Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.584
Filtrar
1.
Nat Commun ; 15(1): 3523, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664421

RESUMO

Organismal physiology is widely regulated by the molecular circadian clock, a feedback loop composed of protein complexes whose members are enriched in intrinsically disordered regions. These regions can mediate protein-protein interactions via SLiMs, but the contribution of these disordered regions to clock protein interactions had not been elucidated. To determine the functionality of these disordered regions, we applied a synthetic peptide microarray approach to the disordered clock protein FRQ in Neurospora crassa. We identified residues required for FRQ's interaction with its partner protein FRH, the mutation of which demonstrated FRH is necessary for persistent clock oscillations but not repression of transcriptional activity. Additionally, the microarray demonstrated an enrichment of FRH binding to FRQ peptides with a net positive charge. We found that positively charged residues occurred in significant "blocks" within the amino acid sequence of FRQ and that ablation of one of these blocks affected both core clock timing and physiological clock output. Finally, we found positive charge clusters were a commonly shared molecular feature in repressive circadian clock proteins. Overall, our study suggests a mechanistic purpose for positive charge blocks and yielded insights into repressive arm protein roles in clock function.


Assuntos
Relógios Circadianos , Proteínas Fúngicas , Neurospora crassa , Neurospora crassa/genética , Neurospora crassa/metabolismo , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Ligação Proteica , Ritmo Circadiano/fisiologia , Ritmo Circadiano/genética , Proteínas CLOCK/metabolismo , Proteínas CLOCK/genética , Proteínas CLOCK/química , Mutação , Sequência de Aminoácidos , Regulação Fúngica da Expressão Gênica , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Análise Serial de Proteínas
2.
Curr Opin Struct Biol ; 84: 102743, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38091925

RESUMO

Cellular circadian clocks, the molecular timers that coordinate physiology to the day/night cycle across the domains of life, are widely regulated by disordereddisordered protein interactions. Here, we review the disordered-disordered protein interactions in the circadian clock of Neurospora crassa (N. crassa), a filamentous fungus which is a model organism for clocks in higher eukaryotes. We focus on what is known about the interactions between the intrinsically disordered core negative arm protein FREQUENCEY (FRQ), the other proteins comprising the transcription-translation feedback loop, and the proteins that control output. We compare and contrast this model with other models of eukaryotic clocks, illustrating that protein disorder is a conserved and essential mechanism in the maintenance of circadian clock across species.


Assuntos
Relógios Circadianos , Neurospora crassa , Ritmo Circadiano/fisiologia , Neurospora crassa/metabolismo , Proteínas Fúngicas/metabolismo
3.
Protein Expr Purif ; 216: 106416, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38104790

RESUMO

A major cellobiohydrolase of Neurospora crassa CBH2 was successfully expressed in Pichia pastoris. The maximum Avicelase activity in shake flask among seven transformants which selected on 4.0 g/L G418 plates was 0.61 U/mL. The optimal pH and temperature for Avicelase activity of the recombinant CBH2 were determined to be 4.8 and 60 °C, respectively. The new CBH2 maintained 63.5 % Avicelase activity in the range of pH 4.0-10.4, and 60.2 % Avicelase activity in the range of 30-90 °C. After incubation at 70-90 °C for 1 h, the Avicelase activity retained 60.5 % of its initial activity. The presence of Zn2+, Ca2+ or Cd2+ enhanced the Avicelase activity of the CBH2, of which Cd2+ at 10 mM causing the highest increase. The recombinant CBH2 was used to enhance the Avicel hydrolysis by improving the exo-exo-synergism between CBH2 and CBH1 in N.crassa cellulase. The enzymatic hydrolysis yield was increased by 38.1 % by adding recombinant CBH2 and CBH1, and the yield was increased by 215.4 % when the temperature is raised to 70 °C. This work provided a CBH2 with broader pH range and better heat resistance, which is a potential enzyme candidate in food, textile, pulp and paper industries, and other industrial fields.


Assuntos
Celulose 1,4-beta-Celobiosidase , Neurospora crassa , Saccharomycetales , Celulose 1,4-beta-Celobiosidase/genética , Neurospora crassa/genética , Neurospora crassa/metabolismo , Cádmio , Pichia/genética , Pichia/metabolismo , Clonagem Molecular , Proteínas Recombinantes
4.
Proc Natl Acad Sci U S A ; 120(47): e2311249120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37963248

RESUMO

Chromosomes must correctly fold in eukaryotic nuclei for proper genome function. Eukaryotic organisms hierarchically organize their genomes, including in the fungus Neurospora crassa, where chromatin fiber loops compact into Topologically Associated Domain-like structures formed by heterochromatic region aggregation. However, insufficient data exist on how histone posttranslational modifications (PTMs), including acetylation, affect genome organization. In Neurospora, the HCHC complex [composed of the proteins HDA-1, CDP-2 (Chromodomain Protein-2), Heterochromatin Protein-1, and CHAP (CDP-2 and HDA-1 Associated Protein)] deacetylates heterochromatic nucleosomes, as loss of individual HCHC members increases centromeric acetylation, and alters the methylation of cytosines in DNA. Here, we assess whether the HCHC complex affects genome organization by performing Hi-C in strains deleted of the cdp-2 or chap genes. CDP-2 loss increases intra- and interchromosomal heterochromatic region interactions, while loss of CHAP decreases heterochromatic region compaction. Individual HCHC mutants exhibit different patterns of histone PTMs genome-wide, as CDP-2 deletion increases heterochromatic H4K16 acetylation, yet smaller heterochromatic regions lose H3K9 trimethylation and gain interheterochromatic region interactions; CHAP loss produces minimal acetylation changes but increases heterochromatic H3K9me3 enrichment. Loss of both CDP-2 and the DIM-2 DNA methyltransferase causes extensive genome disorder as heterochromatic-euchromatic contacts increase despite additional H3K9me3 enrichment. Our results highlight how the increased cytosine methylation in HCHC mutants ensures genome compartmentalization when heterochromatic regions become hyperacetylated without HDAC activity.


Assuntos
Histonas , Neurospora crassa , Histonas/genética , Histonas/metabolismo , Neurospora crassa/genética , Neurospora crassa/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Metilação de DNA/genética , Processamento de Proteína Pós-Traducional/genética , DNA/metabolismo , Citosina/metabolismo
5.
BMC Biotechnol ; 23(1): 50, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38031036

RESUMO

BACKGROUND: Filamentous fungi are efficient degraders of plant biomass and the primary producers of commercial cellulolytic enzymes. While the transcriptional regulation mechanisms of cellulases have been continuously explored in lignocellulolytic fungi, the induction of cellulase production remains a complex multifactorial system, with several aspects still largely elusive. RESULTS: In this study, we identified a Zn2Cys6 transcription factor, designated as Clr-5, which regulates the expression of cellulase genes by influencing amino acid metabolism in Neurospora crassa during growth on cellulose. The deletion of clr-5 caused a significant decrease in secreted protein and cellulolytic enzyme activity of N. crassa, which was partially alleviated by supplementing with yeast extract. Transcriptomic profiling revealed downregulation of not only the genes encoding main cellulases but also those related to nitrogen metabolism after disruption of Clr-5 under Avicel condition. Clr-5 played a crucial role in the utilization of multiple amino acids, especially leucine and histidine. When using leucine or histidine as the sole nitrogen source, the Δclr-5 mutant showed significant growth defects on both glucose and Avicel media. Comparative transcriptomic analysis revealed that the transcript levels of most genes encoding carbohydrate-active enzymes and those involved in the catabolism and uptake of histidine, branched-chain amino acids, and aromatic amino acids, were remarkably reduced in strain Δclr-5, compared with the wild-type N. crassa when grown in Avicel medium with leucine or histidine as the sole nitrogen source. These findings underscore the important role of amino acid metabolism in the regulation of cellulase production in N. crassa. Furthermore, the function of Clr-5 in regulating cellulose degradation is conserved among ascomycete fungi. CONCLUSIONS: These findings regarding the novel transcription factor Clr-5 enhance our comprehension of the regulatory connections between amino acid metabolism and cellulase production, offering fresh prospects for the development of fungal cell factories dedicated to cellulolytic enzyme production in bio-refineries.


Assuntos
Celulase , Celulases , Neurospora crassa , Celulase/metabolismo , Neurospora crassa/genética , Neurospora crassa/metabolismo , Histidina/genética , Histidina/metabolismo , Leucina/genética , Leucina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Celulose/metabolismo , Celulases/genética , Nitrogênio/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica
6.
mSphere ; 8(6): e0046023, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37847028

RESUMO

IMPORTANCE: Neurospora is a quintessential tip-growing organism, which is well known for packaging and longitudinal transport of tip-building blocks. Thus far, however, little attention has been paid to the co-essential process of reclamation, that is-taking apart of upstream, older structural elements, otherwise known as "autophagy". We are not yet prepared to set out the chemistry of that elaborate process, but its morphological start alone is worthy of attention. Carbon starvation triggers significant autophagic changes, beginning with prolific vacuolation along the plasma membrane, and eventual filling of 70% (or more) of cytoplasmic volume. Additionally, the Neurospora plasma membrane elaborates a variety of phagophores which themselves often look lytic. These have either dual enclosing membranes, like the familiar autophagosomes, can be doubled and have four wrapping membranes, or can be compounded with multiple membrane layers. These reclamation processes must be accommodated by the mechanism of tip growth.


Assuntos
Neurospora crassa , Neurospora crassa/metabolismo , Autofagia , Membrana Celular/metabolismo
7.
J Biol Chem ; 299(9): 105094, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37507015

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are monocopper enzymes that degrade the insoluble crystalline polysaccharides cellulose and chitin. Besides the H2O2 cosubstrate, the cleavage of glycosidic bonds by LPMOs depends on the presence of a reductant needed to bring the enzyme into its reduced, catalytically active Cu(I) state. Reduced LPMOs that are not bound to substrate catalyze reductant peroxidase reactions, which may lead to oxidative damage and irreversible inactivation of the enzyme. However, the kinetics of this reaction remain largely unknown, as do possible variations between LPMOs belonging to different families. Here, we describe the kinetic characterization of two fungal family AA9 LPMOs, TrAA9A of Trichoderma reesei and NcAA9C of Neurospora crassa, and two bacterial AA10 LPMOs, ScAA10C of Streptomyces coelicolor and SmAA10A of Serratia marcescens. We found peroxidation of ascorbic acid and methyl-hydroquinone resulted in the same probability of LPMO inactivation (pi), suggesting that inactivation is independent of the nature of the reductant. We showed the fungal enzymes were clearly more resistant toward inactivation, having pi values of less than 0.01, whereas the pi for SmAA10A was an order of magnitude higher. However, the fungal enzymes also showed higher catalytic efficiencies (kcat/KM(H2O2)) for the reductant peroxidase reaction. This inverse linear correlation between the kcat/KM(H2O2) and pi suggests that, although having different life spans in terms of the number of turnovers in the reductant peroxidase reaction, LPMOs that are not bound to substrates have similar half-lives. These findings have not only potential biological but also industrial implications.


Assuntos
Oxigenases de Função Mista , Peroxidases , Polissacarídeos , Substâncias Redutoras , Ácido Ascórbico/metabolismo , Biocatálise , Cobre/metabolismo , Estabilidade Enzimática , Meia-Vida , Peróxido de Hidrogênio/metabolismo , Cinética , Oxigenases de Função Mista/metabolismo , Neurospora crassa/enzimologia , Neurospora crassa/metabolismo , Peroxidases/metabolismo , Polissacarídeos/metabolismo , Substâncias Redutoras/metabolismo , Serratia marcescens/enzimologia , Serratia marcescens/metabolismo , Streptomyces coelicolor/enzimologia , Streptomyces coelicolor/metabolismo
8.
Nat Commun ; 14(1): 3371, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291101

RESUMO

In the Neurospora circadian system, the White Collar Complex (WCC) drives expression of the principal circadian negative arm component frequency (frq). FRQ interacts with FRH (FRQ-interacting RNA helicase) and CKI, forming a stable complex that represses its own expression by inhibiting WCC. In this study, a genetic screen identified a gene, designated as brd-8, that encodes a conserved auxiliary subunit of the NuA4 histone acetylation complex. Loss of brd-8 reduces H4 acetylation and RNA polymerase (Pol) II occupancy at frq and other known circadian genes, and leads to a long circadian period, delayed phase, and defective overt circadian output at some temperatures. In addition to strongly associating with the NuA4 histone acetyltransferase complex, BRD-8 is also found complexed with the transcription elongation regulator BYE-1. Expression of brd-8, bye-1, histone h2a.z, and several NuA4 subunits is controlled by the circadian clock, indicating that the molecular clock both regulates the basic chromatin status and is regulated by changes in chromatin. Taken together, our data identify auxiliary elements of the fungal NuA4 complex having homology to mammalian components, which along with conventional NuA4 subunits, are required for timely and dynamic frq expression and thereby a normal and persistent circadian rhythm.


Assuntos
Relógios Circadianos , Neurospora crassa , Relógios Circadianos/genética , Neurospora crassa/metabolismo , Ritmo Circadiano/genética , RNA Helicases/metabolismo , Cromatina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica
9.
Genetics ; 224(4)2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37313736

RESUMO

A multinucleate syncytium is a common growth form in filamentous fungi. Comprehensive functions of the syncytial state remain unknown, but it likely allows for a wide range of adaptations to enable filamentous fungi to coordinate growth, reproduction, responses to the environment, and to distribute nuclear and cytoplasmic elements across a colony. Indeed, the underlying mechanistic details of how syncytia regulate cellular and molecular processes spatiotemporally across a colony are largely unexplored. Here, we implemented a strategy to analyze the relative fitness of different nuclear populations in syncytia of Neurospora crassa, including nuclei with loss-of-function mutations in essential genes, based on production of multinucleate asexual spores using flow cytometry of pairings between strains with differentially fluorescently tagged nuclear histones. The distribution of homokaryotic and heterokaryotic asexual spores in pairings was assessed between different auxotrophic and morphological mutants, as well as with strains that were defective in somatic cell fusion or were heterokaryon incompatible. Mutant nuclei were compartmentalized into both homokaryotic and heterokaryotic asexual spores, a type of bet hedging for maintenance and evolution of mutational events, despite disadvantages to the syncytium. However, in pairings between strains that were blocked in somatic cell fusion or were heterokaryon incompatible, we observed a "winner-takes-all" phenotype, where asexual spores originating from paired strains were predominantly one genotype. These data indicate that syncytial fungal cells are permissive and tolerate a wide array of nuclear functionality, but that cells/colonies that are unable to cooperate via syncytia formation actively compete for resources.


Assuntos
Neurospora crassa , Neurospora , Neurospora crassa/genética , Neurospora crassa/metabolismo , Genes Fúngicos , Permissividade , Fenótipo , Células Gigantes/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Neurospora/genética
10.
FEMS Microbiol Lett ; 3702023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37193664

RESUMO

The Ca2+ signaling genes cpe-1, plc-1, ncs-1, splA2, camk-1, camk-2, camk-3, camk-4, cmd, and cnb-1 are necessary for a normal circadian period length in Neurospora crassa. In addition, the Q10 values ranged between 0.8 and 1.2 for the single mutants lacking cpe-1, splA2, camk-1, camk-2, camk-3, camk-4, and cnb-1, suggesting that the circadian clock exhibits standard temperature compensation. However, the Q10 value for the ∆plc-1 mutant was 1.41 at 25 and 30 °C, 1.53 and 1.40 for the ∆ncs-1 mutant at 20 and 25 °C, and at 20 and 30 °C, respectively, suggesting a partial loss of temperature compensation in these two mutants. Moreover, expression of frq, a regulator of the circadian period, and the blue light receptor wc-1, were increased >2-fold in the Δplc-1, ∆plc-1; ∆cpe-1, and the ∆plc-1; ∆splA2 mutants at 20 °C. The frq mRNA level was increased >2-fold in the Δncs-1 mutant compared to the ras-1bd strain at 20 °C. Therefore, multiple Ca2+ signaling genes regulate the circadian period, by influencing expression of the frq and wc-1 genes that are critical for maintaining the normal circadian period length in N. crassa.


Assuntos
Neurospora crassa , Fosfolipases A2 Secretórias , Neurospora crassa/genética , Neurospora crassa/metabolismo , Ritmo Circadiano/genética , Sinalização do Cálcio , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Fosfolipases A2 Secretórias/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-37207739

RESUMO

Fluoroacetic acid (FAA) is a poison commonly used for the lethal control of invasive species in Australia and New Zealand. Despite its widespread use and long history as a pesticide, no effective treatment for accidental poisoning exists. Although it is known to inhibit the tricarboxylic acid (TCA) cycle, specific details of FAA toxicology have remained elusive, with hypocalcemia suggested to be involved in the neurological symptoms prior to death. Here, we study the effects of FAA on cell growth and mitochondrial function using the filamentous fungi Neurospora crassa as model organism. FAA toxicosis in N. crassa is characterized by an initial hyperpolarization and subsequent depolarization of the mitochondrial membranes, followed by a significant intracellular decrease in ATP and increase in Ca2+. The development of mycelium was markedly affected within 6 h, and growth impaired after 24 h of FAA exposure. Although the activity of mitochondrial complexes I, II and IV was impaired, the activity of citrate synthase was not affected. Supplementation with Ca2+ exacerbated the effects of FAA in cell growth and membrane potential. Our findings suggest that an imbalance created in the ratio of ions within the mitochondria may lead to conformational changes in ATP synthase dimers due to mitochondrial Ca2+ uptake, that ultimately result in the opening of the mitochondrial permeability transition pore (MPTP), a decrease in membrane potential, and cell death. Our findings suggest new approaches for the treatment research, as well as the possibility to use N. crassa as a high-throughput screening assay to evaluate a large number of FAA antidote candidates.


Assuntos
Neurospora crassa , Neurospora crassa/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Ácido Cítrico , Homeostase , Citratos , Trifosfato de Adenosina , Cálcio/metabolismo
12.
J Biol Chem ; 299(7): 104850, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37220856

RESUMO

In the negative feedback loop composing the Neurospora circadian clock, the core element, FREQUENCY (FRQ), binds with FRQ-interacting RNA helicase (FRH) and casein kinase 1 to form the FRQ-FRH complex (FFC) which represses its own expression by interacting with and promoting phosphorylation of its transcriptional activators White Collar-1 (WC-1) and WC-2 (together forming the White Collar complex, WCC). Physical interaction between FFC and WCC is a prerequisite for the repressive phosphorylations, and although the motif on WCC needed for this interaction is known, the reciprocal recognition motif(s) on FRQ remains poorly defined. To address this, we assessed FFC-WCC in a series of frq segmental-deletion mutants, confirming that multiple dispersed regions on FRQ are necessary for its interaction with WCC. Biochemical analysis shows that interaction between FFC and WCC but not within FFC or WCC can be disrupted by high salt, suggesting that electrostatic forces drive the association of the two complexes. As a basic sequence on WC-1 was previously identified as a key motif for WCC-FFC assembly, our mutagenetic analysis targeted negatively charged residues of FRQ, leading to identification of three Asp/Glu clusters in FRQ that are indispensable for FFC-WCC formation. Surprisingly, in several frq Asp/Glu-to-Ala mutants that vastly diminish FFC-WCC interaction, the core clock still oscillates robustly with an essentially wildtype period, indicating that the interaction between the positive and negative elements in the feedback loop is required for the operation of the circadian clock but is not a determinant of the period length.


Assuntos
Relógios Circadianos , Proteínas Fúngicas , Neurospora crassa , Relógios Circadianos/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Neurospora crassa/efeitos dos fármacos , Neurospora crassa/genética , Neurospora crassa/metabolismo , Fatores de Transcrição/metabolismo , Domínios Proteicos , Deleção de Genes , Cloreto de Sódio/farmacologia , Mutação , Expressão Gênica
13.
PLoS One ; 18(4): e0282989, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37093794

RESUMO

The hyphal tips of Neurospora crassa have prevacuolar compartments (PVCs) of unusual size and shape. They appear to function as late endosomes/multivesicular bodies. PVCs are highly variable in size (1-3 microns) and exhibit rapid changes in structure. When visualized with tagged integral membrane proteins of the vacuole the PVCs appear as ring or horseshoe-shaped structures. Some soluble molecules that fill the lumen of mature spherical vacuoles do not appear in the lumen of the PVC but are seen in the ring or horseshoe-shaped structures. By using super-resolution microscopy I have achieved a better understanding of the structure of the PVCs. The PVC appears to form a pouch with an open end. The walls of the pouch are composed of small vesicles or tubules, approximately 250 nm in diameter. The shape of the PVC can change in a few seconds, caused by the apparent movement of the vesicles/tubules. In approximately 85% of the PVCs dynein and dynactin were observed as poorly defined lumps inside the pouch-shaped PVCs. Within the PVCs they were not attached to microtubules nor did they appear to be in direct contact with the vesicles and tubules that formed the PVCs. In the future, the structure and relatively large size of the Neurospora PVC may allow us to visualize protein-sorting events that occur in the formation of vacuoles.


Assuntos
Neurospora crassa , Neurospora crassa/metabolismo , Microscopia , Endossomos , Vacúolos/metabolismo , Corpos Multivesiculares
14.
Cell Rep ; 42(4): 112376, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37043358

RESUMO

Biology is tuned to the Earth's diurnal cycle by the circadian clock, a transcriptional/translational negative feedback loop that regulates physiology via transcriptional activation and other post-transcriptional mechanisms. We hypothesize that circadian post-transcriptional regulation might stem from conformational shifts in the intrinsically disordered proteins that comprise the negative arm of the feedback loop to coordinate variation in negative-arm-centered macromolecular complexes. This work demonstrates temporal conformational fluidity in the negative arm that correlates with 24-h variation in physiologically diverse macromolecular complex components in eukaryotic clock proteins. Short linear motifs on the negative-arm proteins that correspond with the interactors localized to disordered regions and known temporal phosphorylation sites suggesting changes in these macromolecular complexes could be due to conformational changes imparted by the temporal phospho-state. Interactors that oscillate in the macromolecular complexes over circadian time correlate with post-transcriptionally regulated proteins, highlighting how time-of-day variation in the negative-arm protein complexes may tune cellular physiology.


Assuntos
Relógios Circadianos , Neurospora crassa , Relógios Circadianos/genética , Ritmo Circadiano/fisiologia , Neurospora crassa/metabolismo , Regulação da Expressão Gênica , Processamento de Proteína Pós-Traducional , Proteínas CLOCK/metabolismo , Proteínas Fúngicas/metabolismo
15.
G3 (Bethesda) ; 13(8)2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37052947

RESUMO

During the sexual phase of Neurospora crassa, unpaired genes are subject to a silencing mechanism known as meiotic silencing by unpaired DNA (MSUD). MSUD targets the transcripts of an unpaired gene and utilizes typical RNA interference factors for its process. Using a reverse genetic screen, we have identified a meiotic silencing gene called sad-9, which encodes a DEAD-box RNA helicase. While not essential for vegetative growth, SAD-9 plays a crucial role in both sexual development and MSUD. Our results suggest that SAD-9, with the help of the SAD-2 scaffold protein, recruits the SMS-2 Argonaute to the perinuclear region, the center of MSUD activity.


Assuntos
Meiose , Neurospora crassa , Meiose/genética , DNA Fúngico/genética , Proteínas Fúngicas/genética , Neurospora crassa/metabolismo , RNA Helicases DEAD-box/genética
16.
Res Microbiol ; 174(5): 104055, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36963554

RESUMO

The presence of antifungal drugs is prompting the fungal microorganisms to react by mechanisms broader than the resistance. The fungi evolved mechanisms, by which they respond to various stress conditions, including the presence of antifungal compounds. In this work, we studied the response of model filamentous fungus Neurospora crassa to azole antifungals in the broader context of the adaptation mechanisms. We demonstrated the increase in expression of filamentous fungi-specific genes encoding cytochrome enzymes of CYP65 clan and plasma membrane-localized ABCC transporters. Azoles appear not to conjugate with glutathione. Surprisingly, the azoles caused changes in the hyphae organization and the amount of chitin in cell wall by the same manner that was thought to be echinocandin-specific. The response to individual azoles appeared to be influenced by the structure of azole compound (prochloraz - main outlier). Taken together, these findings demonstrate the importance of study of stress response mechanisms, specifically in filamentous fungi. Many aspects of the reaction within azoles seem to be similar, though specificities are occurring.


Assuntos
Antifúngicos , Neurospora crassa , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Azóis/farmacologia , Neurospora crassa/genética , Neurospora crassa/metabolismo , Xenobióticos/metabolismo , Farmacorresistência Fúngica/genética , Proteínas de Membrana Transportadoras/metabolismo , Quitina/metabolismo
17.
J Biol Chem ; 299(4): 104597, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36898580

RESUMO

Neurospora crassa is an important model organism for circadian clock research. The Neurospora core circadian component FRQ protein has two isoforms, large FRQ (l-FRQ) and small FRQ (s-FRQ), of which l-FRQ bears an additional N-terminal 99-amino acid fragment. However, how the FRQ isoforms operate differentially in regulating the circadian clock remains elusive. Here, we show l-FRQ and s-FRQ play different roles in regulating the circadian negative feedback loop. Compared to s-FRQ, l-FRQ is less stable and undergoes hypophosphorylation and faster degradation. The phosphorylation of the C-terminal l-FRQ 794-aa fragment was markedly higher than that of s-FRQ, suggesting the l-FRQ N-terminal 99-aa region may regulate the phosphorylation of the entire FRQ protein. Quantitative label-free LC/MS analysis identified several peptides that were differentially phosphorylated between l-FRQ and s-FRQ, which were distributed in FRQ in an interlaced fashion. Furthermore, we identified two novel phosphorylation sites, S765 and T781; mutations S765A and T781A showed no significant effects on conidiation rhythmicity, although T781 conferred FRQ stability. These findings demonstrate that FRQ isoforms play differential roles in the circadian negative feedback loop and undergo different regulations of phosphorylation, structure, and stability. The l-FRQ N-terminal 99-aa region plays an important role in regulating the phosphorylation, stability, conformation, and function of the FRQ protein. As the FRQ circadian clock counterparts in other species also have isoforms or paralogues, these findings will also further our understanding of the underlying regulatory mechanisms of the circadian clock in other organisms based on the high conservation of circadian clocks in eukaryotes.


Assuntos
Relógios Circadianos , Proteínas Fúngicas , Ritmo Circadiano/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Neurospora crassa/genética , Neurospora crassa/metabolismo , Fosforilação , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Estabilidade Proteica
18.
mBio ; 14(1): e0329122, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36744948

RESUMO

Heat shock protein (HSP)-encoding genes (hsp), part of the highly conserved heat shock response (HSR), are known to be induced by thermal stress in several organisms. In Neurospora crassa, three hsp genes, hsp30, hsp70, and hsp80, have been characterized; however, the role of defined cis elements in their responses to discrete changes in temperature remains largely unexplored. To fill this gap, while also aiming to obtain a reliable fungal heat shock-inducible system, we analyzed different sections of each hsp promoter by assessing the expression of real-time transcriptional reporters. Whereas all three promoters and their resected versions were acutely induced by high temperatures, only hsp30 displayed a broad range of expression and high tunability, amply exceeding other inducible promoter systems existing in Neurospora, such as quinic acid- or light-inducible ones. As proof of concept, we employed one of these promoters to control the expression of clr-2, which encodes the master regulator of Neurospora cellulolytic capabilities. The resulting strain fails to grow on cellulose at 25°C, whereas it grows robustly if heat shock pulses are delivered daily. Additionally, we designed two hsp30 synthetic promoters and characterized them, as well as the native promoters, using a gradient of high temperatures, yielding a wide range of responses to thermal stimuli. Thus, Neurospora hsp30-based promoters represent a new set of modular elements that can be used as transcriptional rheostats to adjust the expression of a gene of interest or for the implementation of regulated circuitries for synthetic biology and biotechnological strategies. IMPORTANCE A timely and dynamic response to strong temperature fluctuations is paramount for organismal biology. At the same time, inducible promoters are a powerful tool for fungal biotechnological and synthetic biology endeavors. In this work, we analyzed the activity of several N. crassa heat shock protein (hsp) promoters at a wide range of temperatures, observing that hsp30 exhibits remarkable sensitivity and a dynamic range of expression as we charted the response of this promoter to subtle increases in temperature, and also as we built and analyzed synthetic promoters based on hsp30 cis elements. As proof of concept, we tested the ability of hsp30 to provide tight control of a central process, cellulose degradation. While this study provides an unprecedented description of the regulation of the N. crassa hsp genes, it also contributes a noteworthy addition to the molecular toolset of transcriptional controllers in filamentous fungi.


Assuntos
Neurospora crassa , Neurospora crassa/genética , Neurospora crassa/metabolismo , Temperatura , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico HSP70/genética , Regiões Promotoras Genéticas
19.
Microb Cell Fact ; 22(1): 28, 2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36774527

RESUMO

A system for itaconic acid synthesis from cellulose by Neurospora crassa was established, resulting in the highest yield of itaconic acid was 354.08 + 35.99 mg/L. Meanwhile, cellulase activity increased significantly, without any strain modifications for improved cellulase production. Multi-omics analyses showed that itaconic acid synthesis reduced energy production, leading to decreases in trehalose, cell wall, fatty acids synthesis and downregulations in MAPK signaling pathway, cell cycle and meiosis. More importantly, the low-energy environment enhanced the energy-efficient cellobionic acid/gluconic acid pathway, and the cellulase composition also changed significantly, manifested as the up-regulation of LPMOs and the down-regulation of ß-glucosidases. Enhancing LPMOs-cellobionic acid/gluconic acid system has the potential to reduce energy consumption of the consolidated bioprocessing. These findings offer an overview of resource allocations by N. crassa in response to itaconic acid synthesis and highlight a series of intriguing connections between itaconic acid synthesis and cellulase synthesis in consolidated bioprocessing.


Assuntos
Celulase , Celulases , Neurospora crassa , Celulose/metabolismo , Neurospora crassa/metabolismo , Celulase/metabolismo , Celulases/metabolismo
20.
Elife ; 122023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36625037

RESUMO

The circadian clock governs rhythmic cellular functions by driving the expression of a substantial fraction of the genome and thereby significantly contributes to the adaptation to changing environmental conditions. Using the circadian model organism Neurospora crassa, we show that molecular timekeeping is robust even under severe limitation of carbon sources, however, stoichiometry, phosphorylation and subcellular distribution of the key clock components display drastic alterations. Protein kinase A, protein phosphatase 2 A and glycogen synthase kinase are involved in the molecular reorganization of the clock. RNA-seq analysis reveals that the transcriptomic response of metabolism to starvation is highly dependent on the positive clock component WC-1. Moreover, our molecular and phenotypic data indicate that a functional clock facilitates recovery from starvation. We suggest that the molecular clock is a flexible network that allows the organism to maintain rhythmic physiology and preserve fitness even under long-term nutritional stress.


Assuntos
Relógios Circadianos , Neurospora crassa , Relógios Circadianos/genética , Neurospora crassa/metabolismo , Glucose/metabolismo , Fosforilação , Transcriptoma , Ritmo Circadiano/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...