Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Physiol Res ; 73(2): 189-203, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38710051

RESUMO

This comprehensive review explores the physiological and pathophysiological significance of VPS13A, a protein encoded by the VPS13A gene. The VPS13A gene is associated with Chorea-acanthocytosis (ChAc), a rare hereditary neurodegenerative disorder. The review covers essential aspects, beginning with the genetics of VPS13A, highlighting its role in the pathogenesis of ChAc, and addressing the spectrum of genetic variants involved. It delves into the structure and function of the VPS13A protein, emphasizing its presence in various tissues and its potential involvement in protein trafficking and lipid homeostasis. Molecular functions of VPS13A in the brain tissue and other cell types or tissues with respect to their role in cytoskeletal regulation and autophagy are explored. Finally, it explores the intriguing link between VPS13A mutations, lipid imbalances, and neurodegeneration, shedding light on future research directions. Overall, this review serves as a comprehensive resource for understanding the pivotal role of VPS13A in health and disease, particularly in the context of ChAc. Key words: Chorein , Tumor, Actin, Microfilament, Gene expression, Chorea-acanthocytosis.


Assuntos
Neuroacantocitose , Proteínas de Transporte Vesicular , Humanos , Animais , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Neuroacantocitose/metabolismo , Neuroacantocitose/genética , Neuroacantocitose/fisiopatologia , Neuroacantocitose/patologia , Mutação , Metabolismo dos Lipídeos/fisiologia , Metabolismo dos Lipídeos/genética
2.
Mol Genet Genomics ; 299(1): 39, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519717

RESUMO

Chorea-acanthocytosis (ChAc) is a rare autosomal recessive neurodegenerative disorder characterized by a variety of involuntary movements, predominantly chorea, and the presence of acanthocytosis in peripheral blood smears. ChAc is caused by mutations in the vacuolar protein sorting-associated protein 13A (VPS13A) gene. The aim of the present study was to conduct a clinical and genetic analysis of five patients with suspected ChAc in Iran. This study included five patients who were referred to the genetic department of the Endocrinology and Metabolism Research Institute between 2020 and 2022, with a suspicion of ChAc. Clinical features and the presence of characteristic MRI findings were evaluated in the patients. Whole-exome sequencing (WES) followed by Sanger sequencing was employed to identify the disease-causing variants. The functional effects of novel mutations were analyzed by specific bioinformatics prediction tools. WES and data analysis revealed the presence of five distinct VPS13A mutations in the patients, four of which were novel. These included one nonsense mutation (p.L984X), and three splice site mutations (c.755-1G>A, c.144+1 G>C, c.2512+1G>A). All mutations were validated by Sanger sequencing, and in silico analysis predicted that all mutations were pathogenic. This study provides the first molecular genetic characteristics of Iranian patients with ChAc, identifying four novel mutations in the VPS13A gene. These findings expand the VPS13A variants spectrum and confirm the clinical variability in ChAc patients.


Assuntos
Neuroacantocitose , Humanos , Neuroacantocitose/genética , Neuroacantocitose/patologia , Irã (Geográfico) , Proteínas de Transporte Vesicular/genética , Transporte Proteico , Mutação
3.
Neuropathology ; 44(2): 109-114, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37438874

RESUMO

We present a comprehensive characterization of clinical, neuropathological, and multisystem features of a man with genetically confirmed McLeod neuroacanthocytosis syndrome, including video and autopsy findings. A 61-year-old man presented with a movement disorder and behavioral change. Examination showed dystonic choreiform movements in all four limbs, reduced deep-tendon reflexes, and wide-based gait. He had oromandibular dyskinesia causing severe dysphagia. Elevated serum creatinine kinase (CK) was first noted in his thirties, but investigations, including muscle biopsy at that time, were inconclusive. Brain magnetic resonance imaging showed white matter volume loss, atrophic basal ganglia, and chronic small vessel ischemia. Despite raised CK, electromyography did not show myopathic changes. Exome gene panel testing was negative, but targeted genetic analysis revealed a hemizygous pathogenic variant in the XK gene c.895C > T p.(Gln299Ter), consistent with a diagnosis of McLeod syndrome. The patient died of sepsis, and autopsy showed astrocytic gliosis and atrophy of the basal ganglia, diffuse iron deposition in the putamen, and mild Alzheimer's pathology. Muscle pathology was indicative of mild chronic neurogenic atrophy without overt myopathic features. He had non-specific cardiomyopathy and splenomegaly. McLeod syndrome is an ultra-rare neurodegenerative disorder caused by X-linked recessive mutations in the XK gene. Diagnosis has management implications since patients are at risk of severe transfusion reactions and cardiac complications. When a clinical diagnosis is suspected, candidate genes should be interrogated rather than solely relying on exome panels.


Assuntos
Doenças Musculares , Neuroacantocitose , Masculino , Humanos , Pessoa de Meia-Idade , Neuroacantocitose/genética , Neuroacantocitose/diagnóstico , Neuroacantocitose/patologia , Doenças Musculares/patologia , Gânglios da Base/patologia , Atrofia/patologia
4.
Neurol Sci ; 45(5): 2057-2061, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37985634

RESUMO

Chorea-acanthocytosis (ChAc) is a rare clinical genetic disorder of the nervous system, which is characterized by choreiform movement disorder, cognitive decline, and psychiatric disorders. ChAc is mostly diagnosed based on its typical clinical manifestations and the increased number of acanthocytes in peripheral blood smears. Here, we report a patient, who has the characteristic clinical manifestations of ChAc with limb choreiform movements, involuntary lip and tongue bites, seizures, and emotional instability. However, her blood smear was negative for acanthocytes with scanning electron microscopy. We later identified two novel pathogenic mutations in the patient's vacuolar protein sorting homolog 13 A (VPS13A) on chromosome 9q21 by targeted gene sequencing, and she was definitively diagnosed with "ChAc." After treatment with carbamazepine, haloperidol, the patient's symptoms gradually improved. We consider that an acanthocyte negative blood smear cannot rule out ChAC diagnosis, and genetic testing is the "gold standard" for the diagnosis. Through a review of previous research, it is rare for a patient to have a clear diagnosis of ChAc by genetic testing, but whose blood smear is negative for acanthocytes with electron microscopy. In addition, in this report, we discovered two novel pathogenic mutations, which have not been reported previously, and extended the genetic characteristics of ChAc.


Assuntos
Transtornos dos Movimentos , Neuroacantocitose , Humanos , Feminino , Neuroacantocitose/diagnóstico , Neuroacantocitose/genética , Neuroacantocitose/patologia , Acantócitos/metabolismo , Acantócitos/patologia , Transtornos dos Movimentos/patologia , Transporte Proteico , Mutação/genética , Proteínas de Transporte Vesicular/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-37928888

RESUMO

The 11th International Meeting on Neuroacanthocytosis Syndromes was held on September 15th-17th, 2023 at the University Hospital Campus in Homburg/Saar, Germany. The meeting followed the previous ten international symposia, the last of which was held online due to restrictions due to COVID19, in March 2021. The setting of the meeting encouraged interactions, exchange of ideas, and networking opportunities among the participants from around the globe, including basic and clinical scientists, clinicians, and especially patients, their relatives and caregivers. A total of about 20 oral communications were presented in five scientific sessions accompanied by a keynote lecture, a "Poster-Blitz" session, the "Glenn Irvine Prize" lecture and a panel discussion about "Patient registries, international cooperation & future perspectives". In summary, attendees discussed recent advances and set the basis for the next steps, action points, and future studies in close collaboration with the patient associations, which were actively involved in the whole process.


Assuntos
Neuroacantocitose , Humanos , Neuroacantocitose/genética , Neuroacantocitose/terapia , Síndrome
6.
BMC Neurol ; 23(1): 350, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794323

RESUMO

BACKGROUND: Chorea-acanthocytosis (ChAc) is a rare hereditary autosomal recessive neurodegenerative disorder caused by pathogenic variants of the Vacuolar Protein Sorting 13 homolog A (VPS13A) gene. The variant spectrum of VPS13A has not been completely elucidated. This study reports two novel heterozygous VPS13A pathogenic variants in ChAc that expand the variant spectrum of VPS13A. CASE PRESENTATION: We described a case of a 29-year-old man with typical clinical manifestations of ChAc, including chorea, orofacial lingual dyskinesia, vocal tics, elevated serum biochemical indicators, increased acanthocytes in peripheral blood, and caudate nucleus atrophy. Next-generation sequencing revealed two heterozygous variants of VPS13A: a nonsense variant (NM_033305.2: c.8215G > T, p. Glu2739Ter) and a deletion variant in the exons 25-31. CONCLUSION: The identified nonsense variant gives rise to premature translation termination, while the deletion variant is expected to cause a significant in-frame deletion of amino acid residues in the encoded protein. Both variants are considered to be pathogenic and result in loss-of-function proteins. These findings have implications for the genetic counseling of patients with VPS13A variants.


Assuntos
Discinesias , Neuroacantocitose , Tiques , Masculino , Humanos , Adulto , Neuroacantocitose/genética , Proteínas de Transporte Vesicular/genética , Núcleo Caudado/metabolismo , Núcleo Caudado/patologia
7.
Mov Disord ; 38(12): 2163-2172, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37670483

RESUMO

BACKGROUND: Vacuolar protein sorting 13 homolog A (VPS13A) disease, historically known as chorea-acanthocytosis, is a rare neurodegenerative disorder caused by biallelic mutations in VPS13A, usually resulting in reduced or absent levels of its protein product, VPS13A. VPS13A localizes to contact sites between subcellular organelles, consistent with its recently identified role in lipid transfer between membranes. Mutations are associated with neuronal loss in the striatum, most prominently in the caudate nucleus, and associated marked astrogliosis. There are no other known disease-specific cellular changes (eg, protein aggregation), but autopsy reports to date have been limited, often lacking genetic or biochemical diagnostic confirmation. OBJECTIVE: The goal of this study was to characterize neuropathological findings in the brains of seven patients with VPS13A disease (chorea-acanthocytosis). METHODS: In this study, we collected brain tissues and clinical data from seven cases of VPS13A for neuropathological analysis. The clinical diagnosis was confirmed by the presence of VPS13A mutations and/or immunoblot showing the loss or reduction of VPS13A protein. Tissues underwent routine, special, and immunohistochemical staining focused on neurodegeneration. Electron microscopy was performed in one case. RESULTS: Gross examination showed severe striatal atrophy. Microscopically, there was neuronal loss and astrogliosis in affected regions. Luxol fast blue staining showed variable lipid accumulation with diverse morphology, which was further characterized by electron microscopy. In some cases, rare degenerating p62- and ubiquitin-positive cells were present in affected regions. Calcifications were present in four cases, being extensive in one. CONCLUSIONS: We present the largest autopsy series of biochemically and genetically confirmed VPS13A disease and identify novel histopathological findings implicating abnormal lipid accumulation. © 2023 International Parkinson and Movement Disorder Society.


Assuntos
Neuroacantocitose , Humanos , Autopsia , Núcleo Caudado/metabolismo , Gliose , Lipídeos , Neuroacantocitose/genética , Neuroacantocitose/diagnóstico , Neuroacantocitose/patologia , Proteínas de Transporte Vesicular/genética
8.
Mov Disord ; 38(8): 1535-1541, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37307400

RESUMO

BACKGROUND: Chorea-acanthocytosis (ChAc) is associated with mutations of VPS13A, which encodes for chorein, a protein implicated in lipid transport at intracellular membrane contact sites. OBJECTIVES: The goal of this study was to establish the lipidomic profile of patients with ChAc. METHODS: We analyzed 593 lipid species in the caudate nucleus (CN), putamen, and dorsolateral prefrontal cortex (DLPFC) from postmortem tissues of four patients with ChAc and six patients without ChAc. RESULTS: We found increased levels of bis(monoacylglycerol)phosphate, sulfatide, lysophosphatidylserine, and phosphatidylcholine ether in the CN and putamen, but not in the DLPFC, of patients with ChAc. Phosphatidylserine and monoacylglycerol were increased in the CN and N-acyl phosphatidylserine in the putamen. N-acyl serine was decreased in the CN and DLPFC, whereas lysophosphatidylinositol was decreased in the DLPFC. CONCLUSIONS: We present the first evidence of altered sphingolipid and phospholipid levels in the brains of patients with ChAc. Our observations are congruent with recent findings in cellular and animal models, and implicate defects of lipid processing in VPS13A disease pathophysiology. © 2023 International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Neuroacantocitose , Animais , Humanos , Neuroacantocitose/genética , Neuroacantocitose/metabolismo , Fosfolipídeos/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Transporte Vesicular/genética , Encéfalo/metabolismo
9.
J Cell Mol Med ; 27(11): 1557-1564, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37163371

RESUMO

VPS13A is a lipid transfer protein localized at different membrane contact sites between organelles, and mutations in the corresponding gene produce a rare neurodegenerative disease called chorea-acanthocytosis (ChAc). Previous studies showed that VPS13A depletion in HeLa cells results in an accumulation of endosomal and lysosomal markers, suggesting a defect in lysosomal degradation capacity leading to partial autophagic dysfunction. Our goal was to determine whether compounds that modulate the endo-lysosomal pathway could be beneficial in the treatment of ChAc. To test this hypothesis, we first generated a KO model using CRISPR/Cas9 to study the consequences of the absence of VPS13A in HeLa cells. We found that inactivation of VPS13A impairs cell growth, which precludes the use of isolated clones due to the undesirable selection of edited clones with residual protein expression. Therefore, we optimized the use of pool cells obtained shortly after transfection with CRISPR/Cas9 components. These cells are a mixture of wild-type and edited cells that allow a comparative analysis of phenotypes and avoids the selection of clones with residual level of VPS13A expression after long-term growth. Consistent with previous observations by siRNA inactivation, VPS13A inactivation by CRISPR/Cas9 resulted in accumulation of the endo-lysosomal markers RAB7A and LAMP1. Notably, we observed that rapamycin partially suppressed the difference in lysosome accumulation between VPS13A KO and WT cells, suggesting that modulation of the autophagic and lysosomal pathway could be a therapeutic target in the treatment of ChAc.


Assuntos
Neuroacantocitose , Doenças Neurodegenerativas , Humanos , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Sistemas CRISPR-Cas/genética , Células HeLa , Sirolimo/farmacologia , Doenças Neurodegenerativas/metabolismo , Lisossomos/metabolismo , Neuroacantocitose/genética , Neuroacantocitose/metabolismo
10.
Mol Genet Genomics ; 298(4): 965-976, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37209156

RESUMO

Choreoacanthocytosis, one of the forms of neuroacanthocytosis, is caused by mutations in vacuolar protein sorting-associated protein A (VPS13A), and is often misdiagnosed with other form of neuroacanthocytosis with discrete genetic defects. The phenotypic variations among the patients with VPS13A mutations significantly obfuscates the understanding of the disease and treatment strategies. In this study, two unrelated cases were identified, exhibiting the core phenotype of neuroacanthocytosis but with considerable clinical heterogeneity. Case 1 presented with an additional Parkinsonism phenotype, whereas seizures were evident in case 2. To decipher the genetic basis, whole exome sequencing followed by validation with Sanger sequencing was performed. A known homozygous pathogenic nonsense mutation (c.799C > T; p.R267X) in exon 11 of the VPS13A gene was identified in case 1 that resulted in a truncated protein. A novel missense mutation (c.9263T > G; p.M3088R) in exon 69 of VPS13A identified in case 2 was predicted as pathogenic. In silico analysis of the p.M3088R mutation at the C-terminus of VPS13A suggests a loss of interaction with TOMM40 and may disrupt mitochondrial localization. We also observed an increase in mitochondrial DNA copy numbers in case 2. Mutation analysis revealed benign heterozygous variants in interacting partners of VPS13A such as VAPA in case 1. Our study confirmed the cases as ChAc and identified the novel homozygous variant of VPS13A (c.9263T > G; p.M3088R) within the mutation spectrum of VPS13A-associated ChAc. Furthermore, mutations in VPS13A and co-mutations in its potential interacting partner(s) might contribute to the diverse clinical manifestations of ChAc, which requires further study.


Assuntos
Neuroacantocitose , Humanos , Neuroacantocitose/genética , Neuroacantocitose/patologia , Sequenciamento do Exoma , Genes Modificadores , Mutação , Códon sem Sentido/genética , Proteínas de Transporte Vesicular/genética
11.
Pediatr Blood Cancer ; 70(2): e30119, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36495235

RESUMO

McLeod phenotype-caused by the missing Xk protein-is a very rare red cell phenotype, one characteristic of McLeod syndrome, and sometimes associated with X-linked chronic granulomatous disease (CGD). Diagnosis of McLeod phenotype is important for appropriate transfusion management, because red blood cells from all healthy donors will have the Xk protein with its Kx antigen and can lead to red cell antibody formation without the ability to find compatible McLeod phenotype blood for transfusion. We offer a review and approach to diagnosis of the McLeod phenotype and special transfusion considerations.


Assuntos
Doença Granulomatosa Crônica , Neuroacantocitose , Humanos , Neuroacantocitose/genética , Transfusão de Sangue , Doença Granulomatosa Crônica/genética , Fenótipo
12.
J Cell Sci ; 135(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35950506

RESUMO

VPS13 family proteins form conduits between the membranes of different organelles through which lipids are transferred. In humans, there are four VPS13 paralogs, and mutations in the genes encoding each of them are associated with different inherited disorders. VPS13 proteins contain multiple conserved domains. The Vps13 adaptor-binding (VAB) domain binds to adaptor proteins that recruit VPS13 to specific membrane contact sites. This work demonstrates the importance of a different domain in VPS13A function. The pleckstrin homology (PH) domain at the C-terminal region of VPS13A is required to form a complex with the XK scramblase and for the co-localization of VPS13A with XK within the cell. Alphafold modeling was used to predict an interaction surface between VPS13A and XK. Mutations in this region disrupt both complex formation and co-localization of the two proteins. Mutant VPS13A alleles found in patients with VPS13A disease truncate the PH domain. The phenotypic similarities between VPS13A disease and McLeod syndrome caused by mutations in VPS13A and XK, respectively, argue that loss of the VPS13A-XK complex is the basis of both diseases.


Assuntos
Neuroacantocitose , Proteínas de Transporte Vesicular , Humanos , Membranas Mitocondriais/metabolismo , Mutação/genética , Neuroacantocitose/complicações , Neuroacantocitose/genética , Neuroacantocitose/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
13.
Neurodegener Dis ; 22(1): 34-42, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35926480

RESUMO

INTRODUCTION: There are reports of different clinical statuses in carriers of intermediate alleles (IAs) of CAG trinucleotide repeats in the HTT gene, from individuals affected by a clinical picture indistinguishable from Huntington's disease (HD) to those without manifestations. Therefore, the possible clinical significance of these alleles has been widely debated. OBJECTIVES: The aim of this study was to describe general and clinical features and discard HD phenocopies by molecular assessment in a case series of IA carriers on the HTT gene of a laboratory sample from a neurological center in Mexico. METHODS: We selected individuals who had previously been tested for the HTT gene expansion, which resulted in IAs. Clinical information was obtained from medical records, and molecular analysis of the JPH3, PRNP, and TBP genes was performed only in IA carriers with clinical manifestations. In addition, two patients with IA and acanthocytes were evaluated by whole-exome sequencing. The scientific and ethical committees of the National Institute of Neurology and Neurosurgery Manuel Velasco Suárez (NINNMVS) approved this study. RESULTS: From 1994 to 2019, the Genetics Department of the NINNMVS confirmed 34 individuals with IAs, 15 of whom belonged to 11 families with HD (IA-HD) and 19 of whom had no family history of HD (IA-non-HD). We found a high proportion of manifestations of the HD phenotypic spectrum in the IA-non-HD subgroup. In addition, among the 20 samples of IA carriers with manifestations molecularly evaluated, we identified two unrelated subjects with CAG/CTG repeat expansions on the JPH3 gene, confirming HD-like 2 (HDL2), and one patient with the homozygous pathogenic c.3232G>T variant (p.Glu1078Ter) in the VPS13A gene, demonstrating choreoacanthocytosis. DISCUSSION/CONCLUSION: Our results show the most extensive series of subjects with IAs and clinical manifestations. In addition, we identify three HD phenocopies, two HDL2 cases, and one choreoacanthocytosis case. Therefore, we emphasize evaluating other HD phenocopies in IA carriers with clinical manifestations whose family background is not associated with HD.


Assuntos
Doença de Huntington , Neuroacantocitose , Humanos , Proteína Huntingtina/genética , Alelos , Expansão das Repetições de Trinucleotídeos/genética , Neuroacantocitose/genética , México , Doença de Huntington/genética , Doença de Huntington/epidemiologia
14.
Medicine (Baltimore) ; 101(10): e28996, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35451392

RESUMO

RATIONALE: McLeod syndrome (MLS) is a rare X-linked neurohematologic disorder caused by loss-of-function mutations in the XK gene. However, variations in the XK gene remain to be elucidated. Here, we report the clinical phenotype and genetic features of a patient with MLS caused by a novel frameshift mutation in the XK gene. PATIENT CONCERNS: A 44-year-old man presented with chorea, cognitive impairment, mental disorders, and seizures accompanied by peripheral neuropathy, hyperCKemia, and acanthocytosis. The proband's mother had a mild chorea. One older brother who died 10 years ago without a confirmed diagnosis showed symptoms of both chorea and mental disorders, while the other brother also developed mild chorea. DIAGNOSIS: The patient was diagnosed with MLS based on the family history, clinical manifestations, and accessory examinations. Whole-exome sequencing studies revealed a novel frameshift mutation resulting from a nucleotide variation in exon 2 (452delA) that leads to an amino acid residue conversion from Gln to Arg and early termination of the XK protein (Gln151ArgfsTer2). The patient and one of his older brothers were hemizygotes, and his mother was heterozygous. INTERVENTIONS: The patient was treated with haloperidol to control chorea and levetiracetam to control seizures. OUTCOMES: Six months after treatment, the proband was seizure-free, but showed little improvement in chorea and cognitive dysfunction. LESSON: We describe a family with MLS caused by a novel frameshift mutation in the XK gene. The causes of the mild clinical presentation in the proband's mother require further investigation.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros , Neuroacantocitose , Sistemas de Transporte de Aminoácidos Neutros/genética , Mutação da Fase de Leitura , Humanos , Sistema do Grupo Sanguíneo de Kell/genética , Masculino , Mutação , Neuroacantocitose/diagnóstico , Neuroacantocitose/genética , Convulsões
15.
Eur J Med Res ; 27(1): 22, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35130982

RESUMO

BACKGROUND: Chorea-acanthocytosis (ChAc), as the most common subtype of neuroacanthocytosis syndrome, is characterized by the presence of acanthocytes and neurological symptoms. It is thought to be caused by the VPS13A (vacuolar protein sorting-associated protein 13A) mutations. This article reports two confirmed cases of ChAc and summarizes some suggestive features, which provide direction for the diagnosis and treatment of acanthocytosis in the future. CASE PRESENTATION: Here, we present two cases of ChAc diagnosed based on typical clinical symptoms, neuroimaging features, genetic findings of VPS13A, and response to the symptomatic treatment. CONCLUSIONS: Chorea-acanthocytosis is a rare neurodegenerative disease with various early clinical manifestations. The final diagnosis of the ChAc can be established by either genetic analysis or protein expression by Western blotting. Supportive treatments and nursing are helpful to improve the quality of the patient's life. Nevertheless, it is imperative to investigate the impact of neuroimaging and neuropathological diagnosis in a larger group of ChAc in future studies.


Assuntos
Acantócitos/patologia , Testes Genéticos/métodos , Neuroacantocitose/diagnóstico , Doenças Neurodegenerativas/genética , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Neuroacantocitose/genética , Doenças Neurodegenerativas/diagnóstico
16.
Lab Med ; 53(4): 433-435, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35075478

RESUMO

Chorea-acanthocytosis (ChAc) is a rare autosomal recessive neurodegenerative disorder caused by pathogenic variants of the vacuolar protein sorting 13A (VPS13A). Only a few patients with ChAc have been reported to date, and the variant spectrum of VPS13A has not been completely elucidated. We describe the case of a 36-year-old woman who had been experiencing orofacial dyskinesia since age 30 years. In a genetic study using next-generation sequencing, 2 variants of VPS13A, the nonsense variant c.4411C>T (p.Arg1471Ter) and the splicing variant c.145-2A>T, were identified. The splicing variant c.145-2A>T was newly classified as a pathogenic variant through a literature review. Consequently, the patient was diagnosed with ChAc based on the typical clinical manifestations, laboratory findings, and imaging results.


Assuntos
Neuroacantocitose , Adulto , Feminino , Humanos , Neuroacantocitose/diagnóstico , Neuroacantocitose/genética , Neuroacantocitose/metabolismo , Transporte Proteico , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
17.
Artigo em Russo | MEDLINE | ID: mdl-34693697

RESUMO

Neuroacanthocytosis is a group of neurodegenerative diseases manifested by a combition of neurological symptoms (most often choreic hyperkinesis) and the presence of an increased number of acanthocytes (erythrocytes with horns) in the peripheral blood. This group includes chorea-acanthocytosis, MacLeod's syndrome, pantothenate kinase-associated neurodegeneration, Huntington-like disease type 2, and some other very rare diseases. This article presents a genetically confirmed clinical case of chorea-acanthocytosis associated with a compound mutation in the VPS13A gene, discusses in detail the stages of a diagnostic search, presents an algorithm for examining patients with chorea.


Assuntos
Neuroacantocitose , Animais , Eritrócitos , Humanos , Hipercinese , Mutação , Neuroacantocitose/diagnóstico , Neuroacantocitose/genética , Proteínas de Transporte Vesicular/genética
19.
Acta Neuropathol Commun ; 9(1): 81, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33941276

RESUMO

Chorea-Acanthocytosis (ChAc) is a devastating, little understood, and currently untreatable neurodegenerative disease caused by VPS13A mutations. Based on our recent demonstration that accumulation of activated Lyn tyrosine kinase is a key pathophysiological event in human ChAc cells, we took advantage of Vps13a-/- mice, which phenocopied human ChAc. Using proteomic approach, we found accumulation of active Lyn, γ-synuclein and phospho-tau proteins in Vps13a-/- basal ganglia secondary to impaired autophagy leading to neuroinflammation. Mice double knockout Vps13a-/- Lyn-/- showed normalization of red cell morphology and improvement of autophagy in basal ganglia. We then in vivo tested pharmacologic inhibitors of Lyn: dasatinib and nilotinib. Dasatinib failed to cross the mouse brain blood barrier (BBB), but the more specific Lyn kinase inhibitor nilotinib, crosses the BBB. Nilotinib ameliorates both Vps13a-/- hematological and neurological phenotypes, improving autophagy and preventing neuroinflammation. Our data support the proposal to repurpose nilotinib as new therapeutic option for ChAc patients.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Neuroacantocitose/tratamento farmacológico , Neuroacantocitose/enzimologia , Inibidores de Proteínas Quinases/administração & dosagem , Quinases da Família src/antagonistas & inibidores , Animais , Dasatinibe/administração & dosagem , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuroacantocitose/genética , Pirimidinas/administração & dosagem , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Quinases da Família src/genética , Quinases da Família src/metabolismo
20.
Genes (Basel) ; 12(3)2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652783

RESUMO

Neuroacanthocytosis (NA) syndromes are a group of genetically defined diseases characterized by the association of red blood cell acanthocytosis, progressive degeneration of the basal ganglia and neuromuscular features with characteristic persistent hyperCKemia. The main NA syndromes include autosomal recessive chorea-acanthocytosis (ChAc) and X-linked McLeod syndrome (MLS). A series of Italian patients selected through a multicenter study for these specific neurological phenotypes underwent DNA sequencing of the VPS13A and XK genes to search for causative mutations. Where it has been possible, muscle biopsies were obtained and thoroughly investigated with histochemical assays. A total of nine patients from five different families were diagnosed with ChAC and had mostly biallelic changes in the VPS13A gene (three nonsense, two frameshift, three splicing), while three patients from a single X-linked family were diagnosed with McLeod syndrome and had a deletion in the XK gene. Despite a very low incidence (only one thousand cases of ChAc and a few hundred MLS cases reported worldwide), none of the 8 VPS13A variants identified in our patients is shared by two families, suggesting the high genetic variability of ChAc in the Italian population. In our series, in line with epidemiological data, McLeod syndrome occurs less frequently than ChAc, although it can be easily suspected because of its X-linked mode of inheritance. Finally, histochemical studies strongly suggest that muscle pathology is not simply secondary to the axonal neuropathy, frequently seen in these patients, but primary myopathic alterations can be detected in both NA syndromes.


Assuntos
Músculo Esquelético , Mutação , Proteínas de Transporte Vesicular , Adulto , Criança , Estudos de Coortes , Eritrócitos/metabolismo , Eritrócitos/patologia , Feminino , Humanos , Itália , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Doenças Musculares/genética , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Neuroacantocitose/genética , Neuroacantocitose/metabolismo , Neuroacantocitose/patologia , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...