 mice. The disease was initiated by partial ligation on one of the sciatic nerves. APN pathology and neurological function were evaluated on the other non-ligated sciatic nerve/limb. Our results revealed that L31/CX3CR1KO but not L31/CCR2KO mice were resistant to APN. CX3CR1 is needed for maintaining circulating monocyte and CD8+ T cell survival. While migration of a significant number of activated CD8+ T cells to peripheral nerves is essential in autoimmune response in nerve, recruitment of monocytes into PNS seems optional. Disease onset is independent of CCR2 mediated blood-derived macrophage recruitment, which can be replaced by compensatory proliferation of resident macrophages in peripheral nerve. CX3CR1 could also contribute to APN via its critical involvement in maintaining nerve macrophage phagocytic ability. We conclude that blockade of CX3CR1 signaling may represent an interesting anti-inflammatory strategy to improve therapeutic management for GBS patients.


Assuntos
Autoimunidade/genética , Receptor 1 de Quimiocina CX3C/genética , Expressão Gênica , Neurite Autoimune Experimental/etiologia , Doenças do Sistema Nervoso Periférico/etiologia , Receptores CCR2/genética , Animais , Biomarcadores , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças/imunologia , Imunofenotipagem , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Modelos Biológicos , Neurite Autoimune Experimental/metabolismo , Neurite Autoimune Experimental/patologia , Doenças do Sistema Nervoso Periférico/metabolismo , Receptores CCR2/metabolismo , Nervo Isquiático/imunologia , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia
12.
Invest Ophthalmol Vis Sci ; 62(9): 8, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34232258

RESUMO

Purpose: This study investigated the role of limitrin in the pathogenesis of demyelinating optic neuritis using an experimental autoimmune optic neuritis (EAON) model. Methods: EAON was induced in mice via subcutaneous injection with myelin oligodendrocyte glycoprotein peptide. Limitrin protein and mRNA expression were examined in the optic nerve before and after EAON induction. Proinflammatory cytokine expression profiles and degree of glial activation were compared between wild-type (WT) and limitrin knockout mice by real-time PCR and histologic analysis, respectively, after EAON induction. Plasma limitrin levels in patients with optic neuritis and healthy controls were measured by ELISA. Results: Limitrin expression, observed in astrocytes in the optic nerve of WT mice, was lower in EAON-induced than in naïve WT mice. A comparative analysis of WT and limitrin knockout mice revealed that limitrin deficiency induced more severe neuroinflammation and glial hyperactivation in the optic nerve after EAON induction. Limitrin-deficient astrocytes were more chemotactically responsive to neuroinflammatory stimulation than WT astrocytes. Patients with optic neuritis demonstrated higher plasma limitrin levels than healthy controls (P = 0.0001), which was negatively correlated with visual acuity at the nadir of the optic neuritis attack (r = 0.46, P = 0.036). Conclusions: Limitrin deficiency induced severe neuroinflammation and reactive gliosis in the optic nerve after EAON induction. Our results imply that astrocyte-derived limitrin may protect against neuroinflammation by decreasing immune cell infiltration into the optic nerve. The plasma limitrin level may reflect the extent of blood-brain barrier disruption and provide a valuable biomarker reflecting the severity of optic neuritis.


Assuntos
Regulação da Expressão Gênica , Imunoglobulinas/genética , Proteínas de Membrana/genética , Neurite Autoimune Experimental/genética , Nervo Óptico/metabolismo , Neurite Óptica/genética , RNA/genética , Adulto , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imunoglobulinas/biossíntese , Masculino , Proteínas de Membrana/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurite Autoimune Experimental/metabolismo , Neurite Autoimune Experimental/patologia , Nervo Óptico/patologia , Neurite Óptica/metabolismo , Neurite Óptica/patologia , Estudos Retrospectivos
13.
Clin Exp Immunol ; 206(1): 110-117, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34118070

RESUMO

Guillain-Barré syndrome (GBS) is an acute inflammatory and immune-mediated demyelinating disease of the peripheral nervous system (PNS). Macrophages play a central role in its animal model, experimental autoimmune neuritis (EAN), which has been well accepted. Additionally, nuclear factor (NF)-κB inhibitors have been used to treat cancers and have shown beneficial effects. Here, we investigated the therapeutic effect of M2 macrophage and the NF-κB pathway's correlation with macrophage activation in EAN in C57BL/6 mice. We demonstrate that M2 macrophage transfusion could alleviate the clinical symptoms of EAN by reducing the proportion of M1 macrophage in the peak period, inhibiting the phosphorylation of NF-κB p65. The NF-κB inhibitor (BAY-11-7082) could alleviate the clinical symptoms of EAN and shorten the duration of symptoms by reducing the proportion of M1 macrophages and the expression of proinflammatory cytokines. Consequently, BAY-11-7082 exhibits strong potential as a therapeutic strategy for ameliorating EAN by influencing the balance of M1/M2 macrophages and inflammatory cytokines.


Assuntos
Síndrome de Guillain-Barré , Macrófagos/imunologia , Neurite Autoimune Experimental , Nitrilas/farmacologia , Sulfonas/farmacologia , Fator de Transcrição RelA/antagonistas & inibidores , Animais , Síndrome de Guillain-Barré/tratamento farmacológico , Síndrome de Guillain-Barré/imunologia , Masculino , Camundongos , Neurite Autoimune Experimental/tratamento farmacológico , Neurite Autoimune Experimental/imunologia , Fator de Transcrição RelA/imunologia
14.
J Clin Neurosci ; 87: 44-49, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33863532

RESUMO

BACKGROUND: Guillain-Barré syndrome (GBS) is an acquired immune-mediated inflammatory peripheral neuropathy. The immune regulation of ginkgolides have been revealed in recent years. We herein investigate the potential therapeutic effects of ginkgolides both on GBS and its animal model, experimental autoimmune neuritis (EAN). METHODS: EAN in C57BL/6 mice induced by subcutaneous injection with peripheral nerve myelin P0 protein peptide 180-199 (P0 peptide) were treated with ginkgolides at three different doses. GBS patients were randomly divided into two groups, the experimental group and the control group. The experimental group were treated with ginkgolides as soon as diagnosed. RESULTS: Our data indicated that ginkgolides administration daily ameliorated the score of EAN and delayed the peak of disease in EAN mice. Ginkgolides also down-regulated the proportions of T helper (Th) 17 cells in EAN spleens. Furthermore, we also found that administration of ginkgolides significantly decreased the levels of interferon (IFN)-γ and interleukin-12 (IL)-12 in GBS patients. CONCLUSIONS: Our results suggested that ginkgolides ameliorated the clinical score of EAN through down-regulating the proportions of Th 17 cells. Ginkgolides also suppressed inflammation response by decreasing pro-inflammatory cytokines IFN-γ and IL-12, suggesting ginkgolides had potential therapeutic effects on GBS patients and EAN in the future.


Assuntos
Ginkgolídeos/farmacologia , Síndrome de Guillain-Barré/tratamento farmacológico , Neurite Autoimune Experimental/tratamento farmacológico , Adulto , Idoso , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Ginkgolídeos/metabolismo , Ginkgolídeos/uso terapêutico , Síndrome de Guillain-Barré/imunologia , Síndrome de Guillain-Barré/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteína P0 da Mielina , Neurite Autoimune Experimental/imunologia , Neurite Autoimune Experimental/metabolismo , Nervos Periféricos , Células Th17/imunologia , Células Th17/metabolismo
15.
Biomed Pharmacother ; 138: 111489, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33743332

RESUMO

Guillain-Barré Syndrome (GBS), characterized by peripheral nerve demyelination and axonal damage, is initiated and aggravated through various of immunopathogenesis. Ginsenoside Rd, main active components extracted from ginseng saponins, is known to exhibit immune-regulate functions in many immune-mediated diseases. However, the evidence of preventive effect of Ginsenoside Rd on GBS is lacking. Experimental autoimmune neuritis (EAN) mice, classic model of GBS, were established and treated with GSRd or vehicle. Clinical score and nerve tissue histomorphology were evaluated. Monocytes in peripheral blood and tissue were detected by flow cytometry analysis and immunofluorescence staining. For the in vitro study, GSRd and vehicle were added in the culture medium to assess their regulatory function on monocytes phenotype. In vivo data showed a protective role of GSRd on alleviating symptoms and tissue damage on Day 20 and 25. Administration of GSRd increased non-classical Ly6Clo monocytes in both peripheral blood and injured nerve tissue, and also switched tissue macrophages phenotype into resolution-phase. In vitro study indicated similar role of GSRd on monocytes differentiation status. Transcription factors like Nr4a1 were elevated after GSRd treatment. These findings revealed the protective role of GSRd against EAN, and potential preventive function on GBS patients.


Assuntos
Ginsenosídeos/uso terapêutico , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Neurite Autoimune Experimental/tratamento farmacológico , Neurite Autoimune Experimental/imunologia , Panax , Sequência de Aminoácidos , Animais , Relação Dose-Resposta a Droga , Ginsenosídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/imunologia , Neuropatia Ciática/tratamento farmacológico , Neuropatia Ciática/imunologia
16.
J Neuroimmunol ; 352: 577470, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33508768

RESUMO

Nerve conduction studies (NCS) are essential to assess peripheral nerve fiber function in research models of immune-mediated neuritis. However, the current lack of standard protocols and reference values impedes data comparability across models and studies. We performed a systematic review and subsequent meta-analysis of the last 30 years of NCS of immune-mediated neuritis in Lewis-rats. Twenty-six papers met the inclusion criteria for meta-analysis. Extracted data showed considerable heterogeneity of recorded nerve conduction velocity (NCV) and compound muscle action potential (CMAP). Studies also significantly differed in terms of technical, methodical, and data reporting issues. The heterogeneity of the underlying studies emphasizes the need for standardization when conducting and reporting NCS in rats. We provide normative values for NCS of the sciatic nerve of Lewis rats and propose seven items that should be addressed when NCS are performed when studying immune paradigms in Lewis rats.


Assuntos
Eletrofisiologia/métodos , Eletrofisiologia/normas , Neurite Autoimune Experimental/fisiopatologia , Animais , Condução Nervosa/fisiologia , Ratos Endogâmicos Lew , Valores de Referência , Nervo Isquiático/fisiologia
17.
J Mol Neurosci ; 71(4): 713-723, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32915416

RESUMO

Nerve demyelination or axonal lesions are characteristic of experimental autoimmune neuritis (EAN). Previous studies have demonstrated that microRNA-338 can regulate the differentiation and maturation of oligodendrocytes and Schwann cells and promote injured peripheral nerves in rats. In this study, we used microRNA-338 coded lentivirus vector (miR-338-LV) in a Lewis rat EAN model, in with the conjunction P0 peptide 180-199 which was injected into the footpads of animals to induce immunization. The clinical scores of miR-338-LV and intravenous immunoglobulin (IVIg) (positive drug) groups were significantly superior to those of untreated group at disease peak and disease plateau (p < 0.05). The nerve conduction velocity and the compound nerve action potential amplitude of miR-338-LV and IVIg groups increased significantly compared to those of the untreated group at disease peak (p < 0.01). At disease peak, myelin swelling, cavity formation, and lamellae separation showed improvement in miR-338-LV and IVIg groups compared to untreated group. S100 and NF200 expression in miR-338-LV and IVIg groups increased compared to that in untreated group. Iba1 and S100 co-expression in Schwann cells in miR-338-LV and IVIg groups decreased compared to that in untreated group, which was indicative of the reduced conversion of Schwann cells into inflammatory cells. Overall, miR-338-LV in sciatic nerves might improve neuromuscular function in EAN by inhibiting the conversion of Schwann cells into inflammatory cells.


Assuntos
MicroRNAs/genética , Neurite Autoimune Experimental/terapia , Nervo Isquiático/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Feminino , MicroRNAs/metabolismo , Proteínas dos Microfilamentos/metabolismo , Bainha de Mielina/metabolismo , Regeneração Nervosa , Terapêutica com RNAi/métodos , Ratos , Ratos Endogâmicos Lew , Proteínas S100/metabolismo , Células de Schwann/metabolismo , Nervo Isquiático/fisiologia , Transfecção/métodos
18.
Brain Behav Immun ; 91: 48-64, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32858161

RESUMO

Guillain-Barré syndrome (GBS) is an autoimmune peripheral neuropathy and a common cause of neuromuscular paralysis. Preceding infection induces the production of anti-ganglioside (GD) antibodies attacking its own peripheral nerves. In severe proximal peripheral nerve injuries that require long-distance axon regeneration, motor functional recovery is virtually nonexistent. Damaged axons fail to regrow and reinnervate target muscles. In mice, regenerating axons must reach the target muscle within 35 days (critical period) to reform functional neuromuscular junctions and regain motor function. Successful functional recovery depends on the rate of axon regeneration and debris removal (Wallerian degeneration) after nerve injury. The innate-immune response of the peripheral nervous system to nerve injury such as timing and magnitude of cytokine production is crucial for Wallerian degeneration. In the current study, forced expression of human heat shock protein (hHsp) 27 completely reversed anti-GD-induced inhibitory effects on nerve repair assessed by animal behavioral assays, electrophysiology and histology studies, and the beneficial effect was validated in a second mouse line of hHsp27. The protective effect of hHsp27 on prolonged muscle denervation was examined by performing repeated sciatic nerve crushes to delay regenerating axons from reaching distal muscle from 37 days up to 55 days. Strikingly, hHsp27 was able to extend the critical period of motor functional recovery for up to 55 days and preserve the integrity of axons and mitochondria in distal nerves. Cytokine array analysis demonstrated that a number of key cytokines which are heavily involved in the early phase of innate-immune response of Wallerian degeneration, were found to be upregulated in the sciatic nerve lysates of hHsp27 Tg mice at 1 day postinjury. However, persistent hyperinflammatory mediator changes were found after chronic denervation in sciatic nerves of littermate mice, but remained unchanged in hHsp27 Tg mice. Taken together, the current study provides insight into the development of therapeutic strategies to enhance muscle receptiveness (reinnervation) by accelerating axon regeneration and Wallerian degeneration.


Assuntos
Proteínas de Choque Térmico , Regeneração Nervosa , Neurite Autoimune Experimental , Traumatismos dos Nervos Periféricos , Animais , Axônios , Camundongos , Nervo Isquiático
19.
J Immunol ; 205(8): 2026-2038, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32938729

RESUMO

It has become increasingly appreciated that autoimmune responses against neuronal components play an important role in type 1 diabetes (T1D) pathogenesis. In fact, a large proportion of islet-infiltrating B lymphocytes in the NOD mouse model of T1D produce Abs directed against the neuronal type III intermediate filament protein peripherin. NOD-PerIg mice are a previously developed BCR-transgenic model in which virtually all B lymphocytes express the H and L chain Ig molecules from the intra-islet-derived anti-peripherin-reactive hybridoma H280. NOD-PerIg mice have accelerated T1D development, and PerIg B lymphocytes actively proliferate within islets and expand cognitively interactive pathogenic T cells from a pool of naive precursors. We now report adoptively transferred T cells or whole splenocytes from NOD-PerIg mice expectedly induce T1D in NOD.scid recipients but, depending on the kinetics of disease development, can also elicit a peripheral neuritis (with secondary myositis). This neuritis was predominantly composed of CD4+ and CD8+ T cells. Ab depletion studies showed neuritis still developed in the absence of NOD-PerIg CD8+ T cells but required CD4+ T cells. Surprisingly, sciatic nerve-infiltrating CD4+ cells had an expansion of IFN-γ- and TNF-α- double-negative cells compared with those within both islets and spleen. Nerve and islet-infiltrating CD4+ T cells also differed by expression patterns of CD95, PD-1, and Tim-3. Further studies found transitory early B lymphocyte depletion delayed T1D onset in a portion of NOD-PerIg mice, allowing them to survive long enough to develop neuritis outside of the transfer setting. Together, this study presents a new model of peripherin-reactive B lymphocyte-dependent autoimmune neuritis.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Tecido Nervoso , Neurite Autoimune Experimental , Pâncreas , Animais , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Tecido Nervoso/imunologia , Tecido Nervoso/patologia , Neurite Autoimune Experimental/genética , Neurite Autoimune Experimental/imunologia , Neurite Autoimune Experimental/patologia , Pâncreas/imunologia , Pâncreas/patologia
20.
Front Immunol ; 11: 1603, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793234

RESUMO

Guillain-Barré syndrome (GBS), an immune-mediated disorder affecting the peripheral nervous system, is the most common and severe acute paralytic neuropathy. GBS remains to be potentially life-threatening and disabling despite the increasing availability of current standard therapeutic regimens. Therefore, more targeted therapeutics are in urgent need. Macrophages have been implicated in both initiation and resolution of experimental autoimmune neuritis (EAN), the animal model of GBS, but the exact mechanisms remain to be elucidated. It has been increasingly appreciated that exosomes, a type of extracellular vesicles (EVs), are of importance for functions of macrophages. Nevertheless, the roles of macrophage derived exosomes in EAN/GBS remain unclear. Here we determined the effects of macrophage derived exosomes on the development of EAN in Lewis rats. M1 macrophage derived exosomes (M1 exosomes) were found to aggravate EAN via boosting Th1 and Th17 response, while M2 macrophage derived exosomes (M2 exosomes) showed potentials to mitigate disease severity via a mechanism bypassing Th1 and Th17 response. Besides, both M1 and M2 exosomes increased germinal center reactions in EAN. Further in vitro studies confirmed that M1 exosomes could directly promote IFN-γ production in T cells and M2 exosomes were not capable of inhibiting IFN-γ expression. Thus, our data identify a previously undescribed means that M1 macrophages amplify Th1 response via exosomes and provide novel insights into the crosstalk between macrophages and T cells as well.


Assuntos
Exossomos/imunologia , Síndrome de Guillain-Barré/imunologia , Macrófagos/imunologia , Neurite Autoimune Experimental/imunologia , Células Th1/imunologia , Animais , Progressão da Doença , Feminino , Centro Germinativo/imunologia , Síndrome de Guillain-Barré/patologia , Imunidade Celular , Imunidade Inata , Interferon gama/imunologia , Ativação de Macrófagos , Neurite Autoimune Experimental/patologia , Ratos Endogâmicos Lew , Linfócitos T/imunologia , Células Th17/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...