Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Ann Clin Transl Neurol ; 11(5): 1135-1147, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38532258

RESUMO

OBJECTIVE: In parallel to standard vagus nerve stimulation (VNS), microburst stimulation delivery has been developed. We evaluated the fMRI-related signal changes associated with standard and optimized microburst stimulation in a proof-of-concept study (NCT03446664). METHODS: Twenty-nine drug-resistant epilepsy patients were prospectively implanted with VNS. Three 3T fMRI scans were collected 2 weeks postimplantation. The maximum tolerated VNS intensity was determined prior to each scan starting at 0.125 mA with 0.125 mA increments. FMRI scans were block-design with alternating 30 sec stimulation [ON] and 30 sec no stimulation [OFF]: Scan 1 utilized standard VNS and Scan 3 optimized microburst parameters to determine target settings. Semi-automated on-site fMRI data processing utilized ON-OFF block modeling to determine VNS-related fMRI activation per stimulation setting. Anatomical thalamic mask was used to derive highest mean thalamic t-value for determination of microburst stimulation parameters. Paired t-tests corrected at P < 0.05 examined differences in fMRI responses to each stimulation type. RESULTS: Standard and microburst stimulation intensities at Scans 1 and 3 were similar (P = 0.16). Thalamic fMRI responses were obtained in 28 participants (19 with focal; 9 with generalized seizures). Group activation maps showed standard VNS elicited thalamic activation while optimized microburst VNS showed widespread activation patterns including thalamus. Comparison of stimulation types revealed significantly greater cerebellar, midbrain, and parietal fMRI signal changes in microburst compared to standard VNS. These differences were not associated with seizure responses. INTERPRETATION: While standard and optimized microburst VNS elicited thalamic activation, microburst also engaged other brain regions. Relationship between these fMRI activation patterns and clinical response warrants further investigation. CLINICAL TRIAL REGISTRATION: The study was registered with clinicaltrials.gov (NCT03446664).


Assuntos
Epilepsia Resistente a Medicamentos , Imageamento por Ressonância Magnética , Tálamo , Estimulação do Nervo Vago , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Epilepsia Resistente a Medicamentos/terapia , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/fisiopatologia , Neuroimagem Funcional/normas , Neuroimagem Funcional/métodos , Estudo de Prova de Conceito , Tálamo/diagnóstico por imagem , Estimulação do Nervo Vago/métodos , Estudos Prospectivos
2.
Hum Brain Mapp ; 42(18): 5803-5813, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34529303

RESUMO

Null hypothesis significance testing is the major statistical procedure in fMRI, but provides only a rather limited picture of the effects in a data set. When sample size and power is low relying only on strict significance testing may lead to a host of false negative findings. In contrast, with very large data sets virtually every voxel might become significant. It is thus desirable to complement significance testing with procedures like inferiority and equivalence tests that allow to formally compare effect sizes within and between data sets and offer novel approaches to obtain insight into fMRI data. The major component of these tests are estimates of standardized effect sizes and their confidence intervals. Here, we show how Hedges' g, the bias corrected version of Cohen's d, and its confidence interval can be obtained from SPM t maps. We then demonstrate how these values can be used to evaluate whether nonsignificant effects are really statistically smaller than significant effects to obtain "regions of undecidability" within a data set, and to test for the replicability and lateralization of effects. This method allows the analysis of fMRI data beyond point estimates enabling researchers to take measurement uncertainty into account when interpreting their findings.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Interpretação Estatística de Dados , Neuroimagem Funcional , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Neuroimagem Funcional/métodos , Neuroimagem Funcional/normas , Humanos , Processamento de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/normas , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/normas
3.
Sci Rep ; 11(1): 19270, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588470

RESUMO

Congenital Zika Syndrome (CZS) is characterized by changes in cranial morphology associated with heterogeneous neurological manifestations and cognitive and behavioral impairments. In this syndrome, longitudinal neuroimaging could help clinicians to predict developmental trajectories of children and tailor treatment plans accordingly. However, regularly acquiring magnetic resonance imaging (MRI) has several shortcomings besides cost, particularly those associated with childrens' clinical presentation as sensitivity to environmental stimuli. The indirect monitoring of local neural activity by non-invasive functional near-infrared spectroscopy (fNIRS) technique can be a useful alternative for longitudinally accessing the brain function in children with CZS. In order to provide a common framework for advancing longitudinal neuroimaging assessment, we propose a principled guideline for fNIRS acquisition and analyses in children with neurodevelopmental disorders. Based on our experience on collecting fNIRS data in children with CZS we emphasize the methodological challenges, such as clinical characteristics of the sample, desensitization, movement artifacts and environment control, as well as suggestions for tackling such challenges. Finally, metrics based on fNIRS can be associated with established clinical metrics, thereby opening possibilities for exploring this tool as a long-term predictor when assessing the effectiveness of treatments aimed at children with severe neurodevelopmental disorders.


Assuntos
Neuroimagem Funcional/normas , Microcefalia/terapia , Transtornos do Neurodesenvolvimento/diagnóstico , Espectroscopia de Luz Próxima ao Infravermelho/normas , Infecção por Zika virus/complicações , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Brasil , Pré-Escolar , Neuroimagem Funcional/métodos , Humanos , Estudos Longitudinais , Masculino , Microcefalia/fisiopatologia , Microcefalia/virologia , Transtornos do Neurodesenvolvimento/fisiopatologia , Transtornos do Neurodesenvolvimento/prevenção & controle , Guias de Prática Clínica como Assunto , Resultado do Tratamento , Infecção por Zika virus/virologia
4.
Hum Brain Mapp ; 42(15): 4823-4843, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34342073

RESUMO

In the present study, we proposed and evaluated a workflow of personalized near infra-red optical tomography (NIROT) using functional near-infrared spectroscopy (fNIRS) for spatiotemporal imaging of cortical hemodynamic fluctuations. The proposed workflow from fNIRS data acquisition to local 3D reconstruction consists of: (a) the personalized optimal montage maximizing fNIRS channel sensitivity to a predefined targeted brain region; (b) the optimized fNIRS data acquisition involving installation of optodes and digitalization of their positions using a neuronavigation system; and (c) the 3D local reconstruction using maximum entropy on the mean (MEM) to accurately estimate the location and spatial extent of fNIRS hemodynamic fluctuations along the cortical surface. The workflow was evaluated on finger-tapping fNIRS data acquired from 10 healthy subjects for whom we estimated the reconstructed NIROT spatiotemporal images and compared with functional magnetic resonance imaging (fMRI) results from the same individuals. Using the fMRI activation maps as our reference, we quantitatively compared the performance of two NIROT approaches, the MEM framework and the conventional minimum norm estimation (MNE) method. Quantitative comparisons were performed at both single subject and group-level. Overall, our results suggested that MEM provided better spatial accuracy than MNE, while both methods offered similar temporal accuracy when reconstructing oxygenated (HbO) and deoxygenated hemoglobin (HbR) concentration changes evoked by finger-tapping. Our proposed complete workflow was made available in the brainstorm fNIRS processing plugin-NIRSTORM, thus providing the opportunity for other researchers to further apply it to other tasks and on larger populations.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Neuroimagem Funcional/normas , Imageamento por Ressonância Magnética/normas , Espectroscopia de Luz Próxima ao Infravermelho/normas , Tomografia Óptica/normas , Adulto , Entropia , Humanos , Fluxo de Trabalho , Adulto Jovem
5.
Hum Brain Mapp ; 42(13): 4205-4223, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34156132

RESUMO

Echo planar imaging (EPI) is widely used in functional and diffusion-weighted MRI, but suffers from significant geometric distortions in the phase encoding direction caused by inhomogeneities in the static magnetic field (B0 ). This is a particular challenge for EPI at very high field (≥7 T), as distortion increases with higher field strength. A number of techniques for distortion correction exist, including those based on B0 field mapping and acquiring EPI scans with opposite phase encoding directions. However, few quantitative comparisons of distortion compensation methods have been performed using human EPI data, especially at very high field. Here, we compared distortion compensation using B0 field maps and opposite phase encoding scans in two different software packages (FSL and AFNI) applied to 7 T gradient echo (GE) EPI data from 31 human participants. We assessed distortion compensation quality by quantifying alignment to anatomical reference scans using Dice coefficients and mutual information. Performance between FSL and AFNI was equivalent. In our whole-brain analyses, we found superior distortion compensation using GE scans with opposite phase encoding directions, versus B0 field maps or spin echo (SE) opposite phase encoding scans. However, SE performed better when analyses were limited to ventromedial prefrontal cortex, a region with substantial dropout. Matching the type of opposite phase encoding scans to the EPI data being corrected (e.g., SE-to-SE) also yielded better distortion correction. While the ideal distortion compensation approach likely varies depending on methodological differences across experiments, this study provides a framework for quantitative comparison of different distortion compensation methods.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Imagem Ecoplanar , Neuroimagem Funcional , Adulto , Imagem Ecoplanar/métodos , Imagem Ecoplanar/normas , Família , Feminino , Neuroimagem Funcional/métodos , Neuroimagem Funcional/normas , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos Psicóticos/diagnóstico por imagem , Transtornos Psicóticos/fisiopatologia , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/fisiopatologia
6.
Hum Brain Mapp ; 42(12): 3993-4021, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34101939

RESUMO

Simultaneous recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) is a very promising non-invasive neuroimaging technique. However, EEG data obtained from the simultaneous EEG-fMRI are strongly influenced by MRI-related artefacts, namely gradient artefacts (GA) and ballistocardiogram (BCG) artefacts. When compared to the GA correction, the BCG correction is more challenging to remove due to its inherent variabilities and dynamic changes over time. The standard BCG correction (i.e., average artefact subtraction [AAS]), require detecting cardiac pulses from simultaneous electrocardiography (ECG) recording. However, ECG signals are also distorted and will become problematic for detecting reliable cardiac peaks. In this study, we focused on a beamforming spatial filtering technique to attenuate all unwanted source activities outside of the brain. Specifically, we applied the beamforming technique to attenuate the BCG artefact in EEG-fMRI, and also to recover meaningful task-based neural signals during an attentional network task (ANT) which required participants to identify visual cues and respond accurately. We analysed EEG-fMRI data in 20 healthy participants during the ANT, and compared four different BCG corrections (non-BCG corrected, AAS BCG corrected, beamforming + AAS BCG corrected, beamforming BCG corrected). We demonstrated that the beamforming approach did not only significantly reduce the BCG artefacts, but also significantly recovered the expected task-based brain activity when compared to the standard AAS correction. This data-driven beamforming technique appears promising especially for longer data acquisition of sleep and resting EEG-fMRI. Our findings extend previous work regarding the recovery of meaningful EEG signals by an optimized suppression of MRI-related artefacts.


Assuntos
Balistocardiografia/normas , Eletroencefalografia/normas , Neuroimagem Funcional/normas , Imageamento por Ressonância Magnética/normas , Adulto , Artefatos , Balistocardiografia/métodos , Eletroencefalografia/métodos , Feminino , Neuroimagem Funcional/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto Jovem
7.
Neuroimage ; 237: 118195, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34038769

RESUMO

Cerebral blood volume (CBV) has been shown to be a robust and important physiological parameter for quantitative interpretation of functional (f)MRI, capable of delivering highly localized mapping of neural activity. Indeed, with recent advances in ultra-high-field (≥7T) MRI hardware and associated sequence libraries, it has become possible to capture non-invasive CBV weighted fMRI signals across cortical layers. One of the most widely used approaches to achieve this (in humans) is through vascular-space-occupancy (VASO) fMRI. Unfortunately, the exact contrast mechanisms of layer-dependent VASO fMRI have not been validated for human fMRI and thus interpretation of such data is confounded. Here we validate the signal source of layer-dependent SS-SI VASO fMRI using multi-modal imaging in a rat model in response to neuronal activation (somatosensory cortex) and respiratory challenge (hypercapnia). In particular VASO derived CBV measures are directly compared to concurrent measures of total haemoglobin changes from high resolution intrinsic optical imaging spectroscopy (OIS). Quantified cortical layer profiling is demonstrated to be in agreement between VASO and contrast enhanced fMRI (using monocrystalline iron oxide nanoparticles, MION). Responses show high spatial localisation to layers of cortical processing independent of confounding large draining veins which can hamper BOLD fMRI studies, (depending on slice positioning). Thus, a cross species comparison is enabled using VASO as a common measure. We find increased VASO based CBV reactivity (3.1 ± 1.2 fold increase) in humans compared to rats. Together, our findings confirm that the VASO contrast is indeed a reliable estimate of layer-specific CBV changes. This validation study increases the neuronal interpretability of human layer-dependent VASO fMRI as an appropriate method in neuroscience application studies, in which the presence of large draining intracortical and pial veins limits neuroscientific inference with BOLD fMRI.


Assuntos
Volume Sanguíneo Cerebral/fisiologia , Neuroimagem Funcional/normas , Imageamento por Ressonância Magnética/normas , Córtex Somatossensorial/diagnóstico por imagem , Percepção do Tato/fisiologia , Adulto , Animais , Estimulação Elétrica , Feminino , Humanos , Masculino , Imagem Óptica , Estimulação Física , Ratos , Reprodutibilidade dos Testes
8.
Neuroimage ; 237: 118192, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34048899

RESUMO

Typically, time-frequency analysis (TFA) of electrophysiological data is aimed at isolating narrowband signals (oscillatory activity) from broadband non-oscillatory (1/f) activity, so that changes in oscillatory activity resulting from experimental manipulations can be assessed. A widely used method to do this is to convert the data to the decibel (dB) scale through baseline division and log transformation. This procedure assumes that, for each frequency, sources of power (i.e., oscillations and 1/f activity) scale by the same factor relative to the baseline (multiplicative model). This assumption may be incorrect when signal and noise are independent contributors to the power spectrum (additive model). Using resting-state EEG data from 80 participants, we found that the level of 1/f activity and alpha power are not positively correlated within participants, in line with the additive but not the multiplicative model. Then, to assess the effects of dB conversion on data that violate the multiplicativity assumption, we simulated a mixed design study with one between-subject (noise level, i.e., level of 1/f activity) and one within-subject (signal amplitude, i.e., amplitude of oscillatory activity added onto the background 1/f activity) factor. The effect size of the noise level × signal amplitude interaction was examined as a function of noise difference between groups, following dB conversion. Findings revealed that dB conversion led to the over- or under-estimation of the true interaction effect when groups differing in 1/f levels were compared, and it also led to the emergence of illusory interactions when none were present. This is because signal amplitude was systematically underestimated in the noisier compared to the less noisy group. Hence, we recommend testing whether the level of 1/f activity differs across groups or conditions and using multiple baseline correction strategies to validate results if it does. Such a situation may be particularly common in aging, developmental, or clinical studies.


Assuntos
Córtex Cerebral/fisiologia , Eletroencefalografia/métodos , Neuroimagem Funcional/métodos , Magnetoencefalografia/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Ondas Encefálicas/fisiologia , Eletroencefalografia/normas , Feminino , Neuroimagem Funcional/normas , Humanos , Magnetoencefalografia/normas , Masculino , Adulto Jovem
9.
Neuroimage ; 237: 118197, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34029737

RESUMO

Quality assurance (QA) is crucial in longitudinal and/or multi-site studies, which involve the collection of data from a group of subjects over time and/or at different locations. It is important to regularly monitor the performance of the scanners over time and at different locations to detect and control for intrinsic differences (e.g., due to manufacturers) and changes in scanner performance (e.g., due to gradual component aging, software and/or hardware upgrades, etc.). As part of the Ontario Neurodegenerative Disease Research Initiative (ONDRI) and the Canadian Biomarker Integration Network in Depression (CAN-BIND), QA phantom scans were conducted approximately monthly for three to four years at 13 sites across Canada with 3T research MRI scanners. QA parameters were calculated for each scan using the functional Biomarker Imaging Research Network's (fBIRN) QA phantom and pipeline to capture between- and within-scanner variability. We also describe a QA protocol to measure the full-width-at-half-maximum (FWHM) of slice-wise point spread functions (PSF), used in conjunction with the fBIRN QA parameters. Variations in image resolution measured by the FWHM are a primary source of variance over time for many sites, as well as between sites and between manufacturers. We also identify an unexpected range of instabilities affecting individual slices in a number of scanners, which may amount to a substantial contribution of unexplained signal variance to their data. Finally, we identify a preliminary preprocessing approach to reduce this variance and/or alleviate the slice anomalies, and in a small human data set show that this change in preprocessing can have a significant impact on seed-based connectivity measurements for some individual subjects. We expect that other fMRI centres will find this approach to identifying and controlling scanner instabilities useful in similar studies.


Assuntos
Neuroimagem Funcional/normas , Imageamento por Ressonância Magnética/normas , Estudos Multicêntricos como Assunto/normas , Garantia da Qualidade dos Cuidados de Saúde/normas , Adulto , Neuroimagem Funcional/instrumentação , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética/instrumentação , Imagens de Fantasmas , Análise de Componente Principal
10.
Neuroimage ; 236: 118009, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33794361

RESUMO

Longitudinal non-human primate neuroimaging has the potential to greatly enhance our understanding of primate brain structure and function. Here we describe its specific strengths, compared to both cross-sectional non-human primate neuroimaging and longitudinal human neuroimaging, but also its associated challenges. We elaborate on factors guiding the use of different analytical tools, subject-specific versus age-specific templates for analyses, and issues related to statistical power.


Assuntos
Envelhecimento , Desenvolvimento Humano , Neuroimagem , Primatas , Animais , Estudos Transversais , Imagem de Tensor de Difusão/métodos , Imagem de Tensor de Difusão/normas , Neuroimagem Funcional/métodos , Neuroimagem Funcional/normas , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Neuroimagem/métodos , Neuroimagem/normas
11.
Neuroimage ; 236: 118082, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33882349

RESUMO

Recent methodological advances in MRI have enabled substantial growth in neuroimaging studies of non-human primates (NHPs), while open data-sharing through the PRIME-DE initiative has increased the availability of NHP MRI data and the need for robust multi-subject multi-center analyses. Streamlined acquisition and analysis protocols would accelerate and improve these efforts. However, consensus on minimal standards for data acquisition protocols and analysis pipelines for NHP imaging remains to be established, particularly for multi-center studies. Here, we draw parallels between NHP and human neuroimaging and provide minimal guidelines for harmonizing and standardizing data acquisition. We advocate robust translation of widely used open-access toolkits that are well established for analyzing human data. We also encourage the use of validated, automated pre-processing tools for analyzing NHP data sets. These guidelines aim to refine methodological and analytical strategies for small and large-scale NHP neuroimaging data. This will improve reproducibility of results, and accelerate the convergence between NHP and human neuroimaging strategies which will ultimately benefit fundamental and translational brain science.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética/normas , Neuroimagem/normas , Animais , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imagem Ecoplanar/métodos , Imagem Ecoplanar/normas , Neuroimagem Funcional/métodos , Neuroimagem Funcional/normas , Macaca mulatta , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Reprodutibilidade dos Testes
12.
Hum Brain Mapp ; 42(9): 2833-2850, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33729637

RESUMO

Looping Star is a near-silent, multi-echo, 3D functional magnetic resonance imaging (fMRI) technique. It reduces acoustic noise by at least 25dBA, with respect to gradient-recalled echo echo-planar imaging (GRE-EPI)-based fMRI. Looping Star has successfully demonstrated sensitivity to the cerebral blood-oxygen-level-dependent (BOLD) response during block design paradigms but has not been applied to event-related auditory perception tasks. Demonstrating Looping Star's sensitivity to such tasks could (a) provide new insights into auditory processing studies, (b) minimise the need for invasive ear protection, and (c) facilitate the translation of numerous fMRI studies to investigations in sound-averse patients. We aimed to demonstrate, for the first time, that multi-echo Looping Star has sufficient sensitivity to the BOLD response, compared to that of GRE-EPI, during a well-established event-related auditory discrimination paradigm: the "oddball" task. We also present the first quantitative evaluation of Looping Star's test-retest reliability using the intra-class correlation coefficient. Twelve participants were scanned using single-echo GRE-EPI and multi-echo Looping Star fMRI in two sessions. Random-effects analyses were performed, evaluating the overall response to tones and differential tone recognition, and intermodality analyses were computed. We found that multi-echo Looping Star exhibited consistent sensitivity to auditory stimulation relative to GRE-EPI. However, Looping Star demonstrated lower test-retest reliability in comparison with GRE-EPI. This could reflect differences in functional sensitivity between the techniques, though further study is necessary with additional cognitive paradigms as varying cognitive strategies between sessions may arise from elimination of acoustic scanner noise.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Discriminação Psicológica/fisiologia , Neuroimagem Funcional/normas , Imageamento por Ressonância Magnética/normas , Adulto , Córtex Auditivo/diagnóstico por imagem , Imagem Ecoplanar/métodos , Imagem Ecoplanar/normas , Feminino , Neuroimagem Funcional/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Ruído
13.
Hum Brain Mapp ; 42(9): 2746-2765, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33724597

RESUMO

Because of the high dimensionality of neuroimaging data, identifying a statistical test that is both valid and maximally sensitive is an important challenge. Here, we present a combination of two approaches for functional magnetic resonance imaging (fMRI) data analysis that together result in substantial improvements of the sensitivity of cluster-based statistics. The first approach is to create novel cluster definitions that optimize sensitivity to plausible effect patterns. The second is to adopt a new approach to combine test statistics with different sensitivity profiles, which we call the min(p) method. These innovations are made possible by using the randomization inference framework. In this article, we report on a set of simulations and analyses of real task fMRI data that demonstrate (a) that the proposed methods control the false-alarm rate, (b) that the sensitivity profiles of cluster-based test statistics vary depending on the cluster defining thresholds and cluster definitions, and (c) that the min(p) method for combining these test statistics results in a drastic increase of sensitivity (up to fivefold), compared to existing fMRI analysis methods. This increase in sensitivity is not at the expense of the spatial specificity of the inference.


Assuntos
Encéfalo/diagnóstico por imagem , Interpretação Estatística de Dados , Neuroimagem Funcional/normas , Processamento de Imagem Assistida por Computador/normas , Imageamento por Ressonância Magnética/normas , Modelos Estatísticos , Encéfalo/fisiologia , Análise por Conglomerados , Neuroimagem Funcional/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Distribuição Aleatória , Sensibilidade e Especificidade
14.
Parkinsonism Relat Disord ; 85: 44-51, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33730626

RESUMO

INTRODUCTION: Predictive biomarkers of Parkinson's Disease progression are needed to expedite neuroprotective treatment development and facilitate prognoses for patients. This work uses measures derived from resting-state functional magnetic resonance imaging, including regional homogeneity (ReHo) and fractional amplitude of low frequency fluctuations (fALFF), to predict an individual's current and future severity over up to 4 years and to elucidate the most prognostic brain regions. METHODS: ReHo and fALFF are measured for 82 Parkinson's Disease subjects and used to train machine learning predictors of baseline clinical and future severity at 1 year, 2 years, and 4 years follow-up as measured by the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS). Predictive performance is measured with nested cross-validation, validated on an external dataset, and again validated through leave-one-site-out cross-validation. Important predictive features are identified. RESULTS: The models explain up to 30.4% of the variance in current MDS-UPDRS scores, 55.8% of the variance in year 1 scores, and 47.1% of the variance in year 2 scores (p < 0.0001). For distinguishing high and low-severity individuals at each timepoint (MDS-UPDRS score above or below the median, respectively), the models achieve positive predictive values up to 79% and negative predictive values up to 80%. Higher ReHo and fALFF in several regions, including components of the default motor network, predicted lower severity across current and future timepoints. CONCLUSION: These results identify an accurate prognostic neuroimaging biomarker which may be used to better inform enrollment in trials of neuroprotective treatments and enable physicians to counsel their patients.


Assuntos
Cerebelo/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Rede de Modo Padrão/diagnóstico por imagem , Progressão da Doença , Neuroimagem Funcional , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Rede Nervosa/diagnóstico por imagem , Doença de Parkinson/diagnóstico , Idoso , Biomarcadores , Cerebelo/fisiopatologia , Córtex Cerebral/fisiopatologia , Rede de Modo Padrão/fisiopatologia , Feminino , Seguimentos , Neuroimagem Funcional/normas , Humanos , Imageamento por Ressonância Magnética/normas , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiopatologia , Doença de Parkinson/fisiopatologia , Prognóstico , Reprodutibilidade dos Testes , Índice de Gravidade de Doença
15.
Hum Brain Mapp ; 42(8): 2374-2392, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33624333

RESUMO

Canonical correlation analysis (CCA), a multivariate approach to identifying correlations between two sets of variables, is becoming increasingly popular in neuroimaging studies on brain-behavior relationships. However, the CCA stability in neuroimaging applications has not been systematically investigated. Although it is known that the number of subjects should be greater than the number of variables due to the curse of dimensionality, it is unclear at what subject-to-variable ratios (SVR) and at what correlation strengths the CCA stability can be maintained. Here, we systematically assessed the CCA stability, in the context of investigating the relationship between the brain structural/functional imaging measures and the behavioral measures, by measuring the similarity of the first-mode canonical variables across randomly sampled subgroups of subjects from a large set of 936 healthy subjects. Specifically, we tested how the CCA stability changes with SVR under two different brain-behavior correlation strengths. The same tests were repeated using an independent data set (n = 700) for validation. The results confirmed that both SVR and correlation strength affect greatly the CCA stability-the CCA stability cannot be guaranteed if the SVR is not sufficiently high or the brain-behavior relationship is not sufficiently strong. Based on our quantitative characterization of CCA stability, we provided a practical guideline to help correct interpretation of CCA results and proper applications of CCA in neuroimaging studies on brain-behavior relationships.


Assuntos
Encéfalo , Análise de Correlação Canônica , Substância Cinzenta , Imageamento por Ressonância Magnética , Neuroimagem/normas , Adolescente , Adulto , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Feminino , Neuroimagem Funcional/métodos , Neuroimagem Funcional/normas , Substância Cinzenta/anatomia & histologia , Substância Cinzenta/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/normas , Masculino , Neuroimagem/métodos , Reprodutibilidade dos Testes , Adulto Jovem
17.
J Integr Neurosci ; 20(4): 1105-1109, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-34997733

RESUMO

Near-infrared spectroscopy (NIRS) has been largely used in neuroscience as an alternative non-invasive neuroimaging technique, primarily to measure the oxygenation levels of cerebral haemoglobin. Its portability and relative robustness against motion artefacts made it an ideal method to measure cerebral blood changes during physical activity. Usually referred to as 'functional' NIRS (fNIRS) when used to monitor brain changes during motor or cognitive tasks, this technique often involves the montage the probes on the forehead of the participants to gauge the neurophysiological underpinning of executive functioning. Other applications of NIRS include other aspects of cerebral hemodynamics such as cerebral pulsatility. However, there is an important aspect that fNIRS studies do not seem to have taken into account so far, which relates to the capacity of near-infrared light to modulate cognitive and psychological processes according to what is known as photobiomodulation (PBM). Hence, drawing on a selection of NIRS and PBM experiments, we argue in favour of an integrative view for NIR-based neuroimaging studies, which should embrace a control for the possible effects of light stimulation, especially when fNIRS is considered to test the effect of an intervention.


Assuntos
Neurociência Cognitiva , Neuroimagem Funcional , Terapia com Luz de Baixa Intensidade , Projetos de Pesquisa , Espectroscopia de Luz Próxima ao Infravermelho , Neurociência Cognitiva/normas , Neuroimagem Funcional/normas , Humanos , Projetos de Pesquisa/normas , Espectroscopia de Luz Próxima ao Infravermelho/normas
18.
Hum Brain Mapp ; 42(1): 128-138, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33089953

RESUMO

The purpose of this study was to develop and evaluate a new, open-source MR-compatible device capable of assessing unipedal and bipedal lower extremity movement with minimal head motion and high test-retest reliability. To evaluate the prototype, 20 healthy adults participated in two magnetic resonance imaging (MRI) visits, separated by 2-6 months, in which they performed a visually guided dorsiflexion/plantar flexion task with their left foot, right foot, and alternating feet. Dependent measures included: evoked blood oxygen level-dependent (BOLD) signal in the motor network, head movement associated with dorsiflexion/plantar flexion, the test-retest reliability of these measurements. Left and right unipedal movement led to a significant increase in BOLD signal compared to rest in the medial portion of the right and left primary motor cortex (respectively), and the ipsilateral cerebellum (FWE corrected, p < .001). Average head motion was 0.10 ± 0.02 mm. The test-retest reliability was high for the functional MRI data (intraclass correlation coefficients [ICCs]: >0.75) and the angular displacement of the ankle joint (ICC: 0.842). This bipedal device can robustly isolate activity in the motor network during alternating plantarflexion and dorsiflexion with minimal head movement, while providing high test-retest reliability. Ultimately, these data and open-source building instructions will provide a new, economical tool for investigators interested in evaluating brain function resulting from lower extremity movement.


Assuntos
Cerebelo/fisiologia , Técnicas de Diagnóstico Neurológico/instrumentação , Desenho de Equipamento/normas , Neuroimagem Funcional , Movimentos da Cabeça/fisiologia , Extremidade Inferior/fisiologia , Atividade Motora/fisiologia , Córtex Motor/fisiologia , Rede Nervosa/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Cerebelo/diagnóstico por imagem , Feminino , Neuroimagem Funcional/normas , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Motor/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Reprodutibilidade dos Testes , Adulto Jovem
19.
Hum Brain Mapp ; 42(1): 204-219, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32996635

RESUMO

Limited statistical power due to small sample sizes is a problem in fMRI research. Most of the work to date has examined the impact of sample size on task-related activation, with less attention paid to the influence of sample size on brain-behavior correlations, especially in actual experimental fMRI data. We addressed this issue using two large data sets (a working memory task, N = 171, and a relational processing task, N = 865) and both univariate and multivariate approaches to voxel-wise correlations. We created subsamples of different sizes and calculated correlations between task-related activity at each voxel and task performance. Across both data sets the magnitude of the brain-behavior correlations decreased and similarity across spatial maps increased with larger sample sizes. The multivariate technique identified more extensive correlated areas and more similarity across spatial maps, suggesting that a multivariate approach would provide a consistent advantage over univariate approaches in the stability of brain-behavior correlations. In addition, the multivariate analyses showed that a sample size of roughly 80 or more participants would be needed for stable estimates of correlation magnitude in these data sets. Importantly, a number of additional factors would likely influence the choice of sample size for assessing such correlations in any given experiment, including the cognitive task of interest and the amount of data collected per participant. Our results provide novel experimental evidence in two independent data sets that the sample size commonly used in fMRI studies of 20-30 participants is very unlikely to be sufficient for obtaining reproducible brain-behavior correlations, regardless of analytic approach.


Assuntos
Córtex Cerebral/fisiologia , Neuroimagem Funcional/métodos , Neuroimagem Funcional/normas , Testes Neuropsicológicos , Desempenho Psicomotor/fisiologia , Adulto , Idoso , Análise de Variância , Córtex Cerebral/diagnóstico por imagem , Interpretação Estatística de Dados , Conjuntos de Dados como Assunto , Feminino , Humanos , Julgamento/fisiologia , Imageamento por Ressonância Magnética , Masculino , Memória de Curto Prazo/fisiologia , Pessoa de Meia-Idade , Reconhecimento Visual de Modelos/fisiologia , Tamanho da Amostra , Adulto Jovem
20.
Hum Brain Mapp ; 42(6): 1657-1669, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33332685

RESUMO

The quality of optode arrangement is crucial for group imaging studies when using functional near-infrared spectroscopy (fNIRS). Previous studies have demonstrated the promising effectiveness of using transcranial brain atlases (TBAs), in a manual and intuition-based way, to guide optode arrangement when individual structural MRI data are unavailable. However, the theoretical basis of using TBA to optimize optode arrangement remains unclear, which leads to manual and subjective application. In this study, we first describe the theoretical basis of TBA-based optimization of optode arrangement using a mathematical framework. Second, based on the theoretical basis, an algorithm is proposed for automatically arranging optodes on a virtual scalp. The resultant montage is placed onto the head of each participant guided by a low-cost and portable navigation system. We compared our method with the widely used 10/20-system-assisted optode arrangement procedure, using finger-tapping and working memory tasks as examples of both low- and high-level cognitive systems. Performance, including optode montage designs, locations on each participant's scalp, brain activation, as well as ground truth indices derived from individual MRI data were evaluated. The results give convergent support for our method's ability to provide more accurate, consistent and efficient optode arrangements for fNIRS group imaging than the 10/20 method.


Assuntos
Algoritmos , Atlas como Assunto , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Neuroimagem Funcional/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Neuroimagem Funcional/normas , Humanos , Modelos Teóricos , Espectroscopia de Luz Próxima ao Infravermelho/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...