Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(3): 112194, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36857184

RESUMO

The enteric nervous system (ENS) consists of glial cells (EGCs) and neurons derived from neural crest precursors. EGCs retain capacity for large-scale neurogenesis in culture, and in vivo lineage tracing has identified neurons derived from glial cells in response to inflammation. We thus hypothesize that EGCs possess a chromatin structure poised for neurogenesis. We use single-cell multiome sequencing to simultaneously assess transcription and chromatin accessibility in EGCs undergoing spontaneous neurogenesis in culture, as well as small intestine myenteric plexus EGCs. Cultured EGCs maintain open chromatin at genomic loci accessible in neurons, and neurogenesis from EGCs involves dynamic chromatin rearrangements with a net decrease in accessible chromatin. A subset of in vivo EGCs, highly enriched within the myenteric ganglia and that persist into adulthood, have a gene expression program and chromatin state consistent with neurogenic potential. These results clarify the mechanisms underlying EGC potential for neuronal fate transition.


Assuntos
Sistema Nervoso Entérico , Gânglios , Multiômica , Neurogênese , Neuroglia , Análise de Célula Única , Neuroglia/classificação , Neuroglia/citologia , Neuroglia/metabolismo , Neurogênese/genética , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , RNA/análise , RNA/genética , Gânglios/citologia , Masculino , Feminino , Animais , Camundongos , Sistema Nervoso Entérico/citologia , Análise da Expressão Gênica de Célula Única , Técnicas de Cultura de Células , Intestino Delgado/citologia , Desmame
2.
Nature ; 598(7879): 214-219, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34616064

RESUMO

The cerebellar cortex is a well-studied brain structure with diverse roles in motor learning, coordination, cognition and autonomic regulation. However,  a complete inventory of cerebellar cell types is currently lacking. Here, using recent advances in high-throughput transcriptional profiling1-3, we molecularly define cell types across individual lobules of the adult mouse cerebellum. Purkinje neurons showed considerable regional specialization, with the greatest diversity occurring in the posterior lobules. For several types of cerebellar interneuron, the molecular variation within each type was more continuous, rather than discrete. In particular, for the unipolar brush cells-an interneuron population previously subdivided into discrete populations-the continuous variation in gene expression was associated with a graded continuum of electrophysiological properties. Notably, we found that molecular layer interneurons were composed of two molecularly and functionally distinct types. Both types show a continuum of morphological variation through the thickness of the molecular layer, but electrophysiological recordings revealed marked differences between the two types in spontaneous firing, excitability and electrical coupling. Together, these findings provide a comprehensive cellular atlas of the cerebellar cortex, and outline a methodological and conceptual framework for the integration of molecular, morphological and physiological ontologies for defining brain cell types.


Assuntos
Córtex Cerebelar/citologia , Perfilação da Expressão Gênica , Transcriptoma , Adulto , Animais , Atlas como Assunto , Eletrofisiologia , Feminino , Humanos , Interneurônios/classificação , Interneurônios/citologia , Interneurônios/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/classificação , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios/classificação , Neurônios/citologia , Neurônios/metabolismo
3.
Nature ; 598(7879): 200-204, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34616070

RESUMO

The human brain is subdivided into distinct anatomical structures, including the neocortex, which in turn encompasses dozens of distinct specialized cortical areas. Early morphogenetic gradients are known to establish early brain regions and cortical areas, but how early patterns result in finer and more discrete spatial differences remains poorly understood1. Here we use single-cell RNA sequencing to profile ten major brain structures and six neocortical areas during peak neurogenesis and early gliogenesis. Within the neocortex, we find that early in the second trimester, a large number of genes are differentially expressed across distinct cortical areas in all cell types, including radial glia, the neural progenitors of the cortex. However, the abundance of areal transcriptomic signatures increases as radial glia differentiate into intermediate progenitor cells and ultimately give rise to excitatory neurons. Using an automated, multiplexed single-molecule fluorescent in situ hybridization approach, we find that laminar gene-expression patterns are highly dynamic across cortical regions. Together, our data suggest that early cortical areal patterning is defined by strong, mutually exclusive frontal and occipital gene-expression signatures, with resulting gradients giving rise to the specification of areas between these two poles throughout successive developmental timepoints.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Neocórtex/citologia , Neocórtex/embriologia , Atlas como Assunto , Sequência de Bases , Biomarcadores/metabolismo , Humanos , Neocórtex/metabolismo , Neurogênese , Neuroglia/classificação , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios/classificação , Neurônios/citologia , Neurônios/metabolismo , Reprodutibilidade dos Testes , Análise de Célula Única , Fatores de Tempo
4.
Nature ; 598(7879): 129-136, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34616068

RESUMO

The mammalian cerebrum performs high-level sensory perception, motor control and cognitive functions through highly specialized cortical and subcortical structures1. Recent surveys of mouse and human brains with single-cell transcriptomics2-6 and high-throughput imaging technologies7,8 have uncovered hundreds of neural cell types distributed in different brain regions, but the transcriptional regulatory programs that are responsible for the unique identity and function of each cell type remain unknown. Here we probe the accessible chromatin in more than 800,000 individual nuclei from 45 regions that span the adult mouse isocortex, olfactory bulb, hippocampus and cerebral nuclei, and use the resulting data to map the state of 491,818 candidate cis-regulatory DNA elements in 160 distinct cell types. We find high specificity of spatial distribution for not only excitatory neurons, but also most classes of inhibitory neurons and a subset of glial cell types. We characterize the gene regulatory sequences associated with the regional specificity within these cell types. We further link a considerable fraction of the cis-regulatory elements to putative target genes expressed in diverse cerebral cell types and predict transcriptional regulators that are involved in a broad spectrum of molecular and cellular pathways in different neuronal and glial cell populations. Our results provide a foundation for comprehensive analysis of gene regulatory programs of the mammalian brain and assist in the interpretation of noncoding risk variants associated with various neurological diseases and traits in humans.


Assuntos
Cérebro/citologia , Cérebro/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Atlas como Assunto , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica , Predisposição Genética para Doença/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doenças do Sistema Nervoso/genética , Neuroglia/classificação , Neuroglia/metabolismo , Neurônios/classificação , Neurônios/metabolismo , Análise de Sequência de DNA , Análise de Célula Única
5.
J Neurosci Res ; 99(9): 2228-2249, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34060113

RESUMO

The formation of the cerebellum is highly coordinated to obtain its characteristic morphology and all cerebellar cell types. During mouse postnatal development, cerebellar progenitors with astroglial-like characteristics generate mainly astrocytes and oligodendrocytes. However, a subset of astroglial-like progenitors found in the prospective white matter (PWM) produces astroglia and interneurons. Characterizing these cerebellar astroglia-like progenitors and distinguishing their developmental fates is still elusive. Here, we reveal that astrocyte cell surface antigen-2 (ACSA-2), lately identified as ATPase, Na+/K+ transporting, beta 2 polypeptide, is expressed by glial precursors throughout postnatal cerebellar development. In contrast to common astrocyte markers, ACSA-2 appears on PWM cells but is absent on Bergmann glia (BG) precursors. In the adult cerebellum, ACSA-2 is broadly expressed extending to velate astrocytes in the granular layer, white matter astrocytes, and to a lesser extent to BG. Cell transplantation and transcriptomic analysis revealed that marker staining discriminates two postnatal progenitor pools. One subset is defined by the co-expression of ACSA-2 and GLAST and the expression of markers typical of parenchymal astrocytes. These are PWM precursors that are exclusively gliogenic. They produce predominantly white matter and granular layer astrocytes. Another subset is constituted by GLAST positive/ACSA-2 negative precursors that express neurogenic and BG-like progenitor genes. This population displays multipotency and gives rise to interneurons besides all glial types, including BG. In conclusion, this work reports about ACSA-2, a marker that in combination with GLAST enables for the discrimination and isolation of multipotent and glia-committed progenitors, which generate different types of cerebellar astrocytes.


Assuntos
Antígenos de Superfície/análise , Cerebelo/química , Cerebelo/citologia , Transportador 1 de Aminoácido Excitatório/análise , Células-Tronco Multipotentes/química , Neuroglia/química , Animais , Animais Recém-Nascidos , Feminino , Separação Imunomagnética/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuroglia/classificação , Análise de Sequência de RNA/métodos
6.
Mol Cell Neurosci ; 109: 103565, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33068719

RESUMO

The importance of glial cells, mainly astrocytes, oligodendrocytes, and microglia, in the central nervous system (CNS) has been increasingly appreciated. Recent advances have demonstrated the diversity of glial cells and their contribution to human CNS development, normal CNS functions, and disease progression. The uniqueness of human glial cells is also supported by multiple lines of evidence. With the discovery of induced pluripotent stem cells (iPSCs) and the progress of generating glial cells from human iPSCs, there are numerous studies to model CNS diseases using human iPSC-derived glial cells. Here we summarize the basic characteristics of glial cells, with the focus on their classical functions, heterogeneity, and uniqueness in human species. We further review the findings from recent studies that use iPSC-derived glial cells for CNS disease modeling. We conclude with promises and future directions of using iPSC-derived glial cells for CNS disease modeling.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Neuroglia/fisiologia , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Células Cultivadas , Técnicas de Reprogramação Celular , Técnicas de Cocultura , Previsões , Humanos , Mutação , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/patologia , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Neuroglia/classificação , Neuroglia/citologia , Células Precursoras de Oligodendrócitos/citologia , Organoides , Fatores de Risco , Especificidade da Espécie
7.
BMC Biol ; 18(1): 124, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32928209

RESUMO

BACKGROUND: The increasing age of global populations highlights the urgent need to understand the biological underpinnings of ageing. To this end, inhibition of the insulin/insulin-like signalling (IIS) pathway can extend healthy lifespan in diverse animal species, but with trade-offs including delayed development. It is possible that distinct cell types underlie effects on development and ageing; cell-type-specific strategies could therefore potentially avoid negative trade-offs when targeting diseases of ageing, including prevalent neurodegenerative diseases. The highly conserved diversity of neuronal and non-neuronal (glial) cell types in the Drosophila nervous system makes it an attractive system to address this possibility. We have thus investigated whether IIS in distinct glial cell populations differentially modulates development and lifespan in Drosophila. RESULTS: We report here that glia-specific IIS inhibition, using several genetic means, delays development while extending healthy lifespan. The effects on lifespan can be recapitulated by adult-onset IIS inhibition, whereas developmental IIS inhibition is dispensable for modulation of lifespan. Notably, the effects we observe on both lifespan and development act through the PI3K branch of the IIS pathway and are dependent on the transcription factor FOXO. Finally, IIS inhibition in several glial subtypes can delay development without extending lifespan, whereas the same manipulations in astrocyte-like glia alone are sufficient to extend lifespan without altering developmental timing. CONCLUSIONS: These findings reveal a role for distinct glial subpopulations in the organism-wide modulation of development and lifespan, with IIS in astrocyte-like glia contributing to lifespan modulation but not to developmental timing. Our results enable a more complete picture of the cell-type-specific effects of the IIS network, a pathway whose evolutionary conservation in humans make it tractable for therapeutic interventions. Our findings therefore underscore the necessity for cell-type-specific strategies to optimise interventions for the diseases of ageing.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Insulina/fisiologia , Longevidade , Fosfatidilinositol 3-Quinases/fisiologia , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Neuroglia/classificação , Neuroglia/fisiologia , Transdução de Sinais
8.
Nat Neurosci ; 23(12): 1456-1468, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32839617

RESUMO

To understand the function of cortical circuits, it is necessary to catalog their cellular diversity. Past attempts to do so using anatomical, physiological or molecular features of cortical cells have not resulted in a unified taxonomy of neuronal or glial cell types, partly due to limited data. Single-cell transcriptomics is enabling, for the first time, systematic high-throughput measurements of cortical cells and generation of datasets that hold the promise of being complete, accurate and permanent. Statistical analyses of these data reveal clusters that often correspond to cell types previously defined by morphological or physiological criteria and that appear conserved across cortical areas and species. To capitalize on these new methods, we propose the adoption of a transcriptome-based taxonomy of cell types for mammalian neocortex. This classification should be hierarchical and use a standardized nomenclature. It should be based on a probabilistic definition of a cell type and incorporate data from different approaches, developmental stages and species. A community-based classification and data aggregation model, such as a knowledge graph, could provide a common foundation for the study of cortical circuits. This community-based classification, nomenclature and data aggregation could serve as an example for cell type atlases in other parts of the body.


Assuntos
Células/classificação , Neocórtex/citologia , Transcriptoma , Animais , Biologia Computacional , Humanos , Neuroglia/classificação , Neurônios/classificação , Análise de Célula Única , Terminologia como Assunto
9.
J Neurogenet ; 34(3-4): 335-346, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32696701

RESUMO

Glia shape the development and function of the C. elegans nervous system, especially its sense organs and central neuropil (nerve ring). Cell-type-specific promoters allow investigators to label or manipulate individual glial cell types, and therefore provide a key tool for deciphering glial function. In this technical resource, we compare the specificity, brightness, and consistency of cell-type-specific promoters for C. elegans glia. We identify a set of promoters for the study of seven glial cell types (F16F9.3, amphid and phasmid sheath glia; F11C7.2, amphid sheath glia only; grl-2, amphid and phasmid socket glia; hlh-17, cephalic (CEP) sheath glia; and grl-18, inner labial (IL) socket glia) as well as a pan-glial promoter (mir-228). We compare these promoters to promoters that are expressed more variably in combinations of glial cell types (delm-1 and itx-1). We note that the expression of some promoters depends on external conditions or the internal state of the organism, such as developmental stage, suggesting glial plasticity. Finally, we demonstrate an approach for prospectively identifying cell-type-specific glial promoters using existing single-cell sequencing data, and we use this approach to identify two novel promoters specific to IL socket glia (col-53 and col-177).


Assuntos
Caenorhabditis elegans/genética , Regulação da Expressão Gênica/genética , Genes de Helmintos/genética , Neuroglia/citologia , Regiões Promotoras Genéticas , Adaptação Fisiológica/genética , Animais , Biomarcadores , Caenorhabditis elegans/citologia , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Conjuntos de Dados como Assunto , Neuroglia/classificação , Neuroglia/metabolismo , Especificidade de Órgãos , Análise de Célula Única
10.
Parasitol Res ; 119(1): 317-319, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31782012

RESUMO

Muscle cells of a digenean fish blood fluke, Aporocotyle simplex, aggregate along the periphery of the cerebral ganglia. Solitary myocytons and sarcoplasmic processes with muscle fibres give rise to long, narrow lamellate projections, which are visible along the periphery and within ganglia. These ultrastructural observations suggest a switching of glial functions to muscle cells and represent additional evidence of the phylogenetic lability of glial cells in bilaterians.


Assuntos
Células Musculares/classificação , Neuroglia/classificação , Schistosomatidae/citologia , Animais , Doenças dos Peixes/parasitologia , Gânglios/citologia , Células Musculares/citologia , Células Musculares/ultraestrutura , Neuroglia/citologia , Neuroglia/ultraestrutura , Schistosomatidae/anatomia & histologia , Schistosomatidae/ultraestrutura , Infecções por Trematódeos/parasitologia , Infecções por Trematódeos/veterinária
11.
J Neurogenet ; 32(2): 78-91, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29718753

RESUMO

In the last years, glial cells have emerged as central players in the development and function of complex nervous systems. Therefore, the concept of glial cells has evolved from simple supporting cells to essential actors. The molecular mechanisms that govern glial functions are evolutionarily conserved from Drosophila to mammals, highlighting genetic similarities between these groups, as well as the great potential of Drosophila research for the understanding of human CNS. These similarities would imply a common phylogenetic origin of glia, even though there is a controversy at this point. This review addresses the existing literature on the evolutionary origin of glia and discusses whether or not insect and mammalian glia are homologous or analogous. Besides, this manuscript summarizes the main glial functions in the CNS and underscores the evolutionarily conserved molecular mechanisms between Drosophila and mammals. Finally, I also consider the current nomenclature and classification of glial cells to highlight the need for a consensus agreement and I propose an alternative nomenclature based on function that unifies Drosophila and mammalian glial types.


Assuntos
Evolução Biológica , Sistema Nervoso Central/citologia , Sistema Nervoso Central/fisiologia , Neuroglia/classificação , Neuroglia/citologia , Neuroglia/fisiologia , Animais , Drosophila , Humanos , Mamíferos , Filogenia
12.
Science ; 360(6391): 881-888, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29724907

RESUMO

Computations in the mammalian cortex are carried out by glutamatergic and γ-aminobutyric acid-releasing (GABAergic) neurons forming specialized circuits and areas. Here we asked how these neurons and areas evolved in amniotes. We built a gene expression atlas of the pallium of two reptilian species using large-scale single-cell messenger RNA sequencing. The transcriptomic signature of glutamatergic neurons in reptilian cortex suggests that mammalian neocortical layers are made of new cell types generated by diversification of ancestral gene-regulatory programs. By contrast, the diversity of reptilian cortical GABAergic neurons indicates that the interneuron classes known in mammals already existed in the common ancestor of all amniotes.


Assuntos
Evolução Biológica , Rastreamento de Células/métodos , Perfilação da Expressão Gênica/métodos , Hipocampo/citologia , Neocórtex/citologia , Répteis , Análise de Célula Única/métodos , Animais , Neurônios GABAérgicos/classificação , Neurônios GABAérgicos/citologia , Neuroglia/classificação , Neuroglia/citologia , Neurônios/classificação
13.
Handb Clin Neurol ; 150: 273-283, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29496146

RESUMO

In order to translate the findings obtained from postmortem brain tissue samples to functional biologic mechanisms of central nervous system disease, it will be necessary to understand how these findings affect the different cell populations in the brain. The acute isolation and analysis of pure glial cell populations are common practice in animal models for neurologic diseases, but are not yet regularly applied to human postmortem brain material. The development of novel cell isolation techniques and methods for transcriptomic and proteomic analysis have made it possible to isolate and phenotype primary human cell populations from the central nervous system. The psychiatric program of the Netherlands Brain Bank has considerable experience with the purification of glial cells. This chapter will review the rapid isolation and phenotyping procedures for two major glia cell populations in the human brain, microglia and astrocytes, and will also discuss the potential for biobanking these cells, as well as the possible alternatives to cell isolations. The acute isolation of glial cells without culture-based adherence steps allows the analysis of glial alterations that underlie, or are the result of, disease neuropathology of the donor.


Assuntos
Encéfalo/citologia , Técnicas de Cultura de Células , Separação Celular/métodos , Neuroglia/metabolismo , Encéfalo/patologia , Humanos , Neuroglia/classificação , Proteômica , Transcriptoma
14.
Brain Res ; 1693(Pt B): 140-145, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29425908

RESUMO

Glial cells of the enteric nervous system correspond to a unique glial lineage distinct from other central and peripheral glia, and form a vast and abundant network spreading throughout all the layers of the gastrointestinal wall. Research over the last two decades has demonstrated that enteric glia regulates all major gastrointestinal functions via multiple bi-directional crosstalk with enteric neurons and other neighboring cell types. Recent studies propose that enteric glia represents a heterogeneous population associated with distinct localization within the gut wall, phenotype and activity. Compelling evidence also indicates that enteric glial cells are capable of plasticity leading to phenotypic changes whose pinnacle so far has been shown to be the generation of enteric neurons. While alterations of the glial network have been heavily incriminated in the development of gastrointestinal pathologies, enteric glial cells have also recently emerged as an active player in gut-brain signaling. Therefore, the development of tools and techniques to better appraise enteric glia heterogeneity and plasticity will undoubtedly unveil critical regulatory mechanisms implicated in gut health and disease, as well as disorders of the gut-brain axis.


Assuntos
Sistema Nervoso Entérico/citologia , Neuroglia/fisiologia , Animais , Humanos , Rede Nervosa/citologia , Neuroglia/classificação
15.
Nat Neurosci ; 21(1): 9-15, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29269757

RESUMO

Injury or disease to the CNS results in multifaceted cellular and molecular responses. One such response, the glial scar, is a structural formation of reactive glia around an area of severe tissue damage. While traditionally viewed as a barrier to axon regeneration, beneficial functions of the glial scar have also been recently identified. In this Perspective, we discuss the divergent roles of the glial scar during CNS regeneration and explore the possibility that these disparities are due to functional heterogeneity within the cells of the glial scar-specifically, astrocytes, NG2 glia and microglia.


Assuntos
Doenças do Sistema Nervoso Central/patologia , Cicatriz/patologia , Neuroglia/patologia , Regeneração , Animais , Doenças do Sistema Nervoso Central/complicações , Cicatriz/etiologia , Humanos , Neuroglia/classificação
16.
Glia ; 65(4): 606-638, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28133822

RESUMO

Glia play crucial roles in the development and homeostasis of the nervous system. While the GLIA in the Drosophila embryo have been well characterized, their study in the adult nervous system has been limited. Here, we present a detailed description of the glia in the adult nervous system, based on the analysis of some 500 glial drivers we identified within a collection of synthetic GAL4 lines. We find that glia make up ∼10% of the cells in the nervous system and envelop all compartments of neurons (soma, dendrites, axons) as well as the nervous system as a whole. Our morphological analysis suggests a set of simple rules governing the morphogenesis of glia and their interactions with other cells. All glial subtypes minimize contact with their glial neighbors but maximize their contact with neurons and adapt their macromorphology and micromorphology to the neuronal entities they envelop. Finally, glial cells show no obvious spatial organization or registration with neuronal entities. Our detailed description of all glial subtypes and their regional specializations, together with the powerful genetic toolkit we provide, will facilitate the functional analysis of glia in the mature nervous system. GLIA 2017 GLIA 2017;65:606-638.


Assuntos
Sistema Nervoso/citologia , Neuroglia/classificação , Neuroglia/fisiologia , Animais , Animais Geneticamente Modificados , Antígenos CD8/genética , Antígenos CD8/metabolismo , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrião não Mamífero , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
Neurotoxicology ; 53: 186-192, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26828634

RESUMO

Bisphenol A (BPA), an endocrine disruptor used in a variety of consumer products, has been found to alter the number of neurons in multiple brain areas in rats following exposure in perinatal development. Both the number of neurons and glia also change in the medial prefrontal cortex (mPFC) during adolescence, and this process is known to be influenced by gonadal hormones which could be altered by BPA. In the current study, we examined Long-Evans male and female rats that were administered BPA (0, 4, 40, or 400µg/kg/day) during adolescent development (postnatal days 27-46). In adulthood (postnatal day 150), the number of neurons and glia in the mPFC were stereologically assessed in methylene blue/azure II stained sections. There were no changes in the number of neurons, but there was a significant dose by sex interaction in number of glia in the mPFC. Pairwise comparisons between controls and each dose showed a significant increase in the number of glia between 0 and 40µg/kg/day in females, and a significant decrease in the number of glia between 0 and 4µg/kg/day in males. In order to determine the type of glial cells that were changing in these groups in response to adolescent BPA administration, adjacent sections were labelled with S100ß (astrocytes) and IBA-1 (microglia) in the mPFC of the groups that differed. The number of microglia was significantly higher in females exposed to 40µg/kg/day than controls and lower in males exposed to 4µg/kg/day than controls. There were no significant effects of adolescent exposure to BPA on the number of astrocytes in male or females. Thus, adolescent exposure to BPA produced long-term alterations in the number of microglia in the mPFC of rats, the functional implications of which need to be explored.


Assuntos
Compostos Benzidrílicos/farmacologia , Sequestradores de Radicais Livres/farmacologia , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fenóis/farmacologia , Córtex Pré-Frontal , Caracteres Sexuais , Análise de Variância , Animais , Animais Recém-Nascidos , Proteínas de Ligação ao Cálcio/metabolismo , Contagem de Células , Relação Dose-Resposta a Droga , Feminino , Masculino , Proteínas dos Microfilamentos/metabolismo , Neuroglia/classificação , Neurônios/classificação , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/crescimento & desenvolvimento , Ratos , Ratos Long-Evans , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo
18.
J Neurophysiol ; 115(2): 1031-42, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26581874

RESUMO

A pressing need in neurobiology is the comprehensive identification and characterization of neuronal subclasses within the mammalian nervous system. To this end, we used constellation pharmacology as a method to interrogate the neuronal and glial subclasses of the mouse cerebellum individually and simultaneously. We then evaluated the data obtained from constellation-pharmacology experiments by cluster analysis to classify cells into neuronal and glial subclasses, based on their functional expression of glutamate, acetylcholine, and GABA receptors, among other ion channels. Conantokin peptides were used to identify N-methyl-d-aspartate (NMDA) receptor subtypes, which revealed that neurons of the young mouse cerebellum expressed NR2A and NR2B NMDA receptor subunits. Additional pharmacological tools disclosed differential expression of α-amino-3-hydroxy-5-methyl-4-isoxazloepropionic, nicotinic acetylcholine, and muscarinic acetylcholine receptors in different neuronal and glial subclasses. Certain cell subclasses correlated with known attributes of granule cells, and we combined constellation pharmacology with genetically labeled neurons to identify and characterize Purkinje cells. This study illustrates the utility of applying constellation pharmacology to classify neuronal and glial subclasses in specific anatomical regions of the brain.


Assuntos
Cerebelo/citologia , Neuroglia/classificação , Neurônios/classificação , Potenciais de Ação , Animais , Células Cultivadas , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/classificação , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/metabolismo , Neuroglia/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Receptores de Neurotransmissores/agonistas , Receptores de Neurotransmissores/antagonistas & inibidores , Receptores de Neurotransmissores/classificação
19.
Curr Alzheimer Res ; 13(4): 321-42, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26567738

RESUMO

From birth to death, neurons are dynamically accompanied by neuroglial cells in a very close morphological and functional relationship. Three families have been classically considered within the CNS: astroglia, oligodendroglia and microglia. Many types/subtypes (including NGR2+ cells), with a wide variety of physiological and pathological effects on neurons, have been described using morphological and immunocytochemical criteria. Glio-glial, glio-neuronal and neuro-glial cell signaling and gliotransmission are phenomena that are essential to support brain functions. Morphofunctional changes resulting from the plasticity of all the glial cell types parallel the plastic neuronal changes that optimize the functionality of neuronal circuits. Moreover, neuroglia possesses the ability to adopt a reactive status (gliosis) in which, generally, new functions arise to improve and restore if needed the neural functionality. All these features make neuroglial cells elements of paramount importance when attempting to explain any physiological or pathological processes in the CNS, because they are involved in both, neuroprotection/neurorepair and neurodegeneration. There exist diverse and profound, regional and local, neuroglial changes in all involutive processes (physiological and pathological aging; neurodegenerative disorders, including Alzheimer ´s disease -AD-), but today, the exact meaning of such modifications (the modifications of the different neuroglial types, in time and place), is not well understood. In this review we consider the different neuroglial cells and their responses in order to understand the possible role they fulfill in pathogenesis, diagnosis and treatment (preventive or palliative) of AD. The existence of differentiated and/or concurrent pathogenic and neuro-protective/neuro-restorative astroglial and microglial responses is highlighted.


Assuntos
Doença de Alzheimer/complicações , Doença de Alzheimer/patologia , Encéfalo/patologia , Doenças do Sistema Nervoso/etiologia , Neuroglia/patologia , Humanos , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/classificação
20.
J Neurosci Res ; 93(9): 1345-52, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26053151

RESUMO

Microglia are versatile immune effector cells of the CNS and are sensitive to various stimuli. The different methods used to isolate microglia may affect some of their characteristics, such as their polarization state. The influence of cell sorting methods on the polarization state of microglia has never been studied. Mixed glial culture system (MGCS) and magnetic activated cell sorting (MACS) are two methods that are commonly used to purify microglia. This study compares the immunological states between microglia isolated by MGCS and microglia isolated by MACS. We show that microglia isolated by MGCS exhibit a stronger immune-activated state than microglia isolated by MACS. They present an elevated phagocytic ability and high levels of markers associated with classical activation (M1) and alternative activation (M2). In addition, high levels of M1-type and M2-type chemokine (C-C motif) ligand 2 and transforming growth factor-ß1 were detected in the culture medium of mixed glial cells. Our results show that microglia isolated by MGCS are in an immune-activated state, whereas microglia isolated by MACS appear to be closer to their primary in vivo state. Therefore, the immune status of microglia, depending on the protocol used to purify them, should be carefully considered in neuropathology research.


Assuntos
Polaridade Celular/fisiologia , Microglia/fisiologia , Animais , Encéfalo/citologia , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Citometria de Fluxo , Imãs , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/classificação , Fagocitose/fisiologia , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...