Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 300
Filtrar
1.
Int J Mol Sci ; 24(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37298595

RESUMO

Colorectal cancer (CRC) is one of the most lethal malignancies worldwide, so the attempts to find novel therapeutic approaches are necessary. The aim of our study was to analyze how chemical modifications influence physical, chemical, and biological properties of the two peptides, namely, bradykinin (BK) and neurotensin (NT). For this purpose, we used fourteen modified peptides, and their anti-cancers features were analyzed on the HCT116 CRC cell line. Our results confirmed that the spherical mode of a CRC cell line culture better reflects the natural tumour microenvironment. We observed that the size of the colonospheres was markedly reduced following treatment with some BK and NT analogues. The proportion of CD133+ cancer stem cells (CSCs) in colonospheres decreased following incubation with the aforementioned peptides. In our research, we found two groups of these peptides. The first group influenced all the analyzed cellular features, while the second seemed to include the most promising peptides that lowered the count of CD133+ CSCs with parallel substantial reduction in CRC cells viability. These analogues need further analysis to uncover their overall anti-cancer potential.


Assuntos
Bradicinina , Neoplasias do Colo , Neurotensina , Bradicinina/análogos & derivados , Neurotensina/análogos & derivados , Neoplasias do Colo/tratamento farmacológico , Células HCT116 , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Antígeno AC133 , Peptídeos/síntese química , Peptídeos/farmacologia , Sobrevivência Celular
2.
Immunopharmacol Immunotoxicol ; 44(2): 216-226, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35166614

RESUMO

OBJECTIVE: The disruption of bidirectional communication between neuroendocrine and immune components by stressors leads to mental problems. The immunomodulation therapy of neuroinflammation-led psychiatric illness is an emerging area of research. Therefore, the present study aimed to evaluate immune modulation efficacy of PD 149163 (PD) against the lipopolysaccharide (LPS)-induced neuroinflammation. MATERIALS AND METHODS: The Swiss albino mice (female/12 weeks) were divided into six groups (6 mice/group): (I) Control: 0.9% NaCl; (II) LPS: 1 mg/kg BW, for 5 days; (III) LPS + PD Low: LPS 1 mg/kg BW (for 5 days) after that PD 100 µg/kg BW (for 21 days); (IV) LPS + PD High: LPS 1 mg/kg BW (for 5 days) after that PD 300 µg/kg BW (for 21 days); (V) PD Low: PD 100 µg/kg BW (for 21 days); (VI) PD High: PD 300 µg/kg BW (for 21 days). All treatments were given intraperitoneal. RESULTS: The LPS-induced weight loss (body and brain) was normalized to control after PD treatment. The PD enhanced superoxide dismutase (SOD) activity while decreased lipid hydroperoxide (LOOH) level altered in LPS-exposed mice. The significantly increased pro-inflammatory cytokines (IL-6 and TNF-α) in LPS exposure were also decreased by PD. Likewise, the LPS-induced HPA axis activation was stabilized by PD. In the hippocampus, the pyramidal cell layer thickness, pyramidal neurons number and size of CA1 and CA3 regions were reduced along with misalignment, shrinkage, and impairment of cytoarchitecture. In the co-treated group, the LPS-induced hippocampus disruption was reversed after PD exposure. CONCLUSION: We suggested that the PD modulates the LPS-induced neuroinflammation and psychiatric illness in a dose-dependent manner.


Assuntos
Lipopolissacarídeos , Neurotensina , Animais , Feminino , Sistema Hipotálamo-Hipofisário , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Lipopolissacarídeos/toxicidade , Camundongos , Doenças Neuroinflamatórias , Neurotensina/efeitos adversos , Neurotensina/análogos & derivados , Sistema Hipófise-Suprarrenal
3.
Drug Chem Toxicol ; 45(6): 2399-2410, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34334065

RESUMO

The interaction between neuroendocrine and immune components of the gut maintains the organism's physical and psychological health. Its disruption may reflect in disease conditions such as inflammatory bowel disease (IBD) and mental illness. The lipopolysaccharide (LPS) disrupts the endocrine-immune homeostasis resulting in gut toxicity. The Neurotensin receptor-1 (NTR-1) agonist PD 149163 (PD) acts as an atypical antipsychotic drug in psychiatric illness, but its role in modulating gut pathophysiology remains unknown. Therefore, the aim of the present study was to evaluate the protective effect of PD against LPS-induced gut toxicity. Swiss albino female mice (12 weeks) were divided into six groups (n = 6/group): (I) Control, (II) LPS (1 mg/kg, for 5 days), (III) LPS (1 mg/kg, for 5 days)+PD low (100 µg/kg, for 21 days), (IV) LPS (1 mg/kg, for 5 days)+PD high (300 µg/kg, for 21 days), (V) PD low (100 µg/kg, for 21 days), and (VI) PD high (300 µg/kg, for 21 days). Drugs were given intraperitoneal in the morning. PD administration prevented the LPS-induced gut inflammation observed in damage of epithelial barrier, disruption of goblet cells, and condensation of lamina propria (LP). The LPS-induced oxidative stress characterized by decreased superoxide dismutase (SOD) activity and increased lipid hydroperoxide (LOOH) (p < 0.001 for both), and enhanced interleukine-6 (IL-6) & tumor necrosis factor-α (TNF-α) (p < 0.001 for both) as well as immunointensity of NT (p < 0.01) and NTR-1 (p < 0.05) were reversed and normalized to control after PD treatment. Thus, the anti-inflammatory, anti-oxidative, and cell proliferation properties of PD modulate the gut toxicity in LPS-challenged mice.


Assuntos
Antipsicóticos , Neurotensina , Receptores de Neurotensina , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Interleucina-6 , Peróxidos Lipídicos , Lipopolissacarídeos/toxicidade , Receptores de Neurotensina/agonistas , Superóxido Dismutase , Fator de Necrose Tumoral alfa , Neurotensina/análogos & derivados , Neurotensina/farmacologia
4.
Peptides ; 147: 170680, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34757144

RESUMO

Xenin-25 has a variety of physiological functions in the gastrointestinal tract, including ion transport and motility. Xenin-25 and neurotensin show sequence homology, especially near their C-terminal regions. The sequence similarity between xenin-25 and neurotensin indicates that the effects of xenin-25 is mediated by the neurotensin receptor but some biological actions of xenin-25 are independent. We have previously reported that xenin-25 modulates intestinal ion transport and colonic smooth muscle activity. However, minimal biological domain of xenin-25 to induce ion transport was not clear. To improve the mechanistic understanding of xenin-25 and to gain additional insights into the functions of xenin-25, the present study was designed to determine the minimal biological domain of xenin-25 required for ion transport in the rat ileum using various truncated xenin fragments and analogues in an Ussing chamber system. The present results demonstrate that the minimum biological domain of xenin-25 to induce Cl-/HCO3- secretion in the ileum contains the C-terminal pentapeptide. Furthermore, Arg at position 21 is important to retain the biological activity of xenin-25 and induces Cl-/HCO3- secretion in the rat ileum.


Assuntos
Ânions/metabolismo , Íleo/metabolismo , Neurotensina/metabolismo , Animais , Íleo/efeitos dos fármacos , Masculino , Neurotensina/análogos & derivados , Neurotensina/genética , Neurotensina/farmacologia , Domínios Proteicos , Pirazóis/farmacologia , Quinolinas/farmacologia , Ratos Sprague-Dawley , Receptores de Neurotensina/antagonistas & inibidores
5.
J Med Chem ; 64(4): 2110-2124, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33538583

RESUMO

Neurotensin (NT) receptor type 2 (NTS2) represents an attractive target for the development of new NT-based analgesics. Here, we report the synthesis and functional in vivo characterization of the first constrained NTS2-selective macrocyclic NT analog. While most chemical optimization studies rely on the NT(8-13) fragment, we focused on NT(7-12) as a scaffold to design NTS2-selective macrocyclic peptides. Replacement of Ile12 by Leu, and Pro7/Pro10 by allylglycine residues followed by cyclization via ring-closing metathesis led to macrocycle 4, which exhibits good affinity for NTS2 (50 nM), high selectivity over NTS1 (>100 µM), and improved stability compared to NT(8-13). In vivo profiling in rats reveals that macrocycle 4 produces potent analgesia in three distinct rodent pain models, without causing the undesired effects associated with NTS1 activation. We further provide evidence of its non-opioid antinociceptive activity, therefore highlighting the strong therapeutic potential of NTS2-selective analogs for the management of acute and chronic pain.


Assuntos
Analgésicos/uso terapêutico , Neurotensina/análogos & derivados , Neurotensina/uso terapêutico , Dor/tratamento farmacológico , Peptídeos Cíclicos/uso terapêutico , Receptores de Neurotensina/metabolismo , Analgésicos/síntese química , Animais , Desenho de Fármacos , Masculino , Estrutura Molecular , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/uso terapêutico , Peptídeos Cíclicos/síntese química , Ratos Sprague-Dawley , Relação Estrutura-Atividade
6.
Cancer Biother Radiopharm ; 36(8): 651-661, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32822229

RESUMO

Background: The aim of the study was to perform PET imaging and radiotherapy with a novel neurotensin derivative for neurotensin receptor 1 (NTSR-1)-positive tumors in an animal model. Materials and Methods: A di-DOTA analog of NT(6-13) with three unnatural amino acids was synthesized and radiolabeled with either 64Cu or 68Ga and tested for serum stability and tumor imaging in mice bearing NTSR-1-positive PC3, and HT29 xenografts. A dose-response therapy study was performed with 18.5, 37, and 74 kBq of 225Ac-di-DOTA-α,ɛ-Lys-NT(6-13). Results: 68Ga-di-DOTA-α,ɛ-Lys-NT(6-13) was >99% stable in serum for 48 h, had an IC50 of 5 nM using 125I labeled NT(8-13) for binding to HT-29 cells, and high uptake in tumor models expressing NTSR-1. 68Ga-di-DOTA-α,ɛ-Lys-NT(6-13) had an average %ID/g (n = 4) at 2 h of 4.0 for tumor, 0.5 for blood, 12.0 for kidney, and <1 for other tissues, resulting in a favorable T/B of 8. Mean survivals of tumor-bearing mice treated with 18.5 or 37 kBq of 225Ac-di-DOTA-α,ɛ-Lys-NT(6-13) were 81 and 93 d, respectively, versus 53 d for controls. Whole-body toxicity was seen for the 74 kBq dose. Conclusions: Based on the results of the animal model, di-DOTA-α,ɛ-Lys-NT(6-13) is a useful imaging agent for NTSR-1-positive tumors when radiolabeled with 68Ga, and when radiolabeled with 225Ac, a potent therapeutic agent.


Assuntos
Compostos Heterocíclicos com 1 Anel/farmacologia , Neoplasias , Neurotensina , Tomografia por Emissão de Pósitrons/métodos , Receptores de Neurotensina/metabolismo , Animais , Quelantes/farmacologia , Modelos Animais de Doenças , Radioisótopos de Gálio , Células HT29 , Xenoenxertos , Humanos , Camundongos , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Neoplasias/terapia , Neurotensina/análogos & derivados , Neurotensina/metabolismo , Avaliação de Resultados em Cuidados de Saúde
7.
Bioconjug Chem ; 31(10): 2339-2349, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32887526

RESUMO

Several independent studies have demonstrated the overexpression of NTS1 in various malignancies, which make this receptor of interest for imaging and therapy. To date, radiolabeled neurotensin analogues suffer from low plasmatic stability and thus insufficient availability for high uptake in tumors. We report the development of 68Ga-radiolabeled neurotensin analogues with improved radiopharmaceutical properties through the introduction of the silicon-containing amino acid trimethylsilylalanine (TMSAla). Among the series of novel radiolabeled neurotensin analogues, [68Ga]Ga-JMV6659 exhibits high hydrophilicity (log D7.4 = -3.41 ± 0.14), affinity in the low nanomolar range toward NTS1 (Kd = 6.29 ± 1.37 nM), good selectivity (Kd NTS1/Kd NTS2 = 35.9), and high NTS1-mediated internalization. It has lower efflux and prolonged plasmatic half-life in human plasma as compared to the reference compound ([68Ga]Ga-JMV6661 bearing the minimum active fragment of neurotensin and the same linker and chelate as other analogues). In nude mice bearing HT-29 xenograft, [68Ga]Ga-JMV6659 uptake reached 7.8 ± 0.54 %ID/g 2 h post injection. Uptake was decreased to 1.38 ± 0.71 %ID/g with injection of excess of non-radioactive neurotensin. Radiation dose as extrapolated to human was estimated as 2.35 ± 0.6 mSv for a standard injected activity of 100MBq. [68Ga]Ga-JMV6659 was identified as a promising lead compound suitable for PET imaging of NTS1-expressing tumors.


Assuntos
Neoplasias/diagnóstico por imagem , Neurotensina/análogos & derivados , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/química , Receptores de Neurotensina/análise , Silício/química , Animais , Células HT29 , Humanos , Camundongos Nus
8.
Amino Acids ; 52(6-7): 915-924, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32556741

RESUMO

The tumor-specific tetrabranched peptide NT4 binds membrane sulfate glycosaminoglycans and receptors belonging to the low density lipoprotein receptor-related protein (LRP) family, like LRP6, which are overexpressed in cancer. The binding occurs through a multimeric positively-charged motif of NT4 that interacts with negatively charged motives in both glycosaminoglycans and LRP receptors. LRP6 has an essential function in canonical Wnt signaling, acting together with receptors of the Frizzled family as coreceptor for Wnt ligands. The extracellular domain of LRP6 contains four YWTD ß-propellers, which are fundamental for interactions with ligands, such as Wnt and Wnt inhibitors. To investigate the molecular interactions between the NT4 peptide and LRP6 receptor, we synthesized a library of epitope mapping peptides reproducing the YWTD ß-propeller 3 and 4 of LRP6. The peptides that showed to bind NT4 represented the portion of LRP6 located on the top face of ß-propeller 3 and contained negatively charged residues, including glutamic acid-708 which is known to be involved in Wnt3a interaction. The results pave the way for a possible development of peptide inhibitors of Wnt3a pathway to be used as drugs in oncology.


Assuntos
Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Neurotensina/metabolismo , Humanos , Ligantes , Neurotensina/análogos & derivados , Neurotensina/síntese química , Ressonância de Plasmônio de Superfície/métodos , Via de Sinalização Wnt
9.
Eur J Pharmacol ; 882: 173174, 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32534076

RESUMO

Neurotensin (NT) exerts naloxone-insensitive antinociceptive action through its binding to both NTS1 and NTS2 receptors and NT analogs provide stronger pain relief than morphine on a molecular basis. Here, we examined the analgesic/adverse effect profile of a new NT(8-13) derivative denoted JMV2009, in which the Pro10 residue was substituted by a silicon-containing unnatural amino acid silaproline. We first report the synthesis and in vitro characterization (receptor-binding affinity, functional activity and stability) of JMV2009. We next examined its analgesic activity in a battery of acute, tonic and chronic pain models. We finally evaluated its ability to induce adverse effects associated with chronic opioid use, such as constipation and analgesic tolerance or related to NTS1 activation, like hypothermia. In in vitro assays, JMV2009 exhibited high binding affinity for both NTS1 and NTS2, improved proteolytic resistance as well as agonistic activities similar to NT, inducing sustained activation of p42/p44 MAPK and receptor internalization. Intrathecal injection of JMV2009 produced dose-dependent antinociceptive responses in the tail-flick test and almost completely abolished the nociceptive-related behaviors induced by chemical somatic and visceral noxious stimuli. Likewise, increasing doses of JMV2009 significantly reduced tactile allodynia and weight bearing deficits in nerve-injured rats. Importantly, repeated agonist treatment did not result in the development of analgesic tolerance. Furthermore, JMV2009 did not cause constipation and was ineffective in inducing hypothermia. These findings suggest that NT drugs can act as an effective opioid-free medication for the management of pain or can serve as adjuvant analgesics to reduce the opioid adverse effects.


Assuntos
Analgésicos/uso terapêutico , Neurotensina/análogos & derivados , Neurotensina/uso terapêutico , Dor/tratamento farmacológico , Receptores de Neurotensina/agonistas , Analgésicos/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Temperatura Corporal/efeitos dos fármacos , Motilidade Gastrointestinal/efeitos dos fármacos , Hiperalgesia/tratamento farmacológico , Hiperalgesia/fisiopatologia , Masculino , Neurotensina/farmacologia , Dor/fisiopatologia , Ratos Sprague-Dawley , Receptores de Neurotensina/fisiologia
10.
Nucl Med Commun ; 41(5): 411-415, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32168264

RESUMO

Pancreatic cancer is the fourth leading cause of cancer-related death in both men and women. Neurotensin receptors are overexpressed in different malignancies, above all pancreatic cancer. On the other hand, neurotensin receptor expression in inflammation is quite low. This fact can probably solve the most important problem of F-FDG PET imaging - distinguishing malignant and inflammatory processes. The first therapeutic injection of radiolabelled neurotensin in human with pancreatic cancer has been successfully performed. Animal experiments are also very close to the first in human injection of radiolabelled neurotensin for diagnostic purposes. The purpose of this article is to provide an overview of radiolabelled neurotensin analogues that can be used in imaging and therapy in patients with pancreatic ductal adenocarcinoma.


Assuntos
Neurotensina/uso terapêutico , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/radioterapia , Tomografia por Emissão de Pósitrons/métodos , Animais , Humanos , Marcação por Isótopo , Neurotensina/análogos & derivados , Neurotensina/metabolismo , Neoplasias Pancreáticas/metabolismo , Receptores de Neurotensina/metabolismo
11.
J Endocrinol ; 245(2): 219-230, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32130206

RESUMO

Recent studies have characterised the biological properties and glucose-dependent insulinotropic polypeptide (GIP) potentiating actions of an enzymatically stable, C-terminal hexapeptide fragment of the gut hormone xenin, namely Ψ-xenin-6. Given the primary therapeutic target of clinically approved dipeptidyl peptidase-4 (DPP-4) inhibitor drugs is augmentation of the incretin effect, the present study has assessed the capacity of Ψ-xenin-6 to enhance the antidiabetic efficacy of sitagliptin in high fat fed (HFF) mice. Individual administration of either sitagliptin or Ψ-xenin-6 alone for 18 days resulted in numerous metabolic benefits and positive effects on pancreatic islet architecture. As expected, sitagliptin therapy was associated with elevated circulating GIP and GLP-1 levels, with concurrent Ψ-xenin-6 not elevating these hormones or enhancing DPP-4 inhibitory activity of the drug. However, combined sitagliptin and Ψ-xenin-6 therapy in HFF mice was associated with further notable benefits, beyond that observed with either treatment alone. This included body weight change similar to lean controls, more pronounced and rapid benefits on circulating glucose and insulin as well as additional improvements in attenuating gluconeogenesis. Favourable effects on pancreatic islet architecture and peripheral insulin sensitivity were more apparent with combined therapy. Expression of hepatic genes involved in gluconeogenesis and insulin action were partially, or fully, restored to normal levels by the treatment regimens, with beneficial effects more prominent in the combination treatment group. These data demonstrate that combined treatment with Ψ-xenin-6 and sitagliptin did not alter glucose tolerance but does offer some metabolic advantages, which merit further consideration as a therapeutic option for type 2 diabetes.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Hormônios Gastrointestinais/farmacologia , Hipoglicemiantes/farmacologia , Neurotensina/análogos & derivados , Fosfato de Sitagliptina/farmacologia , Animais , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/etiologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Quimioterapia Combinada , Insulina/sangue , Resistência à Insulina , Camundongos , Neurotensina/farmacologia
12.
ACS Chem Neurosci ; 10(11): 4535-4544, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31589400

RESUMO

Neurotensin (NT) exerts its analgesic effects through activation of the G protein-coupled receptors NTS1 and NTS2. This opioid-independent antinociception represents a potential alternative for pain management. While activation of NTS1 also induces a drop in blood pressure and body temperature, NTS2 appears to be an analgesic target free of these adverse effects. Here, we report modifications of NT at Tyr11 to increase selectivity toward NTS2, complemented by modifications at the N-terminus to impair proteolytic degradation of the biologically active NT(8-13) sequence. Replacement of Tyr11 by either 6-OH-Tic or 7-OH-Tic resulted in a significant loss of binding affinity to NTS1 and subsequent NTS2 selectivity. Incorporation of the unnatural amino acid ß3hLys at position 8 increased the half-life to over 24 h in plasma. Simultaneous integration of both ß3hLys8 and 6-OH-Tic11 into NT(8-13) produced a potent and NTS2-selective analogue with strong analgesic action after intrathecal delivery in the rat formalin-induced pain model with an ED50 of 1.4 nmol. Additionally, intravenous administration of this NT analogue did not produce persistent hypotension or hypothermia. These results demonstrate that NT analogues harboring unnatural amino acids at positions 8 and 11 can enhance crucial pharmacokinetic and pharmacodynamic features for NT(8-13) analogues, i.e., proteolytic stability, NTS2 selectivity, and improved analgesic/adverse effect ratio.


Assuntos
Analgesia/métodos , Hipotensão/metabolismo , Hipotermia/metabolismo , Neurotensina/análogos & derivados , Receptores de Neurotensina/metabolismo , Tirosina/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Humanos , Hipotensão/induzido quimicamente , Hipotermia/induzido quimicamente , Masculino , Neurotensina/toxicidade , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores de Neurotensina/agonistas , Tirosina/genética
13.
Eur J Nucl Med Mol Imaging ; 46(10): 2199-2207, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31264168

RESUMO

INTRODUCTION: Despite recent developments in the diagnosis and treatment of prostate cancer, the advanced stages still have poor survival rates. This warrants further exploration of related molecular targets for patient screening, detection of metastatic disease, and treatment/treatment monitoring. Recent studies have indicated that neurotensin receptors (NTSRs) and their ligand neurotensin (NTS) critically affect the progression of prostate cancers. In this study, we evaluated the expression of neurotensin receptor1 (NTSR1) in patient tissues and performed NTSR1 PET imaging in a prostate cancer animal model. METHODS: The NTSR1 expression was evaluated in 97 cases of prostate cancer and 100 cases of benign prostatic hyperplasia (BPH) of clinical patients by immunohistochemistry staining. The expression profile of PSMA and GRPR was also performed for comparison. The mRNA expression of NTSR1 in LnCap and PC-3 cells was measured by PCR. NTSR1 PET, and biodistribution studies were performed in PC-3 xenografts using 18F-DEG-VS-NT. RESULTS: NTSR1 showed high or moderate expression in 91.8% of prostate cancer tissue, compared with PSMA (86.7%) and GRPR (65.3%). All examined PSMA-negative tissues showed positive NTSR1 expression, suggesting the potential complementary role of NTSR1 targeted imaging or therapy. Only 8% of BPH shows strong or moderate expression of NTSR1, which is significantly lower than that in prostate cancer (91.8%). PCR results indicated LNCap (an androgen-dependent prostate cancer cell) showed negative NTSR1 expression while PC-3 demonstrated positive expression (an androgen-independent prostate cancer cell), which correlated well with previously reported western blot results. In a preclinical animal model, NTSR1 targeted PET probe 18F-DEG-VS-NT demonstrated prominent tumor accumulation and low background. CONCLUSION: We have demonstrated that NTSR1 is a promising molecular marker for prostate cancer based on patient tissue staining. The NTSR targeted probe 18F-DEG-VS-NT demonstrated high tumor to background contrast in animal models, which could be valuable in selecting patients for therapies targeting NTSR1 as well as monitoring therapeutic efficacy during treatment accordingly.


Assuntos
Carcinoma/diagnóstico por imagem , Neurotensina/análogos & derivados , Neoplasias da Próstata/diagnóstico por imagem , Compostos Radiofarmacêuticos/farmacocinética , Receptores de Neurotensina/genética , Idoso , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma/genética , Carcinoma/metabolismo , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Neurotensina/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Neurotensina/metabolismo , Nanomedicina Teranóstica/métodos
14.
J Mol Neurosci ; 66(4): 552-560, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30374780

RESUMO

Close functional and anatomical interactions between the neurotensin (NT) and dopamine (DA) systems suggest that NT could be associated with Parkinson's Disease (PD). However, clinical use of NT is limited due to its rapid degradation. This has led to the synthesis of a number of new NT fragment 8-13 [NT(8-13)] analogues, such as NT2 and NT4, to avoid the fast biodegradation of NT. The aim of this study was to investigate the neuroprotective effects of NT2 and NT4 on an experimental model of Parkinson's disease in rats induced with 6-hydroxydopamine (6-OHDA) treatment, producing striatal lesions. Wistar male rats were divided into different groups: a sham-operated (SO) group, a striatal 6-OHDA-lesioned control group, two groups of 6-OHDA-lesioned rats treated for 5 days with NT2 or NT4 (10 mg/kg, intraperitoneally) and a NT-treated group as reference. During the first and second week post lesion the animals were subjected to a number of behavioral tests (apomorphine-induced rotations, rotarod, passive avoidance test), and brain tissue was evaluated histologically and also assessed for DA levels. The results showed that both the number of apomorphine-induced rotations and falls (rotarod test) increased in the 6-OHDA group relative to the SO group. At the same time, the 6-OHDA-treated group showed significant memory impairment, based on the to step-through test, compared to the SO group. Treatment with NT2 and NT4 significantly decreased the number of apomorphine-induced rotations and improved the memory of lesioned animals, with these NT analogues demonstrating better neuroprotective and neuromodulatory effects than NT. DA content in the brain of the PD rats treated with NT2 and NT4 increased, possibly due to attenuation of the loss of DA-ergic neurons. NT2 and NT4 were found to easily penetrate the blood-brain barrier and they showed a better stability than the reference NT neuropeptide. In conclusion, the NT approach represents an attractive strategy for the treatment of neurodegenerative disease.


Assuntos
Fármacos Neuroprotetores/uso terapêutico , Neurotensina/análogos & derivados , Doença de Parkinson/tratamento farmacológico , Fragmentos de Peptídeos/uso terapêutico , Animais , Barreira Hematoencefálica/metabolismo , Masculino , Fármacos Neuroprotetores/farmacocinética , Oxidopamina/toxicidade , Doença de Parkinson/etiologia , Doença de Parkinson/prevenção & controle , Fragmentos de Peptídeos/farmacocinética , Ratos , Ratos Wistar
15.
Diabetes Obes Metab ; 20(5): 1166-1175, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29316242

RESUMO

AIMS: To demarcate pathological events in the brain as a result of short-term to chronic high-fat-diet (HFD) feeding, which leads to cognitive impairment and neuroinflammation, and to assess the efficacy of Xenin-25[Lys(13)PAL] in chronic HFD-fed mice. METHODS: C57BL/6 mice were fed an HFD or a normal diet for 18 days, 34 days, 10 and 21 weeks. Cognition was assessed using novel object recognition and the Morris water maze. Markers of insulin signalling and inflammation were measured in brain and plasma using immunohistochemistry, quantitative PCR and multi-array technology. Xenin-25[Lys(13)PAL] was also administered for 5 weeks in chronic HFD-fed mice to assess therapeutic potential at a pathological stage. RESULTS: Recognition memory was consistently impaired in HFD-fed mice and spatial learning was impaired in 18-day and 21-week HFD-fed mice. Gliosis, oxidative stress and IRS-1 pSer616 were increased in the brain on day 18 in HFD-fed mice and were reduced by Xenin-25[Lys(13)PAL] in 21-week HFD-fed mice. In plasma, HFD feeding elevated interleukin (IL)-6 and chemokine (C-X-C motif) ligand 1 at day 34 and IL-5 at week 10. In the brain, HFD feeding reduced extracellular signal-regulated kinase 2 (ERK2), mechanistic target of rapamycin (mTOR), NF-κB1, protein kinase C (PKC)θ and Toll-like receptor 4 (TLR4) mRNA at week 10 and increased expression of glucacon-like peptide-1 receptor, inhibitor of NF-κB kinase ß, ERK2, mTOR, NF-κB1, PKCθ and TLR4 at week 21, elevations that were abrogated by Xenin-25[Lys(13)PAL]. CONCLUSIONS: HFD feeding modulates cognitive function, synapse density, inflammation and insulin resistance in the brain. Xenin-25[Lys(13)PAL] ameliorated markers of inflammation and insulin signalling dysregulation and may have therapeutic potential in the treatment of diseases associated with neuroinflammation or perturbed insulin signalling in the brain.


Assuntos
Encéfalo/efeitos dos fármacos , Transtornos Cognitivos/tratamento farmacológico , Modelos Animais de Doenças , Encefalite/tratamento farmacológico , Resistência à Insulina , Neurotensina/análogos & derivados , Nootrópicos/uso terapêutico , Peptídeos/uso terapêutico , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Biomarcadores/sangue , Biomarcadores/metabolismo , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/patologia , Transtornos Cognitivos/imunologia , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/patologia , Dieta Hiperlipídica/efeitos adversos , Encefalite/imunologia , Encefalite/metabolismo , Encefalite/patologia , Comportamento Exploratório/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Imuno-Histoquímica , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/imunologia , Neurônios/metabolismo , Neurônios/patologia , Neurotensina/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Distribuição Aleatória
16.
J Labelled Comp Radiopharm ; 61(3): 309-325, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29114915

RESUMO

The neurotensin receptors are overexpressed in various tumor types, especially in highly progressive pancreatic tumors. As this cancer has a poor 5-year survival prognosis, there is an urgent need to improve early diagnosis and treatment strategies. This review article provides an overview of the latest developments in radiopharmaceuticals for neurotensin receptor-positive tumors, including peptidic and non-peptidic radiopharmaceuticals, not only for SPECT and PET but also for endoradiotherapy.


Assuntos
Neurotensina/análogos & derivados , Neoplasias Pancreáticas/diagnóstico por imagem , Compostos Radiofarmacêuticos/química , Animais , Humanos , Neoplasias Pancreáticas/radioterapia , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/farmacologia , Compostos Radiofarmacêuticos/uso terapêutico , Radioterapia/métodos , Receptores de Neurotensina/metabolismo
17.
Chem Biol Drug Des ; 91(1): 304-313, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28816013

RESUMO

It has been shown that more than 75% of ductal pancreatic adenocarcinomas overexpressed neurotensin (NT) receptors. Overexpression of NT receptors has been reported in various human tumor types. Hence, a non-invasive diagnosis and staging method could be very beneficial. In this work, we describe radiolabeling and evaluation of new neurotensin analogues to target neurotensin receptor-positive tumors such as pancreatic carcinoma. Radiolabeling was performed at 95°C for 10 min using 99m Tc in the presence of tricine/EDDA exchange labeling. Radiochemical yield analysis involved ITLC and HPLC methods. A binding assay test was carried out in nine different concentrations of labeled neurotensin analogues in HT-29 cells. Radiopeptide-specific binding and internalization were studied in NT receptors expressing HT-29 cells. Biodistribution studies were performed in tumor-free BALB/c mice and HT-29 xenografted tumor-bearing nude mice. The peptide was efficiently labeled by 99m Tc with high radiochemical yields (>98%). The radioconjugate was thoroughly stable in the solution and human serum even for 24 hr. The radiolabeled peptide showed high affinity (32.66 ± 4.01 nm) and specificity internalization (>%18 after 4 hr) to HT-29 cells. The radiopeptide efficiently showed tumor size and location in tumor-bearing nude mice. In biodistribution, a receptor-specific uptake of radiopeptide was observed in neurotensin receptor-positive organs such as intestine. Uptake in the tumor was 4.59 ± 0.23% ID/g after 2 hr. Owing to excellent stability, high affinity, rapid blood clearance, low accumulation in non-target organs, and high uptake in tumor, the 99m Tc-HYNIC-peptide is a potential agent for targeting of NTR-overexpressing tumor cells in clinical surroundings. When successfully executed in the clinical surrounding, non-invasive imaging of NTR-positive tumors with 99m Tc-labeled new neurotensin analogues could facilitate therapy procedure and monitoring.


Assuntos
Neoplasias/diagnóstico , Neurotensina/análogos & derivados , Compostos Radiofarmacêuticos/química , Animais , Ligação Competitiva , Feminino , Células HT29 , Humanos , Marcação por Isótopo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neurotensina/farmacocinética , Ligação Proteica , Compostos Radiofarmacêuticos/farmacocinética , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Tecnécio/química , Distribuição Tecidual , Transplante Heterólogo
18.
Mol Imaging ; 16: 1536012117711369, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28849698

RESUMO

INTRODUCTION: Neurotensin receptor 1 (NTR-1) is expressed and activated in prostate cancer cells. In this study, we explore the NTR expression in normal mouse tissues and study the positron emission tomography (PET) imaging of NTR in prostate cancer models. MATERIALS AND METHODS: Three 64Cu chelators (1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetic acid [DOTA], 1,4,7-triazacyclononane-N,N',N″-triacetic acid [NOTA], or AmBaSar) were conjugated to an NT analog. Neurotensin receptor binding affinity was evaluated using cell binding assay. The imaging profile of radiolabeled probes was compared in well-established NTR+ HT-29 tumor model. Stability of the probes was tested. The selected agents were further evaluated in human prostate cancer PC3 xenografts. RESULTS: All 3 NT conjugates retained the majority of NTR binding affinity. In HT-29 tumor, all agents demonstrated prominent tumor uptake. Although comparable stability was observed, 64Cu-NOTA-NT and 64Cu-AmBaSar-NT demonstrated improved tumor to background contrast compared with 64Cu-DOTA-NT. Positron emission tomography/computed tomography imaging of the NTR expression in PC-3 xenografts showed high tumor uptake of the probes, correlating with the in vitro Western blot results. Blocking experiments further confirmed receptor specificity. CONCLUSIONS: Our results demonstrated that 64Cu-labeled neurotensin analogs are promising imaging agents for NTR-positive tumors. These agents may help us identify NTR-positive lesions and predict which patients and individual tumors are likely to respond to novel interventions targeting NTR-1.


Assuntos
Radioisótopos de Cobre/análise , Neurotensina/análogos & derivados , Neurotensina/metabolismo , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/metabolismo , Receptores de Neurotensina/metabolismo , Células HT29 , Compostos Heterocíclicos/química , Compostos Heterocíclicos com 1 Anel/química , Humanos , Masculino , Tomografia por Emissão de Pósitrons
19.
PLoS One ; 12(7): e0180710, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28686721

RESUMO

Methamphetamine (METH) is a psychostimulant that exhibits significant abuse potential. Although METH addiction is a major health and societal concern, no drug is currently approved for its therapeutic management. METH activates the central dopaminergic "reward" circuitry, and with repeated use increases levels of the neuromodulatory peptide neurotensin in the nucleus accumbens and ventral tegmental area. Previous studies in rats suggest that neurotensin agonism decreases METH self-administration, but these studies did not examine the effect of neurotensin agonism on the pattern of self-administration or open field locomotion. In our studies, we established intravenous METH self-administration in male, DBA/2J mice (fixed ratio 3, 2 hr sessions) and examined the effect of pretreatment with the NTS1 receptor agonist PD149163 on METH self-administration behavior. Locomotion following PD149163 was also measured up to 2 hours after injection on a rotarod and in an open field. Pretreatment with PD149163 (0.05 and 0.10 mg/kg, s.c.) significantly decreased METH self-administration. The pattern of responding suggested that PD149163 decreased motivation to self-administer METH initially in the session with more normal intake in the second hour of access. Voluntary movement in the open-field was significantly decreased by both 0.05 and 0.10 mg/kg (s.c.) PD149163 from 10-120 minutes after injection, but rotarod performance suggested that PD149163 did not cause frank sedation. These results suggest that a systemically delivered NTS1 receptor agonist decreases METH self-administration in mice. The pattern of self-administration suggests that PD149163 may acutely decrease motivation to self-administer METH before the drug is experienced, but cannot rule out that depression of voluntary movement plays a role in the decreased self-administration.


Assuntos
Metanfetamina/toxicidade , Neurotensina/análogos & derivados , Neurotensina/metabolismo , Autoadministração/métodos , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Animais , Modelos Animais de Doenças , Dopamina/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos DBA , Neurotensina/administração & dosagem , Receptores de Neurotensina/metabolismo , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia
20.
J Med Chem ; 60(8): 3303-3313, 2017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-28368584

RESUMO

Neurotensin exerts potent analgesia by acting at both NTS1 and NTS2 receptors, whereas NTS1 activation also results in other physiological effects such as hypotension and hypothermia. Here, we used molecular modeling approach to design highly selective NTS2 ligands by investigating the docking of novel NT[8-13] compounds at both NTS1 and NTS2 sites. Molecular dynamics simulations revealed an interaction of the Tyr11 residue of NT[8-13] with an acidic residue (Glu179) located in the ECL2 of hNTS2 or with a basic residue (Arg212) at the same position in hNTS1. The importance of the residue at position 11 for NTS1/NTS2 selectivity was further demonstrated by the design of new NT analogues bearing basic (Lys, Orn) or acid (Asp or Glu) function. As predicted by the molecular dynamics simulations, binding of NT[8-13] analogues harboring a Lys11 exhibited higher affinity toward the hNTS1-R212E mutant receptor, in which Arg212 was substituted by the negatively charged Glu residue.


Assuntos
Desenho de Fármacos , Simulação de Dinâmica Molecular , Neurotensina/análogos & derivados , Sequência de Aminoácidos , Neurotensina/metabolismo , Receptores de Neurotensina/química , Receptores de Neurotensina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...