Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
2.
Brain Res Rev ; 63(1-2): 60-71, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20188124

RESUMO

Like the liver or other peripheral organs, two regions of the adult brain possess the ability of self-renewal through a process called neurogenesis. This raises tremendous hope for repairing the damaged brain, and it has stimulated research on identifying signals controlling neurogenesis. Neurogenesis involves several stages from fate determination to synaptic integration via proliferation, migration, and maturation. While fate determination primarily depends on a genetic signature, other stages are controlled by the interplay between genes and microenvironmental signals. Here, we propose that neurotransmitters are master regulators of the different stages of neurogenesis. In favor of this idea, a description of selective neurotransmitter signaling and their functions in the largest neurogenic zone, the subventricular zone (SVZ), is provided. In particular, we emphasize the interactions between neuroblasts and astrocyte-like cells that release gamma-aminobutyric acid (GABA) and glutamate, respectively. However, we also raise several limitations to our knowledge on neurotransmitters in neurogenesis. The function of neurotransmitters in vivo remains largely unexplored. Neurotransmitter signaling has been viewed as uniform, which dramatically contrasts with the cellular and molecular mosaic nature of the SVZ. How neurotransmitters are integrated with other well-conserved molecules, such as sonic hedgehog, is poorly understood. In an effort to reconcile these differences, we discuss how specificity of neurotransmitter functions can be provided through their multitude of receptors and intracellular pathways in different cell types and their possible interactions with sonic hedgehog.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Neurogênese/fisiologia , Neurotransmissores/metabolismo , Animais , Humanos , Nicho de Células-Tronco/crescimento & desenvolvimento , Nicho de Células-Tronco/fisiologia
3.
Neuroreport ; 21(5): 349-53, 2010 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-20147861

RESUMO

The major histocompatibility complex (MHC) class I has a role in the regulation of immune responses and has been implicated recently in neural plasticity and neurogenesis. We therefore sought to investigate in functional MHC class I knockout mice, transporter associated with antigen processing 1 (TAP1) KO, whether there are alterations in adult neurogenesis. We found no significant differences in cell proliferation or neurogenesis in either the dentate gyrus or subventricular zone, in TAP1 KO versus wild-type mice at several different time points. Our results do not support a role for MHC class I in adult neurogenesis, although it may still have a role in the maturation and integration of newborn neurons.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Genes MHC Classe I , Neurogênese/genética , Neurogênese/fisiologia , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Células-Tronco Adultas/fisiologia , Envelhecimento , Animais , Ansiedade/genética , Ansiedade/metabolismo , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Proliferação de Células , Giro Denteado/crescimento & desenvolvimento , Giro Denteado/fisiologia , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/fisiologia , Percepção Espacial/fisiologia , Nicho de Células-Tronco/crescimento & desenvolvimento , Nicho de Células-Tronco/fisiologia
4.
Ann Neurol ; 67(1): 21-30, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20186952

RESUMO

OBJECTIVE: Glucocorticoids (GCs) are indicated for a number of conditions in obstetrics and perinatal medicine; however, the neurodevelopmental and long-term neurological consequences of early-life GC exposure are still largely unknown. Preclinical studies have demonstrated that GCs have a major influence on hippocampal cell turnover by inhibiting neurogenesis and stimulating apoptosis of mature neurons. Here we examined the fate of the limited pool of neural progenitor cells (NPCs) after GC administration during neonatal development; the impact of this treatment on hippocampal structure was also studied. METHODS: Phenotype-specific genetic and antigenic markers were used to identify cultured NPCs at various developmental stages; the survival of these cells was monitored after exposure to the synthetic glucocorticoid dexamethasone (DEX). In addition, the effects of neonatal DEX treatment on the neurogenic potential of the rat hippocampus were examined by monitoring the incorporation of bromodeoxyuridine and expression of Ki67 antigen at various postnatal ages. RESULTS: Multipotent nestin-expressing NPCs and Talpha1-tubulin-expressing immature neurons succumb to GC-induced apoptosis in primary hippocampal cultures. Neonatal GC treatment results in marked apoptosis among the proliferating population of cells in the dentate gyrus, depletes the NPC pool, and leads to significant and sustained reductions in the volume of the dentate gyrus. INTERPRETATION: Both NPCs and immature neurons in the hippocampus are sensitive to the proapoptotic actions of GCs. Depletion of the limited NPC pool during early life retards hippocampal growth, thus allowing predictions about the potential neurological and psychiatric consequences of neonatal GC exposure.


Assuntos
Dexametasona/farmacologia , Glucocorticoides/farmacologia , Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Nicho de Células-Tronco/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Giro Denteado/efeitos dos fármacos , Giro Denteado/crescimento & desenvolvimento , Giro Denteado/fisiologia , Hipocampo/crescimento & desenvolvimento , Hipocampo/fisiologia , Proteínas de Filamentos Intermediários/metabolismo , Masculino , Proteínas do Tecido Nervoso/metabolismo , Nestina , Neurônios/fisiologia , Ratos , Ratos Wistar , Nicho de Células-Tronco/crescimento & desenvolvimento , Nicho de Células-Tronco/fisiologia , Células-Tronco/fisiologia , Tubulina (Proteína)/metabolismo
5.
BMC Neurosci ; 11: 2, 2010 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-20051123

RESUMO

BACKGROUND: Survivin is a unique member of the inhibitor of apoptosis protein (IAP) family in that it exhibits antiapoptotic properties and also promotes the cell cycle and mediates mitosis as a chromosome passenger protein. Survivin is highly expressed in neural precursor cells in the brain, yet its function there has not been elucidated. RESULTS: To examine the role of neural precursor cell survivin, we first showed that survivin is normally expressed in periventricular neurogenic regions in the embryo, becoming restricted postnatally to proliferating and migrating NPCs in the key neurogenic sites, the subventricular zone (SVZ) and the subgranular zone (SGZ). We then used a conditional gene inactivation strategy to delete the survivin gene prenatally in those neurogenic regions. Lack of embryonic NPC survivin results in viable, fertile mice (SurvivinCamcre) with reduced numbers of SVZ NPCs, absent rostral migratory stream, and olfactory bulb hypoplasia. The phenotype can be partially rescued, as intracerebroventricular gene delivery of survivin during embryonic development increases olfactory bulb neurogenesis, detected postnatally. SurvivinCamcre brains have fewer cortical inhibitory interneurons, contributing to enhanced sensitivity to seizures, and profound deficits in memory and learning. CONCLUSIONS: The findings highlight the critical role that survivin plays during neural development, deficiencies of which dramatically impact on postnatal neural function.


Assuntos
Encéfalo/fisiopatologia , Transtornos Cognitivos/fisiopatologia , Proteínas Associadas aos Microtúbulos/metabolismo , Neurogênese/fisiologia , Convulsões/fisiopatologia , Células-Tronco/fisiologia , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Transtornos Cognitivos/patologia , Inativação Gênica , Proteínas Inibidoras de Apoptose , Interneurônios/patologia , Interneurônios/fisiologia , Deficiências da Aprendizagem/patologia , Deficiências da Aprendizagem/fisiopatologia , Masculino , Transtornos da Memória/patologia , Transtornos da Memória/fisiopatologia , Camundongos , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/genética , Inibição Neural/fisiologia , Neurônios/patologia , Neurônios/fisiologia , RNA Mensageiro/metabolismo , Proteínas Repressoras , Convulsões/patologia , Nicho de Células-Tronco/crescimento & desenvolvimento , Nicho de Células-Tronco/patologia , Nicho de Células-Tronco/fisiopatologia , Células-Tronco/patologia , Survivina
6.
Neurobiol Dis ; 37(1): 218-27, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19837162

RESUMO

Neural stem cells (NSCs) persist in the forebrain subventricular zone (SVZ) within a niche containing endothelial cells. Evidence suggests that endothelial cells stimulate NSC expansion and neurogenesis. Experimental stroke increases neurogenesis and angiogenesis, but how endothelial cells influence stroke-induced neurogenesis is unknown. We hypothesized intact or oxygen-glucose deprived (OGD) endothelial cells secrete factors that enhance neurogenesis. We co-cultured mouse SVZ neurospheres (NS) with endothelial cells, or differentiated NS in endothelial cell-conditioned medium (ECCM). NS also were expanded in ECCM from OGD-exposed (OGD-ECCM) endothelial cells to assess injury effects. ECCM significantly increased NS production. NS co-cultured with endothelial cells or ECCM generated more immature-appearing neurons and oligodendrocytes, and astrocytes with radial glial-like/reactive morphology than controls. OGD-ECCM stimulated neuroblast migration and yielded neurons with longer processes and more branching. These data indicate that intact and injured endothelial cells exert differing effects on NSCs, and suggest targets for stimulating regeneration after brain insults.


Assuntos
Células Endoteliais/fisiologia , Neurônios/fisiologia , Nicho de Células-Tronco/crescimento & desenvolvimento , Nicho de Células-Tronco/fisiologia , Células-Tronco/fisiologia , Animais , Astrócitos/fisiologia , Hipóxia Celular/fisiologia , Linhagem Celular , Movimento Celular/fisiologia , Células Cultivadas , Técnicas de Cocultura , Meios de Cultivo Condicionados , Células Endoteliais/metabolismo , Imunofluorescência , Glucose/deficiência , Camundongos , Camundongos Endogâmicos , Neurogênese/fisiologia , Neurônios/citologia , Oligodendroglia/fisiologia
7.
J Comp Neurol ; 517(3): 333-49, 2009 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-19760739

RESUMO

Neural stem cells (NSCs) in the murine subventricular zone (SVZ) niche allow life-long neurogenesis. During the first postnatal month and throughout aging, the decrease of neuroblasts and the rise of astrocytes results in diminished neurogenesis and increased astrocyte:neuron ratio. Also, a different neurogenic activity characterizes the SVZ periventricular region (LV, lateral ventricle) as compared to its rostral extension (RE). In order to investigate whether and to what extent these physiological modifications may be ascribed to intrinsic changes of the endogenous NSC/progenitor features, we performed a functional analysis on NSCs isolated and cultured from LV and RE tissues at distinct postnatal stages that are marked by striking modifications to the SVZ niche in vivo. We evaluated the effect of age and brain region on long-term proliferation and multipotency, and characterized the cell type composition of NSC-derived progeny, comparing this make-up to that of region- and age-matched primary neural cultures. Furthermore, we analyzed the effect of prolonged in vitro expansion on NSC functional properties. We documented age- and region-dependent differences on the clonogenic efficiency and on the long-term proliferative capacity of NSCs. Also, we found age- and region-dependent quantitative changes in the cell composition of NSC progeny (decreased quantity of neurons and oligodendrocytes; increased amount of astroglial cells) and these differences were maintained in long-term cultured NSC populations. Overall, these data strengthen the hypothesis that age- and region-dependent differences in neurogenesis (observed in vivo) may be ascribed to the changes in the intrinsic developmental program of the NSC populations.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Neurônios/fisiologia , Nicho de Células-Tronco/crescimento & desenvolvimento , Nicho de Células-Tronco/fisiologia , Células-Tronco/fisiologia , Envelhecimento , Animais , Animais Recém-Nascidos , Astrócitos/fisiologia , Diferenciação Celular/fisiologia , Proliferação de Células , Células Cultivadas , Camundongos , Camundongos Endogâmicos , Bulbo Olfatório/crescimento & desenvolvimento , Bulbo Olfatório/fisiologia , Oligodendroglia/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA