Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Curr Biol ; 31(15): 3330-3342.e7, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34143959

RESUMO

Dopamine (DA) transmission is critical to motivation, movement, and emotion. Unlike glutamatergic and GABAergic synapses, the development of DA synapses is less understood. We show that bassoon (BSN) clusters along DA axons in the core of nucleus accumbens (NAcc) were increased in neonatal stages and reduced afterward, suggesting DA synapse elimination. Remarkably, DA neuron-specific ablating neuregulin 3 (NRG3), a protein whose levels correlate with BSN clusters, increased the clusters and impaired DA release and behaviors related to DA transmission. An unbiased screen of transmembrane proteins with the extracellular domain (ECD) of NRG3 identified Caspr3 (contactin associate-like protein 3) as a binding partner. Caspr3 was enriched in striatal medium spiny neurons (MSNs). NRG3 and Caspr3 interact in trans, which was blocked by Caspr3-ECD. Caspr3 null mice displayed phenotypes similar to those in DAT-Nrg3f/f mice in DA axonal BSN clusters and DA transmission. Finally, in vivo disruption of the NRG3-Caspr3 interaction increased BSN clusters. Together, these results demonstrate that DA synapse development is controlled by trans interaction between NRG3 in DA neurons and Caspr3 in MSNs, identifying a novel pair of cell adhesion molecules for brain circuit wiring.


Assuntos
Corpo Estriado , Dopamina , Neurônios Dopaminérgicos/citologia , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurregulinas/fisiologia , Animais , Corpo Estriado/citologia , Camundongos , Camundongos Knockout , Sinapses
2.
Dev Neurobiol ; 81(2): 139-148, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33369884

RESUMO

Recent work has shown that neuregulin-4 (NRG4) is a physiological regulator of the growth of sympathetic axons and CNS dendrites in the developing nervous system. Here, we have investigated whether NRG4 plays a role in sensory axon growth and the establishment of cutaneous sensory innervation. Imaging early nerve fibers in the well-characterized cutaneous trigeminal territory, the brachial plexus, and thorax revealed very marked and highly significant decreases in nerve fiber length and branching density in Nrg4-/- embryos compared with Nrg4+/+ littermates. NRG4 promoted neurotrophin-independent sensory axon growth from correspondingly early trigeminal ganglion and DRG neurons in culture but not from enteroceptive nodose ganglion neurons. High levels of Nrg4 mRNA were detected in cutaneous tissues but not in sensory ganglia. Our findings suggest that NRG4 is an important target-derived factor that participates in the establishment of early cutaneous sensory innervation.


Assuntos
Fatores de Crescimento Neural , Neurregulinas/fisiologia , Axônios/fisiologia , Neurregulinas/química , Neurregulinas/metabolismo , Neurônios/fisiologia , Neurônios Aferentes/fisiologia
3.
Obesity (Silver Spring) ; 27(10): 1555-1557, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31479202

RESUMO

The discovery that functional brown adipose tissue (BAT) in adult humans is inversely related to body fat mass and may reflect metabolic health has stimulated adipose tissue research to explore activation of BAT as a potential target for antiobesity treatments. In addition to the capacity of BAT to increase energy expenditure and glucose and lipid uptake, BAT secretes factors that may contribute to the regulation of whole-body metabolism. Among signals released from BAT, neuregulin 4 (NRG4) has been recently identified as an endocrine factor that may link the activation of BAT to protection against diet-induced obesity, insulin resistance, and hepatic steatosis. NRG4 was shown to directly reduce lipogenesis in hepatocytes, and it could indirectly activate BAT via sympathetic neurons or via inducing brown adipocyte-like signatures in white adipocytes in a paracrine manner. However, the potential relevance of NRG4 as a diagnostic tool or target for the treatment of obesity-related diseases remains to be explored.


Assuntos
Tecido Adiposo Marrom/metabolismo , Fígado/metabolismo , Neurregulinas/fisiologia , Adipócitos Marrons/metabolismo , Adulto , Animais , Metabolismo Energético/fisiologia , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Glucose/metabolismo , Humanos , Resistência à Insulina/fisiologia , Lipogênese/fisiologia , Camundongos , Obesidade/complicações , Obesidade/metabolismo , Obesidade/patologia , Transdução de Sinais/fisiologia , Termogênese/fisiologia
4.
Compr Physiol ; 9(3): 905-931, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31187890

RESUMO

Doxorubicin-induced cardiotoxicity in childhood cancer survivors is a growing problem. The population of patients at risk for cardiovascular disease is steadily increasing, as five-year survival rates for all types of childhood cancers continue to improve. Doxorubicin affects the developing heart differently from the adult heart and in a subset of exposed patients, childhood exposure leads to late, irreversible cardiomyopathy. Notably, the prevalence of late-onset toxicity is increasing in parallel with improved survival. By the year 2020, it is estimated that there will be 500,000 childhood cancer survivors and over 50,000 of them will suffer from doxorubicin-induced cardiotoxicity. The majority of the research to-date, concentrated on childhood cancer survivors, has focused mostly on clinical outcomes through well-designed epidemiological and retrospective cohort studies. Preclinical studies have elucidated many of the cellular mechanisms that elicit acute toxicity in cardiomyocytes. However, more research is needed in the areas of early- and late-onset cardiotoxicity and more importantly improving the scientific understanding of how other cells present in the cardiac milieu are impacted by doxorubicin exposure. The overall goal of this review is to succinctly summarize the major clinical and preclinical studies focused on doxorubicin-induced cardiotoxicity. As the prevalence of patients affected by doxorubicin exposure continues to increase, it is imperative that the major gaps in existing research are identified and subsequently utilized to develop appropriate research priorities for the coming years. Well-designed preclinical research models will enhance our understanding of the pathophysiology of doxorubicin-induced cardiotoxicity and directly lead to better diagnosis, treatment, and prevention. © 2019 American Physiological Society. Compr Physiol 9:905-931, 2019.


Assuntos
Antibióticos Antineoplásicos/efeitos adversos , Cardiotoxicidade/etiologia , Doxorrubicina/efeitos adversos , Fatores Etários , Antibióticos Antineoplásicos/farmacologia , Cardiotoxicidade/diagnóstico , Cardiotoxicidade/metabolismo , Cardiotoxicidade/patologia , Criança , Dano ao DNA , Doxorrubicina/farmacologia , Endotélio Vascular/efeitos dos fármacos , Receptores ErbB/metabolismo , Humanos , Mitocôndrias Cardíacas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Neurregulinas/fisiologia , Espécies Reativas de Oxigênio/metabolismo
5.
PLoS Genet ; 14(8): e1007568, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30142157

RESUMO

We characterized the establishment of an Epidermal Growth Factor Receptor (EGFR) organizing center (EOC) during leg development in Drosophila melanogaster. Initial EGFR activation occurs in the center of leg discs by expression of the EGFR ligand Vn and the EGFR ligand-processing protease Rho, each through single enhancers, vnE and rhoE, that integrate inputs from Wg, Dpp, Dll and Sp1. Deletion of vnE and rhoE eliminates vn and rho expression in the center of the leg imaginal discs, respectively. Animals with deletions of both vnE and rhoE (but not individually) show distal but not medial leg truncations, suggesting that the distal source of EGFR ligands acts at short-range to only specify distal-most fates, and that multiple additional 'ring' enhancers are responsible for medial fates. Further, based on the cis-regulatory logic of vnE and rhoE we identified many additional leg enhancers, suggesting that this logic is broadly used by many genes during Drosophila limb development.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Elementos Facilitadores Genéticos , Receptores ErbB/fisiologia , Extremidades/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Receptores de Peptídeos de Invertebrados/fisiologia , Alelos , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Receptores ErbB/genética , Deleção de Genes , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Discos Imaginais/fisiologia , Neurregulinas/genética , Neurregulinas/fisiologia , Organizadores Embrionários , Receptores de Peptídeos de Invertebrados/genética , Transdução de Sinais , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/fisiologia , Proteína Wnt1/genética , Proteína Wnt1/fisiologia
6.
Am J Med Genet B Neuropsychiatr Genet ; 177(2): 257-266, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28556469

RESUMO

Neuregulins, a four-member family of epidermal growth factor-like signaling molecules, have been studied for over two decades. They were first implicated in schizophrenia in 2002 with the detection of linkage and association at the NRG1 locus followed after a few years by NRG3. However, the associations with disease have not been very consistently observed. In contrast, association of NGR3 variants with disease presentation, specifically the presence of delusions, has been more consistent. This appears to be mediated by quantitative changes in the alternative splicing of the gene, which has also been consistently observed. Additional diseases and phenotypes, psychiatric or not, have also been connected with NRG3. These results demonstrate two important aspects of behavioral genetics research. The first is that if we only consider simple risk and fail to examine the details of each patient's individual phenotype, we will miss important insights on the disease biology. This is an important aspect of the goals of precision medicine. The second is that the functional consequences of variants are often more complex than simple alterations in levels of transcription of a particular gene, including, among others, regulation of alternative splicing. To accurately model and understand the biological consequences of phenotype-associated genetic variants, we need to study the biological consequences of each specific variant. Simply studying the consequences of a null allele of the orthologous gene in a model system, runs the risk of missing the many nuances of hypomorphic and/or gain of function variants in the genome of interest.


Assuntos
Neurregulinas/genética , Neurregulinas/fisiologia , Esquizofrenia/genética , Processamento Alternativo , Ligação Genética/genética , Genótipo , Humanos , Neuregulina-1/genética , Neuregulina-1/fisiologia , Neurregulinas/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Esquizofrenia/fisiopatologia
7.
Sheng Li Xue Bao ; 69(3): 351-356, 2017 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-28638929

RESUMO

Neuregulin 4 (NRG4) is a kind of protein containing epidermal growth factor (EGF)-like domains, mainly expressed and secreted by brown adipocytes. It specifically activates EGF receptor ErbB4 (v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 4) to stimulate cell proliferation, inhibit apoptosis and improve energy metabolism of cells. Increasing evidence has shown that NRG4 plays an important role in epithelial cell-related diseases, cardiovascular diseases, tumors and glycolipid metabolic diseases, and therefore it could be a potential therapeutic target of some diseases.


Assuntos
Neurregulinas/fisiologia , Animais , Apoptose , Doenças Cardiovasculares , Proliferação de Células , Metabolismo Energético , Humanos , Doenças Metabólicas , Neoplasias , Receptor ErbB-4/fisiologia , Transdução de Sinais
8.
Sci Rep ; 6: 26242, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27184920

RESUMO

Neuregulin 4 (NRG4), an epidermal growth factor-like signaling molecule, plays an important role in cell-to-cell communication during tissue development. Its function to regulate energy metabolism has recently been reported. This current study was designed to assess the preventive and therapeutic effects of NRG4 overexpression on high fat diet (HFD)-induced obesity. Using the hydrodynamic gene transfer method, we demonstrate that Nrg4 gene transfer in mice suppressed the development of diet-induced obesity, but did not affect pre-existing adiposity and body weight in obese mice. Nrg4 gene transfer curbed HFD-induced hepatic steatosis by inhibiting lipogenesis and PPARγ-mediated lipid storage. Concurrently, overexpression of NRG4 reduced chronic inflammation in both preventive and treatment studies, evidenced by lower mRNA levels of macrophage marker genes including F4/80, Cd68, Cd11b, Cd11c, and macrophage chemokine Mcp1, resulting in improved insulin sensitivity. Collectively, these results demonstrate that overexpression of the Nrg4 gene by hydrodynamic gene delivery prevents HFD-induced weight gain and fatty liver, alleviates obesity-induced chronic inflammation and insulin resistance, and supports the health benefits of NRG4 in managing obesity and obesity-associated metabolic disorders.


Assuntos
Neurregulinas/genética , Obesidade/genética , Obesidade/prevenção & controle , Tecido Adiposo Branco/patologia , Tecido Adiposo Branco/fisiopatologia , Animais , Dieta Hiperlipídica/efeitos adversos , Técnicas de Transferência de Genes , Hiperinsulinismo/prevenção & controle , Inflamação/prevenção & controle , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Lipogênese/genética , Lipogênese/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurregulinas/fisiologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Obesidade/fisiopatologia , Termogênese/genética , Termogênese/fisiologia , Aumento de Peso/genética
9.
Ann Endocrinol (Paris) ; 77(1): 49-56, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26852251

RESUMO

Adipose tissue is now widely recognized as "an organ" able to synthesize and secrete hundred factors collectively called adipokines. These secreted molecules exert pleiotropic actions, notably on the regulation of glucose and lipid metabolism, inflammation, reproduction, or angiogenesis. Over the past two decades, a considerable amount of work was performed on the two "star" adipokines, leptin and adiponectin, particularly because of their involvement in energy metabolism. The present review is focused on the three most recently discovered adipokines that are clearly emerging as important actors in metabolism: apelin, fibroblast growth factor-21, and neuroregulin-4. Moreover, given a number of clinical and experimental data, these three adipokines represent promising targets in the context of metabolic disorders associated with obesity.


Assuntos
Adipocinas , Adipocinas/fisiologia , Tecido Adiposo/metabolismo , Animais , Apelina , Metabolismo Energético , Fatores de Crescimento de Fibroblastos/fisiologia , Glucose/metabolismo , Humanos , Inflamação , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Metabolismo dos Lipídeos , Fígado , Neurregulinas/fisiologia , Obesidade , Reprodução
10.
Metabolism ; 64(12): 1667-73, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26476959

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a great health burden. Neuregulin 4 (Nrg4) is a recently identified secret factor that may be associated with NAFLD. AIM: To investigate the association between serum Nrg4 level and NAFLD by conducting a case-control study. METHOD: A total of 174 subjects were included. 87 NAFLD subjects and 87 age- and sex-matched non-NAFLD controls were identified by hepatic ultrasound examination. Anthropometric and biochemical data were measured and recorded. Serum Nrg4 level was evaluated by using enzyme-linked immunosorbent assay. SPSS software was used for statistical analyses. RESULTS: Compared to the controls, subjects with NAFLD presented with reduced level of serum Nrg4 (0.40 (0.27, 0.55) vs. 0.50 (0.30, 0.81)ng/mL (median (interquartile range)), P=0.029). By multivariate logistic regression analysis, reduced serum levels of Nrg4 were associated with higher NAFLD odds (OR=0.251, 95% confidence interval=0.081-0.779, P=0.017). By dividing the distribution of serum Nrg4 level into quartiles, there was borderline statistical difference of NAFLD prevalence among the four groups (P=0.058). There was no significant difference of serum Nrg4 levels in subjects according to the grades of fatty liver by ultrasound (P=0.080). No statistical difference of serum Nrg4 level was observed between obese and non-obese subjects (P=0.932). CONCLUSION: Decreased serum Nrg4 level is prevalent in NAFLD subjects compared to non-NAFLD controls, and is an independent risk factor associated with NAFLD, indicating that Nrg4 might have a protective role in the development of NAFLD.


Assuntos
Neurregulinas/sangue , Hepatopatia Gordurosa não Alcoólica/sangue , Tecido Adiposo Marrom/metabolismo , Adulto , Idoso , Glicemia/análise , Índice de Massa Corporal , Estudos de Casos e Controles , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Neurregulinas/fisiologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/sangue
11.
Trends Endocrinol Metab ; 26(5): 231-7, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25843910

RESUMO

Brown fat is highly active in fuel oxidation and dissipates chemical energy through uncoupling protein (UCP)1-mediated heat production. Activation of brown fat leads to increased energy expenditure, reduced adiposity, and lower plasma glucose and lipid levels, thus contributing to better homeostasis. Uncoupled respiration and thermogenesis have been considered to be responsible for the metabolic benefits of brown adipose tissue. Recent studies have demonstrated that brown adipocytes also secrete factors that act locally and systemically to influence fuel and energy metabolism. This review discusses the evidence supporting a thermogenesis-independent role of brown fat, particularly through its release of secreted factors, and their implications in physiology and therapeutic development.


Assuntos
Tecido Adiposo Marrom/metabolismo , Termogênese , Adipócitos Marrons/metabolismo , Adiponectina/fisiologia , Tecido Adiposo Marrom/inervação , Animais , Proteínas Morfogenéticas Ósseas/fisiologia , Metabolismo Energético , Fatores de Crescimento de Fibroblastos/fisiologia , Homeostase , Humanos , Canais Iônicos/fisiologia , Proteínas Mitocondriais/fisiologia , Fator de Crescimento Neural/fisiologia , Neurregulinas/fisiologia , Obesidade , Proteína Desacopladora 1 , Fator A de Crescimento do Endotélio Vascular/fisiologia
13.
Curr Cardiol Rev ; 10(1): 29-37, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23638831

RESUMO

The formation of collateral vessels (arteriogenesis) to sustain perfusion in ischemic tissue is native to the body and can compensate for coronary stenosis. However, arteriogenesis is a complex process and is dependent on many different factors. Although animal studies on collateral formation and stimulation show promising data, clinical trials have failed to replicate these results. Further research to the exact mechanisms is needed in order to develop a pharmalogical stimulant. This review gives an overview of recent data in the field of arteriogenesis.


Assuntos
Circulação Colateral/fisiologia , Doença da Artéria Coronariana/fisiopatologia , Neovascularização Fisiológica/fisiologia , Indutores da Angiogênese/uso terapêutico , Inibidores da Angiogênese/uso terapêutico , Animais , Bradicinina/fisiologia , Circulação Coronária/fisiologia , Vasos Coronários/fisiologia , Modelos Animais de Doenças , Fator Estimulador de Colônias de Granulócitos/fisiologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Macrófagos/fisiologia , Camundongos , Monócitos/fisiologia , Músculo Liso Vascular/fisiologia , Neurregulinas/fisiologia , Plasma Rico em Plaquetas/fisiologia , Receptores da Bradicinina/fisiologia , Transdução de Sinais/fisiologia , Células-Tronco/fisiologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , Vasodilatadores/uso terapêutico
14.
Transl Psychiatry ; 3: e264, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23715299

RESUMO

Despite the strongly held view that schizophrenia (SZ) shows substantial genetic heterogeneity, pathway heterogeneity, as seen in cancer where different pathways are affected in similar tumors, has not been explored. We explore this possibility in a case-only study of the neuregulin signaling pathway (NSP), which has been prominently implicated in SZ and for which there is detailed knowledge on the ligand- and receptor-processing steps through ß- and γ-secretase cleavage. We hypothesize that more than one damaging variants in the NSP genes might be necessary to cause disease, leading to an apparent clustering of such variants in only the few patients with affected NSP. We analyze linkage and next-generation sequencing results for the genes encoding components of the pathway, including NRG1, NRG3, ERBB4, ß-secretase and the γ-secretase complex. We find multiple independent examples of supporting evidence for this hypothesis: (i) increased linkage scores over NSP genes, (ii) multiple positive interlocus correlations of linkage scores across families suggesting each family is linked to either many or none of the genes, (iii) aggregation of predicted damaging variants in a subset of individuals and (iv) significant phenotypic differences of the subset of patients carrying such variants. Collectively, our data strongly support the hypothesis that the NSP is affected by multiple damaging variants in a subset of phenotypically distinct patients. On the basis of this, we propose a general model of pathway heterogeneity in SZ, which, in part, may explain its phenotypic variability and genetic complexity.


Assuntos
Neurregulinas/fisiologia , Esquizofrenia/metabolismo , Transdução de Sinais/fisiologia , Éxons/genética , Ligação Genética/genética , Humanos , Neurregulinas/metabolismo , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Esquizofrenia/etiologia , Esquizofrenia/genética , Transdução de Sinais/genética
15.
Psychiatry Res ; 205(3): 279-81, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22981155

RESUMO

We genotyped 13 single nucleotide polymorphisms (SNPs) within Neuregulin 3 (NRG3) to investigate the association between NRG3 and schizophrenia in 488 patients and 506 controls in Northwest China. No association was detected either in SNPs or in haplotypes. Our study provided no evidence that NRG3 confers a risk of schizophrenia susceptibility in the Han Chinese population.


Assuntos
Neurregulinas/fisiologia , Polimorfismo de Nucleotídeo Único/genética , Esquizofrenia/genética , Adulto , Povo Asiático/genética , China , Feminino , Estudos de Associação Genética , Genótipo , Haplótipos , Humanos , Masculino , Neurregulinas/genética
16.
PLoS Biol ; 11(12): e1001743, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24391468

RESUMO

Myelination is essential for rapid impulse conduction in the CNS, but what determines whether an individual axon becomes myelinated remains unknown. Here we show, using a myelinating coculture system, that there are two distinct modes of myelination, one that is independent of neuronal activity and glutamate release and another that depends on neuronal action potentials releasing glutamate to activate NMDA receptors on oligodendrocyte lineage cells. Neuregulin switches oligodendrocytes from the activity-independent to the activity-dependent mode of myelination by increasing NMDA receptor currents in oligodendrocyte lineage cells 6-fold. With neuregulin present myelination is accelerated and increased, and NMDA receptor block reduces myelination to far below its level without neuregulin. Thus, a neuregulin-controlled switch enhances the myelination of active axons. In vivo, we demonstrate that remyelination after white matter damage is NMDA receptor-dependent. These data resolve controversies over the signalling regulating myelination and suggest novel roles for neuregulin in schizophrenia and in remyelination after white matter damage.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/fisiologia , Bainha de Mielina/fisiologia , Neurregulinas/fisiologia , Oligodendroglia/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Potenciais de Ação/fisiologia , Animais , Técnicas de Cocultura/métodos , Feminino , Neuregulina-1/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia
17.
J Neurosci ; 32(46): 16181-92, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23152602

RESUMO

ß-secretase (or BACE1) is the key enzyme in the production of ß-amyloid (Aß), which accumulates in the senile plaques characteristic for Alzheimer's disease. Consequently, the lack of BACE1 prevents ß-processing of the amyloid precursor protein and Aß production, which made it a promising target for drug development. However, the loss of BACE1 is also detrimental, leading to myelination defects and altered neuronal activity, functions that have been associated with the cleavage of Neuregulin and a voltage-gated sodium channel subunit. Here we show that the Drosophila ortholog of BACE, dBACE, is required for glial survival. Cell-specific knockdown experiments reveal that this is a non-cell autonomous function, as a knockdown of dBACE in photoreceptor neurons leads to progressive degeneration of glia in their target zone, the lamina. Interestingly, this phenotype is suppressed by the loss of the fly amyloid precursor protein (APPL), whereas a secretion-deficient form of APPL enhances the degeneration. This shows that full-length APPL in neurons promotes the death of neighboring glial cells and that ß-processing of APPL is needed to prevent glial death. These results therefore not only demonstrate a novel function for an APP protein in glia, but they also show this function specifically requires regulation by ß-cleavage.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Sobrevivência Celular/fisiologia , Drosophila/fisiologia , Neuroglia/fisiologia , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Axônios/fisiologia , Western Blotting , Morte Celular/fisiologia , Movimento Celular/fisiologia , Imuno-Histoquímica , Microscopia Eletrônica , Neurregulinas/genética , Neurregulinas/fisiologia , Reação em Cadeia da Polimerase , RNA/biossíntese , RNA/genética , Interferência de RNA/fisiologia , Retina/citologia , Retina/fisiologia , Vacúolos/ultraestrutura
18.
PLoS One ; 7(5): e36828, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22606295

RESUMO

BACKGROUND: Growth factors activating the ErbB receptors have been described in prostate tumors. The androgen dependent prostate cancer cell line, LNCaP, expresses the ErbB-1, ErbB-2 and ErbB-3 receptor tyrosine kinases. Previously, it was demonstrated that NRG activates ErbB-2/ErbB-3 heterodimers to induce LNCaP cell death, whereas, EGF activates ErbB-1/ErbB-1 or ErbB-1/ErbB-2 dimers to induce cell growth and survival. It was also demonstrated that PI3K inhibitors repressed this cell death suggesting that in androgen deprived LNCaP cells, NRG activates a PI3K-dependent pathway associated with cell death. METHODOLOGY/PRINCIPAL FINDINGS: In the present study we demonstrate that NRG induces autophagy in LNCaP cells, using LC3 as a marker. However, the autophagy induced by NRG may be incomplete since p62 levels elevate. We also demonstrated that NRG- induced autophagy is independent of mammalian target of rapamycin (mTOR) inhibition since NRG induces Akt and S6K activation. Interestingly, inhibition of reactive oxygen species (ROS) by N-acetylcysteine (NAC), inhibited NRG-induced autophagy and cell death. Our study also identified JNK and Beclin 1 as important components in NRG-induced autophagy and cell death. NRG induced elevation in JNK phosphorylation that was inhibited by NAC. Moreover, inhibitor of JNK inhibited NRG-induced autophagy and cell death. Also, in cells overexpressing Bcl-2 or cells expressing sh-RNA against Beclin 1, the effects of NRG, namely induction of autophagy and cell death, were inhibited. CONCLUSIONS/SIGNIFICANCE: Thus, in LNCaP cells, NRG-induces incomplete autophagy and cell death that depend on ROS levels. These effects of NRG are mediated by signaling pathway that activates JNK and Beclin 1, but is independent of mTOR inhibition.


Assuntos
Neurregulinas/fisiologia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/fisiopatologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Acetilcisteína/farmacologia , Adenina/análogos & derivados , Adenina/farmacologia , Antracenos/farmacologia , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Proteína Beclina-1 , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Linhagem Celular Tumoral , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Neoplasias Hormônio-Dependentes/tratamento farmacológico , Neoplasias Hormônio-Dependentes/patologia , Neoplasias Hormônio-Dependentes/fisiopatologia , Neurregulinas/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/fisiologia
19.
Am J Physiol Heart Circ Physiol ; 302(11): H2139-47, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22427524

RESUMO

The signaling complex consisting of the growth factor neuregulin-1 (NRG1) and its tyrosine kinase receptors ErbB2 and ErbB4 has a critical role in cardiac development and homeostasis of the structure and function of the adult heart. Recent research results suggest that targeting this signaling complex may provide a viable strategy for treating heart failure. Clinical trials are currently evaluating the effectiveness and safety of intravenous administration of recombinant NRG1 formulations in heart failure patients. Endogenous as well as administered NRG1 has multiple possible activities in the adult heart, but how these are related is unknown. It has recently been demonstrated that NRG1 administration can stimulate proliferation of cardiomyocytes, which may contribute to repair failing hearts. This review summarizes the current knowledge of how NRG1 and its receptors control cardiac physiology and biology, with special emphasis on its role in cardiomyocyte proliferation during myocardial growth and regeneration.


Assuntos
Proliferação de Células , Receptores ErbB/fisiologia , Miócitos Cardíacos/fisiologia , Neurregulinas/fisiologia , Receptor ErbB-2/fisiologia , Transdução de Sinais/fisiologia , Animais , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Camundongos , Modelos Animais , Miócitos Cardíacos/citologia , Neuregulina-1/uso terapêutico , Neurregulinas/uso terapêutico , Ratos , Receptor ErbB-4 , Proteínas Recombinantes/uso terapêutico
20.
Prog Neurobiol ; 95(3): 275-300, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21907759

RESUMO

Gray matter loss in the cortex is extensive in schizophrenia, especially in the prefrontal-temporal-network (PTN). Several molecules such as neuregulin-1 (NRG1) and its ErbB4 receptor are encoded by candidate susceptibility genes for schizophrenia. The question arises as to how these genes might contribute to the observed changes in gray matter. It is suggested that one pathway involves molecules such as NRG1/ErbB4 determining the efficacy of N-methyl-D-aspartate receptors (NMDARs) found on dendritic spines at synapses in the PTN. The growth of dendritic spines is modulated by NRG1/ErbB4 through NMDARs as these activate small Rho-GTPases, such as kalirin, which control the actin cytoskeleton in the spines responsible for their growth. Another pathway involves NRG1/ErbB determining the proliferation and differentiation of oligodendrocytes in the white matter as well as their capacity for myelination, the integrity of which determines the stability of nerve terminals on dendritic spines. A causal chain is established between failure of the products of susceptibility genes for schizophrenia, the decrease of dendritic spines and synaptic terminals, and the loss of gray matter. It is suggested than an important focus for future research in schizophrenia is to identify interventions that prevent the loss of dendritic spines and synapses during the prodromal period or earlier during development as well as to re-establish dendritic spines and synapses lost subsequent to this period. This will help reestablish neural networks in the PTN and so the loss of gray matter in the PTN.


Assuntos
Encéfalo/patologia , Espinhas Dendríticas/patologia , Esquizofrenia/genética , Esquizofrenia/patologia , Encéfalo/crescimento & desenvolvimento , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/patologia , Humanos , Neurregulinas/fisiologia , Oligodendroglia/patologia , Receptores de N-Metil-D-Aspartato/fisiologia , Sinapses/patologia , Transmissão Sináptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...