Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Br J Cancer ; 130(10): 1659-1669, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38480935

RESUMO

BACKGROUND: Vestibular schwannomas (VSs) remain a challenge due to their anatomical location and propensity to growth. Macrophages are present in VS but their roles in VS pathogenesis remains unknown. OBJECTIVES: The objective was to assess phenotypic and functional profile of macrophages in VS with single-cell RNA sequencing (scRNAseq). METHODS: scRNAseq was carried out in three VS samples to examine characteristics of macrophages in the tumour. RT-qPCR was carried out on 10 VS samples for CD14, CD68 and CD163 and a panel of macrophage-associated molecules. RESULTS: scRNAseq revealed macrophages to be a major constituent of VS microenvironment with three distinct subclusters based on gene expression. The subclusters were also defined by expression of CD163, CD68 and IL-1ß. AREG and PLAUR were expressed in the CD68+CD163+IL-1ß+ subcluster, PLCG2 and NCKAP5 were expressed in CD68+CD163+IL-1ß- subcluster and AUTS2 and SPP1 were expressed in the CD68+CD163-IL-1ß+ subcluster. RT-qPCR showed expression of several macrophage markers in VS of which CD14, ALOX15, Interleukin-1ß, INHBA and Colony Stimulating Factor-1R were found to have a high correlation with tumour volume. CONCLUSIONS: Macrophages form an important component of VS stroma. scRNAseq reveals three distinct subsets of macrophages in the VS tissue which may have differing roles in the pathogenesis of VS.


Assuntos
Macrófagos , Neuroma Acústico , Análise de Sequência de RNA , Análise de Célula Única , Humanos , Neuroma Acústico/genética , Neuroma Acústico/patologia , Neuroma Acústico/metabolismo , Análise de Célula Única/métodos , Macrófagos/metabolismo , Macrófagos/patologia , Microambiente Tumoral/genética , Feminino , Masculino , Pessoa de Meia-Idade , Antígenos CD/genética , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos de Diferenciação Mielomonocítica/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo
2.
Nat Commun ; 15(1): 478, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216553

RESUMO

Vestibular schwannomas (VS) are benign tumors that lead to significant neurologic and otologic morbidity. How VS heterogeneity and the tumor microenvironment (TME) contribute to VS pathogenesis remains poorly understood. In this study, we perform scRNA-seq on 15 VS, with paired scATAC-seq (n = 6) and exome sequencing (n = 12). We identify diverse Schwann cell (SC), stromal, and immune populations in the VS TME and find that repair-like and MHC-II antigen-presenting SCs are associated with myeloid cell infiltrate, implicating a nerve injury-like process. Deconvolution analysis of RNA-expression data from 175 tumors reveals Injury-like tumors are associated with larger tumor size, and scATAC-seq identifies transcription factors associated with nerve repair SCs from Injury-like tumors. Ligand-receptor analysis and in vitro experiments suggest that Injury-like VS-SCs recruit myeloid cells via CSF1 signaling. Our study indicates that Injury-like SCs may cause tumor growth via myeloid cell recruitment and identifies molecular pathways that may be therapeutically targeted.


Assuntos
Neuroma Acústico , Humanos , Neuroma Acústico/genética , Neuroma Acústico/metabolismo , Neuroma Acústico/patologia , Ecossistema , Multiômica , Células de Schwann/metabolismo , Transdução de Sinais/fisiologia , Análise de Célula Única , Microambiente Tumoral
3.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 53(4): 549-553, 2022 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-35871721

RESUMO

Vestibular schwannoma (VS) is one of the most common types of benign tumors of the central nervous system. At present, the prevailing treatment methods of VS include surgery, stereotactic radiotherapy, and follow-up observation, etc. However, there is still no drug therapy available for treating VS. Although the surgical technique is relatively mature, the complications cannot be completely avoided. Furthermore, both the growth rate of different cases and patients' sensitivity to radiotherapy vary greatly. With the constant progress made in molecular biology research, most of the studies on the growth mechanism of VS focus on the upstream and downstream of neurofibromin 2 ( NF2) gene and merlin protein, and a number of corresponding targets, including receptor protein tyrosine kinase (RTK), vascular endothelial growth factor receptor (VEGFR), mammalian target of rapamycin complex 1 (mTORC1) and platelet derived growth factor receptor (PDGFR). It has been reported in some studies that quite a few drugs could inhibit the proliferation of VS cells. Most of the studies are still in the stage of in vitro cell experiment and/or animal experiment. A small number of studies have entered phase Ⅰ and phase Ⅱ clinical trials, but have not led to any clinical treatment yet. This paper provides a comprehensive understanding of the current status and the prospects of drug therapies of VS, which is conducive to the development of subsequent research.


Assuntos
Neuroma Acústico , Animais , Mamíferos/metabolismo , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Neuroma Acústico/tratamento farmacológico , Neuroma Acústico/genética , Neuroma Acústico/metabolismo , Fator A de Crescimento do Endotélio Vascular
4.
Am J Pathol ; 192(9): 1230-1249, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35750260

RESUMO

Vestibular schwannomas (VSs), which develop from Schwann cells (SCs) of the vestibular nerve, are the most prevalent benign tumors of the cerebellopontine angle and internal auditory canal. Despite advances in treatment, the cellular components and mechanisms of VS tumor progression remain unclear. Herein, single-cell RNA-sequencing was performed on clinically surgically isolated VS samples and their cellular composition, including the heterogeneous SC subtypes, was determined. Advanced bioinformatics analysis revealed the associated biological functions, pseudotime trajectory, and transcriptional network of the SC subgroups. A tight intercellular communication between SCs and tumor-associated fibroblasts via integrin and growth factor signaling was observed and the gene expression differences in SCs and fibroblasts were shown to determine the heterogeneity of cellular communication in different individuals. These findings suggest a microenvironmental mechanism underlying the development of VS.


Assuntos
Neuroma Acústico , Comunicação Celular , Fibroblastos/metabolismo , Humanos , Neuroma Acústico/genética , Neuroma Acústico/metabolismo , Neuroma Acústico/patologia , RNA-Seq , Células de Schwann/metabolismo , Microambiente Tumoral/genética
5.
Acta Pharmacol Sin ; 43(11): 2993-3001, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35478244

RESUMO

Vestibular schwannoma (VS), one of characteristic tumors of neurofibromatosis type 2 (NF2), is an intracranial tumor that arises from Schwann cells of the vestibular nerve. VS results in hearing loss, tinnitus, dizziness, and even death, but there are currently no FDA-approved drugs for treatment. In this study, we established a high-throughput screening to discover effective compounds that could inhibit the viability of VS cells. Among 1019 natural products from the Korea Chemical Bank screened, we found that celastrol, a pentacyclic triterpene derived from a Tripterygium Wilfordi plant, exerted potent inhibitory effect on the viability of VS cells with an IC50 value of 0.5 µM. Celastrol (0.5, 1 µM) dose-dependently inhibited the proliferation of primary VS cells derived from VS patients. Celastrol also inhibited the growth, and induced apoptosis of two other VS cell lines (HEI-193 and SC4). Aberrant activation of Wnt/ß-catenin signaling has been found in VS isolated from clinically defined NF2 patients. In HEI-193 and SC4 cells, we demonstrated that celastrol (0.1, 0.5 µM) dose-dependently inhibited TOPFlash reporter activity and protein expression of ß-catenin, but not mRNA level of ß-catenin. Furthermore, celastrol accelerated the degradation of ß-catenin by promoting the formation of the ß-catenin destruction complex. In nude mice bearing VS cell line SC4 allografts, administration of celastrol (1.25 mg · kg-1 · d-1, i.p. once every 3 days for 2 weeks) significantly suppressed the tumor growth without showing toxicity. Collectively, this study demonstrates that celastrol can inhibit Wnt/ß-catenin signaling by promoting the degradation of ß-catenin, consequently inhibiting the growth of VS.


Assuntos
Neuroma Acústico , beta Catenina , Camundongos , Animais , beta Catenina/metabolismo , Neuroma Acústico/tratamento farmacológico , Neuroma Acústico/metabolismo , Neuroma Acústico/patologia , Camundongos Nus , Proliferação de Células , Linhagem Celular Tumoral , Triterpenos Pentacíclicos/farmacologia , Apoptose , Via de Sinalização Wnt
6.
Bioengineered ; 13(2): 4301-4308, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35137654

RESUMO

BRCAT54 (also known as MRPS30 divergent transcript) is an anti-tumor long non-coding RNA (lncRNA) in lung cancer, while its role in vestibular schwannoma (VS) is unclear. We predicted that BRCAT54 could interact with microRNA (miR)-21, which suppresses VS cell proliferation. This study was then carried out to study the interaction between BRCAT54 and miR-21 in VS. A total of 56 VS samples and 42 normal vestibular nerve (VN) samples were included in this study. The expression of BRCAT54 and miR-21 in these samples were analyzed with RT-qPCR. Subcellular location of BRCAT54 in primary VS cells was analyzed by subcellular fractionation assay. The direct interaction between BRCAT54 and miR-21 was analyzed through RNA pull-down assay. Overexpression assay was performed to explore the interaction between BRCAT54 and miR-21. The role of BRCAT54 and miR-21 in primary VS cell proliferation was analyzed using BrdU assay. We found that BRCAT54 was downregulated in VS samples than that in VN samples, while miR-21 was upregulated in VS samples. BRCAT54 and miR-21 were not closely correlated. BRCAT54 was detected in both nuclear and cytoplasm samples, and BRCAT54 directly interacted with miR-21. However, BRCAT54 and miR-21 did not affect the expression of each other. BRCAT54 suppressed primary VS cell proliferation and inhibited the role of miR-21 in promoting cell proliferation. Therefore, BRCAT54 may sponge miR-21 to suppress cell proliferation in VS.


Assuntos
Proliferação de Células/genética , MicroRNAs/genética , Neuroma Acústico , RNA Longo não Codificante/genética , Adulto , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Pessoa de Meia-Idade , Neuroma Acústico/genética , Neuroma Acústico/metabolismo , Neuroma Acústico/patologia
7.
World Neurosurg ; 157: e66-e76, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34587518

RESUMO

BACKGROUND: Vestibular schwannoma is the third most common benign intracranial tumor that can occur sporadically or be associated with neurofibromatosis type 2 (neurofibromatosis type 2 vestibular schwannoma [NF2-VS]). The aim of this study is to provide a comprehensive bioinformatic analysis of methylated-differentially expressed genes (MDEGs) in NF2-VS. METHODS: Transcriptional sequencing datasets (GSE141801 and GSE108524) and gene methylation microarrays (GSE56598) from the Gene Expression Omnibus database were used to identify and analyze MDEGs in NF2-VS. A protein-protein interaction (PPI) network was built, and the hub genes and modules were identified. Finally, potential pharmacotherapy targeting MDEGs were extracted for NF2-VS. RESULTS: A total of 57 hypermethylation-low expression genes and 88 hypomethylation-high expression genes were identified. Pathways associated with aberrantly MDEGs included P13K-AKT, MAPK, and Ras, which were also involved in NF2-VS. Six hub genes (EGFR, CCND1, CD53, CSF1R, PLAU, and FGFR1) were identified from the PPI network. Modification of the aforementioned genes altered cell-to-cell communication, response to stimulus, cellular regulation, and membrane and protein bindings. Thirty drugs targeting these pathways were selected based on the hub genes. CONCLUSIONS: Analysis of MDEGs may enrich the understanding of the molecular mechanisms of NF2-VS pathogenesis and lay the groundwork for potential biomarkers and therapeutic targets for NF2-VS.


Assuntos
Biologia Computacional/métodos , Metilação de DNA/fisiologia , Neurofibromatose 2/genética , Neuroma Acústico/genética , Mapas de Interação de Proteínas/genética , Transcriptoma/genética , Bases de Dados Genéticas , Humanos , Neurofibromatose 2/metabolismo , Neuroma Acústico/metabolismo
8.
Cells ; 10(7)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34360009

RESUMO

Hearing loss (HL) is the most common sensory disorder in the world population. One common cause of HL is the presence of vestibular schwannoma (VS), a benign tumor of the VIII cranial nerve, arising from Schwann cell (SC) transformation. In the last decade, the increasing incidence of VS has been correlated to electromagnetic field (EMF) exposure, which might be considered a pathogenic cause of VS development and HL. Here, we explore the molecular mechanisms underlying the biologic changes of human SCs and/or their oncogenic transformation following EMF exposure. Through NGS technology and RNA-Seq transcriptomic analysis, we investigated the genomic profile and the differential display of HL-related genes after chronic EMF. We found that chronic EMF exposure modified the cell proliferation, in parallel with intracellular signaling and metabolic pathways changes, mostly related to translation and mitochondrial activities. Importantly, the expression of HL-related genes such as NEFL, TPRN, OTOGL, GJB2, and REST appeared to be deregulated in chronic EMF exposure. In conclusion, we suggest that, at a preclinical stage, EMF exposure might promote the transformation of VS cells and contribute to HL.


Assuntos
Movimento Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Campos Eletromagnéticos/efeitos adversos , Células de Schwann/efeitos da radiação , Transcriptoma , Conexina 26/genética , Conexina 26/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Perda Auditiva/etiologia , Perda Auditiva/genética , Perda Auditiva/metabolismo , Perda Auditiva/patologia , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Neurofilamentos/genética , Proteínas de Neurofilamentos/metabolismo , Neuroma Acústico/etiologia , Neuroma Acústico/genética , Neuroma Acústico/metabolismo , Neuroma Acústico/patologia , Cultura Primária de Células , Proteínas/genética , Proteínas/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Células de Schwann/metabolismo , Células de Schwann/patologia , Transdução de Sinais
9.
Sci Rep ; 11(1): 11850, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34088924

RESUMO

The endolymphatic sac (ES) is the third part of the inner ear, along with the cochlea and vestibular apparatus. A refined sampling technique was developed to analyse the proteomics of ES endolymph. With a tailored solid phase micro-extraction probe, five ES endolymph samples were collected, and six sac tissue biopsies were obtained in patients undergoing trans-labyrinthine surgery for sporadic vestibular schwannoma. The samples were analysed using nano-liquid chromatography-tandem mass spectrometry (nLC-MS/MS) to identify the total number of proteins. Pathway identification regarding molecular function and protein class was presented. A total of 1656 non-redundant proteins were identified, with 1211 proteins detected in the ES endolymph. A total of 110 proteins were unique to the ES endolymph. The results from the study both validate a strategy for in vivo and in situ human sampling during surgery and may also form a platform for further investigations to better understand the function of this intriguing part of the inner ear.


Assuntos
Endolinfa/metabolismo , Saco Endolinfático/metabolismo , Neuroma Acústico/metabolismo , Proteoma/metabolismo , Adulto , Idoso , Animais , Biópsia , Cromatografia Líquida , Cóclea , Orelha Interna/fisiologia , Feminino , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Espectrometria de Massas em Tandem , Vestíbulo do Labirinto , Microtomografia por Raio-X , Adulto Jovem
10.
Laryngoscope ; 131(1): E259-E270, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32438526

RESUMO

OBJECTIVES: The objective was to explore the effect of the proneuronal transcription factor neurogenic differentiation 1 (Neurod1, ND1) on Schwann cells (SC) and schwannoma cell proliferation. METHODS: Using a variety of transgenic mouse lines, we investigated how expression of Neurod1 effects medulloblastoma (MB) growth, schwannoma tumor progression, vestibular function, and SC cell proliferation. Primary human vestibular schwannoma (VS) cell cultures were transduced with adenoviral vectors expressing Neurod1. Cell proliferation was assessed by 5-ethynyl-2'-deoxyuridine (EdU) uptake. STUDY DESIGN: Basic science investigation. RESULTS: Expression of Neurod1 reduced the growth of slow-growing but not fast-growing MB models. Gene transfer of Neurod1 in human schwannoma cultures significantly reduced cell proliferation in dose-dependent way. Deletion of the neurofibromatosis type 2 (Nf2) tumor-suppressor gene via Cre expression in SCs led to increased intraganglionic SC proliferation and mildly reduced vestibular sensory-evoked potentials (VsEP) responses compared to age-matched wild-type littermates. The effect of Neurod1-induced expression on intraganglionic SC proliferation in animals lacking Nf2 was mild and highly variable. Sciatic nerve axotomy significantly increased SC proliferation in wild-type and Nf2-null animals, and expression of Neurod1 reduced the proliferative capacity of both wild-type and Nf2-null SCs following nerve injury. CONCLUSION: Expression of Neurod1 reduces slow-growing MB progression and reduces human SC proliferation in primary VS cultures. In a genetic mouse model of schwannomas, we find some effects of Neurod1 expression; however, the high variability indicates that more tightly regulated Neurod1 expression levels that mimic our in vitro data are needed to fully validate Neurod1 effects on schwannoma progression. LEVEL OF EVIDENCE: NA Laryngoscope, 131:E259-E270, 2021.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Neuroma Acústico/metabolismo , Células de Schwann/metabolismo , Animais , Proliferação de Células , Humanos , Meduloblastoma/patologia , Camundongos , Camundongos Transgênicos , Neuroma Acústico/patologia , Células de Schwann/citologia , Células Tumorais Cultivadas
11.
World Neurosurg ; 147: e25-e31, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33217595

RESUMO

BACKGROUND: Sporadic vestibular schwannoma (VS) is a benign primary tumor that arises from the vestibular nerve. Growing VS can negatively compress the brain stem, which can lead to death. MicroRNAs (miRNAs) can negatively regulate target genes at the post-transcriptional level and are critical in tumorigenesis. Studies have demonstrated the tumor suppressive function of microRNA-205-5p (miR-205) across many cancers, but no studies have evaluated the role of miR-205 in sporadic VS. We conducted this study to examine the role of miR-205 in sporadic VS cell proliferation. METHODS: We evaluated miR-205 expression in sporadic VS tissues and normal great auricular nerve by real-time quantitative polymerase chain reaction. Then, we transfected miR-205 mimics and control oligonucleotides into sporadic VS primary cells to examine the functional significance of miR-205 expression at a cellular level by CCK8 and colony formation and used dual-luciferase reporter assays to find the target gene of miR-205. RESULTS: We determined that miR-205 levels were downregulated in sporadic VS tissues in comparison to normal controls. In functional assays, miR-205 suppressed proliferation and colony formation ability of sporadic VS cells. CDK14 (cyclin-dependent kinase 14) was identified as a target gene of miR-205 by bioinformatics, and validated using dual-luciferase reporter assays. Moreover, miR-205 overexpression inhibited levels of phosphorylated PI3K and Akt. CONCLUSIONS: These findings suggested that miR-205 suppressed sporadic VS proliferation by targeting CDK14 and may be considered as a potential drug therapy for sporadic VS treatment in the future.


Assuntos
Proliferação de Células/genética , Quinases Ciclina-Dependentes/genética , MicroRNAs/genética , Neuroma Acústico/genética , Estudos de Casos e Controles , Quinases Ciclina-Dependentes/metabolismo , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Humanos , Neuroma Acústico/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-akt/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Ensaio Tumoral de Célula-Tronco
12.
World Neurosurg ; 144: e72-e79, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32758656

RESUMO

OBJECTIVE: To evaluate the clinical manifestations of cystic vestibular schwannomas (VSs), investigate the immunohistochemical profiles of matrix metalloproteinases (MMPs) and vascular endothelial growth factor (VEGF) expression in Antoni A and B areas, and speculate the pathogenesis of cystic formation and intratumoral hemorrhage. METHODS: Clinical features and outcomes of 24 cases of cystic VSs and 38 cases of solid VSs were retrospectively compared. Immunohistochemical studies were conducted to evaluate the characteristics of MMPs and VEGF in cystic and solid VSs. RESULTS: The tumor size was 38.92 ± 1.86 mm and 31.95 ± 1.74 mm in the cystic and solid VSs group, respectively (P = 0.011). Cystic VSs were rich in the Antoni B area. MMP-9 expression was low in the Antoni A and B areas. MMP-2 was moderately expressed. No significant difference in MMP-2 expression existed between the Antoni A and B areas (P > 0.05). VEGF and MMP-14 expression were moderate in the Antoni A area and intense in the Antoni B area, and the expression of both was significantly greater in the Antoni B area than in the Antoni A area (P < 0.001). CONCLUSIONS: MMP-14 and VEGF expression were significantly greater in the Antoni B area than in the Antoni A area. Upregulated MMP-14 may degrade loose collagen in the Antoni B area and contribute to cystic formation. MMP-14 can enhance VEGF activity, which may induce extravasation of a plasma ultrafiltrate, cystic expansion, and intratumoral hemorrhage. Therefore, MMP-14 inhibition may be a therapeutic strategy for treating cystic VSs.


Assuntos
Metaloproteinases da Matriz/biossíntese , Neuroma Acústico/metabolismo , Fator A de Crescimento do Endotélio Vascular/biossíntese , Adolescente , Adulto , Idoso , Feminino , Humanos , Imuno-Histoquímica , Hemorragias Intracranianas/diagnóstico por imagem , Hemorragias Intracranianas/etiologia , Hemorragias Intracranianas/patologia , Imageamento por Ressonância Magnética , Masculino , Metaloproteinase 14 da Matriz/biossíntese , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 2 da Matriz/biossíntese , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/biossíntese , Metaloproteinase 9 da Matriz/genética , Pessoa de Meia-Idade , Neuroma Acústico/complicações , Neuroma Acústico/genética , Procedimentos Neurocirúrgicos , Estudos Retrospectivos , Fator A de Crescimento do Endotélio Vascular/genética , Adulto Jovem
13.
Proteomics Clin Appl ; 14(4): e1900112, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32157794

RESUMO

PURPOSE: Cystic vestibular schwannoma (CVS) and solid vestibular schwannoma (SVS) are subgroups of vestibular schwannoma (VS). The tumorigenesis of CVS and SVS have not been fully elucidated, and this study is designed to identify differentially expressed proteins involved in the tumorigenesis of CVS and SVS. EXPERIMENTAL DESIGN: Tandem mass tag-based proteomics is used to determine the protein expression profiles from CVS and SVS tissues. RESULTS: A total of 30 differentially expressed proteins are identified between CVS and SVS, with 6 being upregulated and 24 being downregulated. Bioinformatics analyses are performed according to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. These results indicate that two selected proteins (COL1A1 and COL1A2) are potential biomarkers for distinguishing CVS and SVS. CONCLUSIONS AND CLINICAL RELEVANCE: Differentially expressed proteins linked to CVS and SVS are identified, and these proteins might provide potential biomarkers for human VS diagnosis. Furthermore, the present study supports the notion that decreased collagen might be the reason for bleeding associated with CVS.


Assuntos
Colágeno Tipo I/genética , Regulação Neoplásica da Expressão Gênica , Neuroma Acústico/metabolismo , Adulto , Biomarcadores Tumorais/análise , Colágeno Tipo I/análise , Cadeia alfa 1 do Colágeno Tipo I , Biologia Computacional , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neuroma Acústico/diagnóstico , Neuroma Acústico/genética , Proteômica , Adulto Jovem
14.
Acta Neurochir (Wien) ; 162(5): 1205-1213, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32152754

RESUMO

BACKGROUND: Facial nerve palsy is a severe morbid condition that occurs after vestibular schwannoma (VS) surgery. The objective of this study was to evaluate facial nerve outcomes based on surgical techniques, tumour size, and immunohistochemical factors. METHODS: One hundred eighteen patients with VS were retrospectively analysed. Gross total resection (GTR) was achieved in 83 patients, and subtotal resection (STR) was achieved in 35 patients. Follow-up was 60 months (median). Facial nerve outcomes were assessed for 24 months after surgery. Analysis of the MIB-1 index was performed in 114 patients (97%) to evaluate recurrence and facial nerve outcomes. RESULTS: Immediately after surgery, 16 of 35 patients (45.7%) with STR and 21 of 83 patients (25.3%) with GTR had a good (House-Brackmann (HB) score ≤ 2) facial nerve outcome (p = 0.029). Semi-sitting positioning (p = 0.002) and tumour size class of 3 (> 4 cm) were also associated with worse HB outcomes after 2 years (p = 0.004) in univariate analyses. The MIB-1 index was significantly correlated with diffuse infiltration of tumour-associated CD45+ lymphocytes (r = 0.63, p = 0.015) and CD68+ macrophages (r = 0.43, p = 0.021). ROC analysis found an AUC of 0.73 (95% CI = 0.60-0.86, p = 0.003) for the MIB-1 index in predicting poor facial nerve outcomes. Binary logistic regression analysis revealed an MIB-1 index ≥ 5% (16/28 (57.1%) vs. 5/40 (12.5%); p < 0.001, OR = 14.0, 95% CI = 3.2-61.1) and a tumour size class of 3 (6/8 (75.0%) vs. 2/8 (25.0%); p = 0.01, OR = 14.56, 95% CI = 1.9-113.4) were predictors of poor HB scores (≥ 3) after 1 year. CONCLUSIONS: An MIB-1 index ≥ 5% seems to predict worse long-term facial nerve outcomes in VS surgery.


Assuntos
Paralisia Facial/epidemiologia , Antígeno Ki-67/metabolismo , Neuroma Acústico/cirurgia , Procedimentos Neurocirúrgicos/métodos , Complicações Pós-Operatórias/epidemiologia , Adulto , Idoso , Nervo Facial/cirurgia , Paralisia Facial/etiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neuroma Acústico/metabolismo , Procedimentos Neurocirúrgicos/efeitos adversos
15.
Sci Rep ; 10(1): 4211, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144278

RESUMO

Neurofibromatosis type 2 (NF2) is an inherited disorder characterized by bilateral vestibular schwannomas (VS) that arise from neoplastic Schwann cells (SCs). NF2-associated VSs are often accompanied by meningioma (MN), and the majority of NF2 patients show loss of the NF2 tumor suppressor. mTORC1 and mTORC2-specific serum/glucocorticoid-regulated kinase 1 (SGK1) are constitutively activated in MN with loss of NF2. In a recent high-throughput kinome screen in NF2-null human arachnoidal and meningioma cells, we showed activation of EPH RTKs, c-KIT, and SFK members independent of mTORC1/2 activation. Subsequently, we demonstrated in vitro and in vivo efficacy of combination therapy with the dual mTORC1/2 inhibitor AZD2014 and the multi-kinase inhibitor dasatinib. For these reasons, we investigated activated mTORC1/2 and EPH receptor-mediated signaling in sporadic and NF2-associated VS. Using primary human VS cells and a mouse allograft model of schwannoma, we evaluated the dual mTORC1/2 inhibitor AZD2014 and the tyrosine kinase inhibitor dasatinib as monotherapies and in combination. Escalating dose-response experiments on primary VS cells grown from 15 human tumors show that combination therapy with AZD2014 and dasatinib is more effective at reducing metabolic activity than either drug alone and exhibits a therapeutic effect at a physiologically reasonable concentration (~0.1 µM). In vivo, while AZD2014 and dasatinib each inhibit tumor growth alone, the effect of combination therapy exceeds that of either drug. Co-targeting the mTOR and EPH receptor pathways with these or similar compounds may constitute a novel therapeutic strategy for VS, a condition for which there is no FDA-approved pharmacotherapy.


Assuntos
Benzamidas/farmacologia , Dasatinibe/farmacologia , Modelos Animais de Doenças , Morfolinas/farmacologia , Neurofibromina 2/fisiologia , Neuroma Acústico/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Quimioterapia Combinada , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Neuroma Acústico/metabolismo , Neuroma Acústico/patologia , Receptor EphA1/metabolismo
16.
Pediatr Blood Cancer ; 67(5): e28228, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32124552

RESUMO

Seventeen children at six institutions with neurofibromatosis type 2 (NF2)-related vestibular schwannomas received bevacizumab. Eight of the 13 patients with initial hearing loss (61%) showed objective hearing improvement within six months of treatment. No patients showed hearing deterioration during therapy; however, only two patients showed objective radiological response. Seven of eight patients had tumor progression or worsening hearing loss upon cessation of treatment. Bevacizumab was well tolerated with no patients discontinuing therapy. Bevacizumab appears to postpone hearing loss in childhood NF2-associated vestibular schwannomas, but responses are not durable, suggesting that either longer maintenance therapy or new strategies are required.


Assuntos
Bevacizumab/administração & dosagem , Neurofibromina 2/metabolismo , Neuroma Acústico/tratamento farmacológico , Neuroma Acústico/metabolismo , Adolescente , Criança , Feminino , Humanos , Masculino , Neuroma Acústico/patologia , Neuroma Acústico/fisiopatologia
17.
Acta Neurochir (Wien) ; 162(5): 1187-1195, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32016588

RESUMO

OBJECTIVE: Our objective was to investigate if the tumor microRNA (miRNA) expression profile was related to tumor growth rate. Growth-related miRNAs might be potential targets for future therapeutic intervention. MATERIAL AND METHODS: Tumor tissue was sampled during surgery of patients with a sporadic vestibular schwannoma. Tumor growth rate was determined by tumor measurement on the two latest pre-operative MRI scans. Tumor miRNA expression was analyzed using the Affymetrix Gene Chip® protocol, and CEL files were generated using GeneChip® Command Console® Software and normalized using Partek Genomics Suite 6.5. The CEL files were analyzed using the statistical software program R. Principal component analysis, affected gene ontology analysis, and analysis of miRNA expression fold changes were used for analysis of potential relations between miRNA expression profile and tumor growth rate. RESULTS AND CONCLUSION: Tumor miRNA expression is related to the growth rate of sporadic vestibular schwannomas. Rapid tumor growth is associated with deregulation of several miRNAs, including upregulation of miR-29abc, miR-19, miR-340-5p, miR-21, and miR-221 and downregulation of miR-744 and let-7b. Gene ontologies affected by the deregulated miRNAs included neuron development and differentiation, gene silencing, and negative regulation of various biological processes, including cellular and intracellular signaling and metabolism.


Assuntos
Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neuroma Acústico/metabolismo , Adulto , Biomarcadores Tumorais/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Neuroma Acústico/genética , Neuroma Acústico/patologia
18.
Otol Neurotol ; 41(1): e94-e102, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31789805

RESUMO

HYPOTHESIS: We hypothesized that CPI-17 expression and NF2 mutations are correlated with merlin phosphorylation in the etiology of sporadic vestibular schwannoma (VS). BACKGROUND: NF2 gene mutations have been identified in the majority of sporadic and NF2-associated schwannomas and NF2 gene mutations have been shown to result in merlin protein phosphorylation. CPI-17 can drive Ras activity and promote tumorigenic transformation by inhibiting the tumor suppressor merlin. The aim of this study was to determine the correlation between CPI-17 overexpression and the NF2 mutation spectrum in sporadic VS. METHODS: In this study, we measured CPI-17 expression and identified NF2 gene alterations in a series of sporadic VS samples. Freshly frozen tumor and matched peripheral blood leukocytes from 44 individuals with sporadic VS were analyzed using next-generation sequencing and Sanger sequencing. Western blotting was used to determine the level of merlin phosphorylation, and immunohistochemistry and Western blotting were used to measure CPI-17 expression in the sporadic VS samples. CCK-8 and wound-healing assays were used to determine the influence of CPI-17 overexpression on cell proliferation. RESULTS: NF2 mutations were identified in 79.5% of sporadic vestibular schwannomas, with all mutations being exclusively somatic. IHC and WB showed the expression of CPI-17 is upregulated in the sporadic VS. NF2 mutation and CPI-17 are positively correlated with merlin phosphorylation. CPI-17 overexpression induces the proliferation of HEI193 cells. CONCLUSION: NF2 mutations and CPI-17 expression together induce merlin phosphorylation, which is correlated with the tumorigenesis of sporadic VSs.


Assuntos
Carcinogênese , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Musculares/metabolismo , Neurofibromina 2/genética , Neuroma Acústico , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Genes da Neurofibromatose 2 , Humanos , Masculino , Mutação , Neuroma Acústico/genética , Neuroma Acústico/metabolismo , Neuroma Acústico/patologia , Fosforilação
19.
Acta Neuropathol Commun ; 7(1): 105, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31291992

RESUMO

Acetylsalicylic acid has been linked to a lower risk for different cancer types, presumably through its inhibitory effect on cyclooxygenase 2. This has also been investigated in vestibular schwannomas with promising results suggesting an antiproliferative effect and recently the intake has been recommended for vestibular schwannomas as a conservative treatment option. We constructed tissue microarrays from paraffin-embedded tissue samples of 1048 vestibular schwannomas and analyzed the expression of cyclooxygenase 2 and the proliferation marker MIB1 (Molecular Immunology Borstel) via immunohistochemistry together with clinical data (age, gender, tumor extension, prior radiotherapy, neurofibromatosis type 2, tumor recurrence, cyclooxygenase 2 responsive medication). Univariate analysis showed that cyclooxygenase 2 expression was increased with age, female gender, prior radiotherapy and larger tumor extension. MIB1 expression was also associated with higher cyclooxygenase 2 expression. Schwannomas of neurofibromatosis type 2 patients had lower cyclooxygenase 2 levels. Use of acetylsalicylic acid, non-steroidal anti-inflammatory drugs, glucocorticoids or other immunosuppressants did not show differences in cyclooxygenase 2 or MIB1 expression. Instead, cyclooxygenase 2 expression increases with tumor extension while MIB1 expression is not associated with tumor size. Overall, cyclooxygenase 2 expression is associated with proliferation but not influenced by regular intake of acetylsalicylic acid or other cyclooxygenase 2-responsive medications. Acetylsalicylic acid intake does not alter cyclooxygenase 2 expression and has no antiproliferative effect in vestibular.


Assuntos
Aspirina/administração & dosagem , Proliferação de Células/fisiologia , Ciclo-Oxigenase 2/biossíntese , Regulação Neoplásica da Expressão Gênica , Neuroma Acústico/metabolismo , Carga Tumoral/fisiologia , Adolescente , Adulto , Idoso , Anti-Inflamatórios não Esteroides/administração & dosagem , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Proliferação de Células/efeitos dos fármacos , Criança , Estudos de Coortes , Ciclo-Oxigenase 2/genética , Inibidores de Ciclo-Oxigenase/administração & dosagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neuroma Acústico/genética , Carga Tumoral/efeitos dos fármacos , Adulto Jovem
20.
Proteomics Clin Appl ; 13(5): e1800175, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31120176

RESUMO

PURPOSE: Vestibular schwannomas (VSs) are benign tumors that account for 8-10% of all intracranial tumors. So far, the tumorigenesis of VS has not been fully elucidated. This study is designed to identify differently expressed proteins involved in VS tumorigenesis. EXPERIMENTAL DESIGN: An isobaric tag is used for relative and absolute quantification (iTRAQ) approach to characterize the protein expression profiles from pooled VS tissues (n = 12) and pooled matched normal vestibular tissues (n = 12). RESULTS: A total of 933 differentially expressed proteins are identified between VS and the matched normal vestibular tissues, with 489 being upregulated and 444 being downregulated. Bioinformatics analyses are performed according to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Several of the differentially expressed proteins are validated by western blotting analyses, and upregulation of LGALS1, ANXA1, GRB2, and STAT1 is validated in VS tissue by immunohistochemistry. CONCLUSIONS AND CLINICAL RELEVANCE: The study represents the successful application of iTRAQ technology to an investigation of VS. Many of the differentially expressed proteins identified here have not been linked to VS before, and these dysregulated proteins may provide potential biomarkers for human VS diagnosis.


Assuntos
Carcinogênese , Neuroma Acústico/metabolismo , Neuroma Acústico/patologia , Proteômica , Adulto , Estudos de Casos e Controles , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...