Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.057
Filtrar
1.
J Clin Neurosci ; 123: 91-99, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38564967

RESUMO

BACKGROUND: The prophylactic use of nimodipine following subarachnoid hemorrhage is a practice established four decades ago when clinical management differed from current and the concept of Delayed Cerebral Ischemia (DCI) was not established. The applicability of the original studies is limited by the fact of not reflecting current practice; by utilising a dichotomised outcome measure such as good neurological outcome versus death and vegetative state; by applying variable dosing regimens and including all causes of poor neurological outcome different than DCI. This study aims to review the available evidence to discuss the ongoing role of nimodipine in contemporaneous clinical practice. METHODS: PRISMA guidelines based review, evaluated the evidence on the prophylactic use of nimodipine. The following search engines: Medline, Embase, Cochrane, Web of Science and PubMed, identified Randomized Control Trials (RCTs) with neurological benefit as outcome measure and the impact of fixed versus weight-based nimodipine dosing regimens. RESULTS: Eight RCT were selected. Three of those trials with a total of 349 patients, showed a reduction on death and vegetative state (pooled RR: 0.62; 95 % confidence interval-CI: 0.45, 0.86) related to DCI. Amongst all studies, all cause death (pooled RR = 0.73, [95 % CI: 0.56, 0.97]) favoured a fixed-dose regimen (pooled RR: 0.60; [95 % CI: 0.43, 0.85]). CONCLUSION: Available evidence demonstrates that nimodipine only reduces the risk for DCI-related death or vegetative state and that fixed-dose regimens favour all cause infarct and death independent of DCI. Contemporaneous studies assessing the benefit of nimodipine beyond death or vegetative states and applying individualized dosing are warranted.


Assuntos
Nimodipina , Hemorragia Subaracnóidea , Nimodipina/administração & dosagem , Nimodipina/uso terapêutico , Humanos , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/tratamento farmacológico , Bloqueadores dos Canais de Cálcio/administração & dosagem , Bloqueadores dos Canais de Cálcio/uso terapêutico , Vasodilatadores/administração & dosagem , Vasodilatadores/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto
2.
Sci Rep ; 14(1): 6154, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486099

RESUMO

Intra-arterial nimodipine administration is a widely used rescue therapy for cerebral vasospasm. Although it is known that its effect sets in with delay, there is little evidence in current literature. Our aim was to prove that the maximal vasodilatory effect is underestimated in direct angiographic controls. We reviewed all cases of intra-arterial nimodipine treatment for subarachnoid hemorrhage-related cerebral vasospasm between January 2021 and December 2022. Inclusion criteria were availability of digital subtraction angiography runs before and after nimodipine administration and a delayed run for the most affected vessel at the end of the procedure to decide on further escalation of therapy. We evaluated nimodipine dose, timing of administration and vessel diameters. Delayed runs were performed in 32 cases (19 patients) with a mean delay of 37.6 (± 16.6) min after nimodipine administration and a mean total nimodipine dose of 4.7 (± 1.2) mg. Vessel dilation was more pronounced in delayed vs. immediate controls, with greater changes in spastic vessel segments (n = 31: 113.5 (± 78.5%) vs. 32.2% (± 27.9%), p < 0.0001) vs. non-spastic vessel segments (n = 32: 23.1% (± 13.5%) vs. 13.3% (± 10.7%), p < 0.0001). In conclusion intra-arterially administered nimodipine seems to exert a delayed vasodilatory effect, which should be considered before escalation of therapy.


Assuntos
Hemorragia Subaracnóidea , Vasoespasmo Intracraniano , Humanos , Nimodipina/farmacologia , Vasodilatadores/uso terapêutico , Vasoespasmo Intracraniano/diagnóstico por imagem , Vasoespasmo Intracraniano/tratamento farmacológico , Hemorragia Subaracnóidea/diagnóstico por imagem , Hemorragia Subaracnóidea/tratamento farmacológico , Angiografia Digital
3.
Acta Neurochir (Wien) ; 166(1): 93, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376665

RESUMO

BACKGROUND: Aneurysmal subarachnoid hemorrhage (aSAH) remains a devastating diagnosis. A poor outcome is known to be highly dependent on the initial neurological status. Our goal was to identify other parameters that favor the risk of complications and poor outcome in patients with aSAH and initially favorable neurologic status. METHODS: Consecutive aSAH cases treated at our hospital between 01/2003 and 06/2016 with the initial World Federation of Neurosurgical Societies grades I-III were included. Data on demographic characteristics, previous medical history, initial aSAH severity, and functional outcome after aSAH were collected. The study endpoints were the occurrence of cerebral infarcts, in-hospital mortality, and unfavorable outcome at 6 months after aSAH (modified Rankin scale > 3). RESULTS: In the final cohort (n= 582), the rate of cerebral infarction, in-hospital mortality, and unfavorable outcome was 35.1%, 8.1%, and 17.6% respectively. The risk of cerebral infarction was independently related to the presence of acute hydrocephalus (adjusted odds ratio [aOR]=2.33, p<0.0001), aneurysm clipping (aOR=1.78, p=0.003), and use of calcium channel blockers concomitant to nimodipine (aOR=2.63, p=0.002). Patients' age (>55 years, aOR=4.24, p<0.0001), acute hydrocephalus (aOR=2.43, p=0.036), and clipping (aOR=2.86, p=0.001) predicted in-hospital mortality. Baseline characteristics associated with unfavorable outcome at 6 months were age (aOR=2.77, p=<0.0001), Fisher grades III-IV (aOR=2.81, p=0.016), acute hydrocephalus (aOR=2.22, p=0.012), clipping (aOR=3.98, p<0.0001), admission C-reactive protein>1mg/dL (aOR=1.76, p=0.035), and treatment intervals (aOR=0.64 per-5-year-intervals, p=0.006). CONCLUSIONS: Although cerebral infarction is a common complication in aSAH individuals with favorable initial clinical condition, >80% of these patients show favorable long-term outcome. The knowledge of outcome-relevant baseline characteristics might help to reduce the burden of further complications and poor outcome in aSAH patients who tolerated the initial bleeding event well.


Assuntos
Hidrocefalia , Hemorragia Subaracnóidea , Humanos , Pessoa de Meia-Idade , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/cirurgia , Fatores de Risco , Nimodipina , Infarto Cerebral/epidemiologia , Infarto Cerebral/etiologia
4.
J Mol Neurosci ; 74(1): 9, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38214771

RESUMO

Subarachnoid hemorrhage (SAH) due to the rupture of an intracranial aneurysm leads to delayed vasospasm and neuroischemia, which can result in profound neurologic deficit and death. Therapeutic options after SAH are currently limited to hemodynamic optimization and nimodipine, which have limited clinical efficacy. Experimental SAH results in cerebral vasospasm have demonstrated the downregulation of nitric oxide (NO)-protein kinase G (PKG) signaling elements. VP3 is a novel cell permeant phosphopeptide mimetic of VASP, a substrate of PKG and an actin-associated protein that modulates vasorelaxation in vascular smooth muscle cells. In this study, we determined that intravenous administration of high doses of VP3 did not induce systemic hypotension in rats except at the maximal soluble dose, implying that VP3 is well-tolerated and has a wide therapeutic window. Using a single cisterna magna injection rat model of SAH, we demonstrated that intravenous administration of low-dose VP3 after SAH improved neurologic deficits for up to 14 days as determined by the rotarod test. These findings suggest that strategies aimed at targeting the cerebral vasculature with VP3 may improve neurologic deficits associated with SAH.


Assuntos
Hemorragia Subaracnóidea , Ratos , Animais , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/tratamento farmacológico , Nimodipina , Hemodinâmica , Transdução de Sinais , Resultado do Tratamento , Modelos Animais de Doenças
5.
Biomed Chromatogr ; 38(4): e5827, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38287211

RESUMO

In recent years, researchers have shown a growing interest in the interactions between different pharmaceutical agents. An intriguing instance lies in the possible interaction between nimodipine and vitamin C. To investigate the pharmacokinetic and pharmacodynamic effects of vitamin C on nimodipine in rats, rats were randomly divided into a nimodipine only group and a combination group (nimodipine + vitamin C). The two groups were given intragastric administration and nimodipine blood concentrations were determined using high-performance liquid chromatography-tandem mass spectrum at different time points. Blood pressure and heart rate were measured via carotid artery cannulation. Pharmacokinetic differences were observed between the nimodipine only group and the combination group at the same dose. Compared with the nimodipine only group, the combination group's main pharmacokinetic parameters of peak concentration and area under the curve increased significantly, and the difference was statistically significant (p < 0.05); furthermore, the combination group exhibited a significant reduction in average blood pressure, while no significant effects on heart rate were observed. Vitamin C did not affect the activity of CYP450 in rat liver. The pharmacokinetic characteristics and pharmacodynamics of nimodipine were changed by vitamin C administration in rats.


Assuntos
Ácido Ascórbico , Nimodipina , Ratos , Animais , Cromatografia Líquida de Alta Pressão , Sistema Enzimático do Citocromo P-450
6.
Neurosurg Rev ; 47(1): 37, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38191859

RESUMO

Nimodipine dose reduction is recommended in case of high vasopressor demand after aneurysmal subarachnoid hemorrhage (aSAH). The aim of this study was to assess potential adverse effects of nimodipine reduction during the high-risk period for delayed cerebral ischemia (DCI) and cerebral vasospasm (CVS) between days 5 and 10 after hemorrhage. Demographic and clinical data as well as daily nimodipine dose of aSAH patients admitted between 2010 and 2019 were retrospectively analyzed. Univariable and multivariable regression analyses were performed to identify factors associated with DCI, angiographic CVS, DCI-related infarction, and unfavorable outcome. A total of 205 patients were included. Nimodipine dose reduction occurred in 108 (53%) patients ('nimodipine reduction group'), while 97 patients (47%) received the full dose ('no nimodipine reduction group'), Patients in the 'nimodipine reduction group' had significant worse WFNS and Fisher grades and developed significantly more often DCI and angiographic CVS. DCI-related infarction and unfavorable outcome were also significantly increased in the 'nimodipine reduction group.' 'Reduced nimodipine dose' was the only independent predictor for the occurrence of DCI and angiographic CVS in multivariable regression analysis. 'Poor WFNS grade' and 'reduced nimodipine dose' were identified as independent risk factors for DCI-related infarction while 'older age,' 'poor WFNS grade,' and 'reduced nimodipine dose' were associated with unfavorable outcome at 3 months after discharge. Nimodipine dose reduction during the high-risk period of DCI and CVS between days 5 and 10 after hemorrhage might abrogate the positive prognostic effects of nimodipine and should be critically evaluated.


Assuntos
Hemorragia Subaracnóidea , Vasoespasmo Intracraniano , Humanos , Nimodipina/uso terapêutico , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/tratamento farmacológico , Hemorragia Subaracnóidea/cirurgia , Redução da Medicação , Estudos Retrospectivos , Infarto Cerebral/tratamento farmacológico , Infarto Cerebral/etiologia , Vasoespasmo Intracraniano/tratamento farmacológico , Vasoespasmo Intracraniano/etiologia
7.
Turk Neurosurg ; 34(1): 148-159, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38282594

RESUMO

AIM: To evaluate the effects of the combination of nimodipine and dexamethasone in subarachnoid hemorrhage (SAH). MATERIAL AND METHODS: In this study, 35 female adult Wistar Albino rats were randomly assigned to four groups: Sham (n=8), SAH with no treatment (n=9), SAH with nimodipine (n=9, oral gavage, 12 mg/kg, BID) treatment, and SAH with combined therapy with nimodipine and dexamethasone (n=9, intraperitoneally, 1mg/kg, BID). The "cisterna magna double injection of autologous blood" model was used. The animals were euthanized 5 days after the first injection. RESULTS: Of the total, five rats died before euthanasia. The SAH+Nontreatment group showed the worst score in neurological examinations, and the most severe histopathological findings were noted in terms of vasospasm. The SAH+Nimodipine group showed the best neurological score and the closest histopathological results to those of the Sham group, whereas adding dexamethasone to nimodipine treatment (the SAH+Nimodipine+Dexamethasone group) worsened the neurological and histopathological outcomes. CONCLUSION: We thus concluded that the therapeutic effects of nimodipine were impaired when combined with dexamethasone. We thus hypothesized that dexamethasone possibly induces the CYP3A4-enzyme that metabolizes nimodipine. However, it should be noted that our results are based on laboratory findings obtained on a small sample, therefore further studies with drug-drug interaction on a larger sample size through CYP3A4-enzyme and clinical confirmation are warranted.


Assuntos
Hemorragia Subaracnóidea , Vasoespasmo Intracraniano , Feminino , Ratos , Animais , Nimodipina/farmacologia , Hemorragia Subaracnóidea/tratamento farmacológico , Vasodilatadores/farmacologia , Citocromo P-450 CYP3A/uso terapêutico , Ratos Wistar , Dexametasona/uso terapêutico , Vasoespasmo Intracraniano/tratamento farmacológico , Vasoespasmo Intracraniano/etiologia
8.
Neurocrit Care ; 40(1): 159-169, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37740138

RESUMO

BACKGROUND: Causes of morbidity and mortality following aneurysmal subarachnoid hemorrhage (aSAH) include early brain injury and delayed neurologic deterioration, which may result from delayed cerebral ischemia (DCI). Complex pathophysiological mechanisms underlie DCI, which often includes angiographic vasospasm (aVSP) of cerebral arteries. METHODS: Despite the study of many pharmacological therapies for the prevention of DCI in aSAH, nimodipine-a dihydropyridine calcium channel blocker-remains the only drug recommended universally in this patient population. A common theme in the research of preventative therapies is the use of promising drugs that have been shown to reduce the occurrence of aVSP but ultimately did not improve functional outcomes in large, randomized studies. An example of this is the endothelin antagonist clazosentan, although this agent was recently approved in Japan. RESULTS: The use of the only approved drug, nimodipine, is limited in practice by hypotension. The administration of nimodipine and its counterpart nicardipine by alternative routes, such as intrathecally or formulated as prolonged release implants, continues to be a rational area of study. Additional agents approved in other parts of the world include fasudil and tirilazad. CONCLUSIONS: We provide a brief overview of agents currently being studied for prevention of aVSP and DCI after aSAH. Future studies may need to identify subpopulations of patients who can benefit from these drugs and perhaps redefine acceptable outcomes to demonstrate impact.


Assuntos
Isquemia Encefálica , Hemorragia Subaracnóidea , Vasoespasmo Intracraniano , Humanos , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/etiologia , Isquemia Encefálica/prevenção & controle , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Infarto Cerebral/complicações , Nimodipina/farmacologia , Nimodipina/uso terapêutico , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/tratamento farmacológico , Vasoespasmo Intracraniano/tratamento farmacológico , Vasoespasmo Intracraniano/etiologia , Vasoespasmo Intracraniano/prevenção & controle
9.
Talanta ; 269: 125494, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043339

RESUMO

A new type of buckypaper of MWCNT with entrapped Nimodipine (NMD) drug was constructed. NMD features a nitroaromatic group that is electroreducible, and a dihydropyridine ring that can be electrooxidized. From the perspective of the nitroaromatic group's reductive capability, we have devised amperometric and voltammetric analytical strategies, including both differential pulse and linear voltammetric techniques. These methods are implemented using glassy carbon electrodes (GCE) modified with buckypaper (BP) disks composed of multiwalled carbon nanotubes (MWCNT), which are capable of adsorbing NMD. Furthermore, by capitalizing on the oxidative capacity of the dihydropyridine ring, we have designed strategies that involve amperometry using screen-printed electrodes (SPE) modified with BP-MWCNT mini discs within a Batch Injection Analysis Cell (BIAS) designed for SPE. The developed sensor was applied successfully to determine the drug in commercial tablets. The analytical parameters of this sensor were adequate, with a recovery value of 98.24 % and detection and quantification limits of 7.01 mgL-1 and 23.35 mgL-1, respectively using the DPV method.


Assuntos
Nanotubos de Carbono , Nanotubos de Carbono/química , Nimodipina , Eletrodos , Técnicas Eletroquímicas , Limite de Detecção
10.
J Cereb Blood Flow Metab ; 44(3): 317-332, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38017387

RESUMO

Aneurysmal subarachnoid hemorrhage (SAH) carries significant mortality and morbidity, with nearly half of SAH survivors having major cognitive dysfunction that impairs their functional status, emotional health, and quality of life. Apart from the initial hemorrhage severity, secondary brain injury due to early brain injury and delayed cerebral ischemia plays a leading role in patient outcome after SAH. While many strategies to combat secondary brain injury have been developed in preclinical studies and tested in late phase clinical trials, only one (nimodipine) has proven efficacious for improving long-term functional outcome. The causes of these failures are likely multitude, but include use of therapies targeting only one element of what has proven to be multifactorial brain injury process. Conditioning is a therapeutic strategy that leverages endogenous protective mechanisms to exert powerful and remarkably pleiotropic protective effects against injury to all major cell types of the CNS. The aim of this article is to review the current body of evidence for the use of conditioning agents in SAH, summarize the underlying neuroprotective mechanisms, and identify gaps in the current literature to guide future investigation with the long-term goal of identifying a conditioning-based therapeutic that significantly improves functional and cognitive outcomes for SAH patients.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Hemorragia Subaracnóidea , Vasoespasmo Intracraniano , Humanos , Hemorragia Subaracnóidea/terapia , Hemorragia Subaracnóidea/tratamento farmacológico , Qualidade de Vida , Nimodipina , Isquemia Encefálica/tratamento farmacológico , Lesões Encefálicas/complicações , Vasoespasmo Intracraniano/etiologia
11.
J Pharmacol Exp Ther ; 388(1): 190-200, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37863485

RESUMO

This study aimed to evaluate the effects of cytochrome P450 3A4 (CYP3A4) gene polymorphism and drug interaction on the metabolism of blonanserin. Human recombinant CYP3A4 was prepared using the Bac-to-Bac baculovirus expression system. A microsomal enzyme reaction system was established, and drug-drug interactions were evaluated using Sprague-Dawley rats. Ultra-performance liquid chromatography-tandem mass spectrometry was used to detect the concentrations of blonanserin and its metabolite. Compared with wild type CYP34A, the relative clearance of blonanserin by CYP3A4.29 significantly increased to 251.3%, while it decreased notably with CYP3A4.4, 5, 7, 8, 9, 10, 12, 13, 14, 16, 17, 18, 23, 24, 28, 31, 33, and 34, ranging from 6.09% to 63.34%. Among 153 tested drugs, nimodipine, felodipine, and amlodipine were found to potently inhibit the metabolism of blonanserin. Moreover, the inhibitory potency of nimodipine, felodipine, and amlodipine varied with different CYP3A4 variants. The half-maximal inhibitory concentration and enzymatic kinetics assay demonstrated that the metabolism of blonanserin was noncompetitively inhibited by nimodipine in rat liver microsomes and was inhibited in a mixed manner by felodipine and amlodipine in both rat liver microsomes and human liver microsomes. When nimodipine and felodipine were coadministered with blonanserin, the area under the blood concentration-time curve (AUC)(0-t), AUC(0-∞), and C max of blonanserin increased. When amlodipine and blonanserin were combined, the C max of blonanserin C increased remarkably. The vast majority of CYP3A4 variants have a low ability to catalyze blonanserin. With combined administration of nimodipine, felodipine, and amlodipine, the elimination of blonanserin was inhibited. This study provides the basis for individualized clinical use of blonanserin. SIGNIFICANCE STATEMENT: The enzyme kinetics of novel CYP3A4 enzymes for metabolizing blonanserin were investigated. Clearance of blonanserin by CYP3A4.4, 5, 7-10, 12-14, 16-18, 23-24, 28, 31, 33, and 34 decreased notably, but increased with CYP3A4.29. Additionally, we established a drug interaction spectrum for blonanserin, in which nimodipine, felodipine, and amlodipine kinetics exhibited mixed inhibition. Moreover, their inhibitory potencies decreased with CYP3A4.4 and 5 compared to CYP3A4.1. This study provides essential data for personalized clinical use of blonanserin.


Assuntos
Citocromo P-450 CYP3A , Nimodipina , Humanos , Ratos , Animais , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Nimodipina/metabolismo , Nimodipina/farmacologia , Felodipino/metabolismo , Felodipino/farmacologia , Ratos Sprague-Dawley , Interações Medicamentosas , Anlodipino/metabolismo , Anlodipino/farmacologia , Microssomos Hepáticos/metabolismo , Metaboloma
12.
Zhongguo Zhong Yao Za Zhi ; 48(22): 6107-6114, 2023 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-38114218

RESUMO

This study aims to investigate the mechanism of acacetin in protecting rats from cerebral ischemia-reperfusion injury via the Toll-like receptor 4(TLR4)/NOD-like receptor protein 3(NLRP3) signaling pathway. Wistar rats were randomized into sham, model, low-and high-dose acacetin, and nimodipine groups, with 10 rats in each group. The rat model of middle cerebral artery occlusion(MCAO) was established with the improved suture method in other groups except the sham group. The neurological deficit score and cerebral infarction volume of each group were evaluated 24 h after modeling. Enzyme-linked immunosorbent assay(ELISA) was employed to measure the levels of interleukin-1ß(IL-1ß), IL-6, tumor necrosis factor-α(TNF-α), malondialdehyde(MDA), supe-roxide dismutase(SOD), and glutathione(GSH). Western blot was employed to determine the expression levels of B-cell lymphonoma-2(Bcl-2), Bcl-2-associated X protein(Bax), and TLR4/NLRP3 signaling pathway-related proteins(TLR4, p-NF-κB/NF-κB, NLRP3, pro-caspase-1, cleaved caspase-1, pro-IL-1ß, and cleaved IL-1ß) in the rat brain tissue. Hematoxylin-eosin(HE) staining was employed to reveal the histopathological changes in the ischemic area. Compared with the sham group, the modeling of MCAO increased the neurological deficit score and cerebral infarction volume, elevated the IL-1ß, IL-6, TNF-α, and MDA levels and lowered the SOD and GSH levels in the brain tissue(P<0.05). Compared with the MCAO model group, low-and high-dose acacetin and nimodipine decreased the neurological deficit score and cerebral infarction volume, lowered the IL-1ß, IL-6, TNF-α, and MDA levels and elevated the SOD and GSH levels in the brain tissue(P<0.05). Compared with the sham group, the model group showed up-regulated protein levels of Bax, TLR4, p-NF-κB/NF-κB, NLRP3, pro-caspase-1, cleaved caspase-1, pro-IL-1ß, and cleaved IL-1ß and down-regulated protein level of Bcl-2 in the brain tissue(P<0.05). Compared with the MCAO model group, the acacetin and nimodipine groups showed down-regulated protein levels of Bax, TLR4, p-NF-κB/NF-κB, NLRP3, pro-caspase-1, cleaved caspase-1, pro-IL-1ß, and cleaved IL-1ß and up-regulated protein level of Bcl-2 in the brain tissue(P<0.05). In conclusion, acacetin regulates the TLR4/NLRP3 signaling pathway to inhibit neuroinflammatory response and oxidative stress, thus exerting the protective effect on cerebral ischemia-reperfusion injury in rats.


Assuntos
NF-kappa B , Traumatismo por Reperfusão , Ratos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Proteína X Associada a bcl-2 , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ratos Sprague-Dawley , Caspase 1/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Nimodipina/farmacologia , Interleucina-6 , Ratos Wistar , Transdução de Sinais , Infarto da Artéria Cerebral Média , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/prevenção & controle , Superóxido Dismutase/metabolismo
13.
Artigo em Russo | MEDLINE | ID: mdl-38147378

RESUMO

The purpose of this review is to correlate current data on the molecular mechanisms of action of the drug Nimodipine with its clinical effects and applicability in mental disorders belonging to the spectrum of affective pathology. The article discusses the prospects for using the calcium channel blocker nimodipine as a method of both mono and combination therapy for bipolar disorders with various types of course. Nimodipine is a selective blocker of voltage-dependent calcium channels, a dihydropyridine derivative. By blocking L type calcium channels, it prevents the entry of calcium ions into the cell. Due to its pronounced ability to penetrate the blood-brain barrier, it has a selective effect on brain neurons and has a vasodilating, antihypertensive and normotimic effect. Nimodipine blocks LTCC channels in brain neurons, thereby influencing synaptic plasticity, transmitter release and excitation-transcription coupling, which makes it possible to influence various clinical conditions with pathology in the area of affect, including bipolar disorders with ultra-rapid cycling, and also, in cases with high resistance and intolerance to other mood stabilizers.


Assuntos
Transtorno Bipolar , Nimodipina , Humanos , Nimodipina/uso terapêutico , Transtorno Bipolar/tratamento farmacológico , Bloqueadores dos Canais de Cálcio/uso terapêutico , Terapia Combinada , Encéfalo , Canais de Cálcio
14.
J Neuroinflammation ; 20(1): 263, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964385

RESUMO

The experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis was used in combination with a Cav1.2 conditional knock-out mouse (Cav1.2KO) to study the role of astrocytic voltage-gated Ca++ channels in autoimmune CNS inflammation and demyelination. Cav1.2 channels were specifically ablated in Glast-1-positive astrocytes by means of the Cre-lox system before EAE induction. After immunization, motor activity was assessed daily, and a clinical score was given based on the severity of EAE symptoms. Cav1.2 deletion in astrocytes significantly reduced the severity of the disease. While no changes were found in the day of onset and peak disease severity, EAE mean clinical score was lower in Cav1.2KO animals during the chronic phase of the disease. This corresponded to better performance on the rotarod and increased motor activity in Cav1.2KO mice. Furthermore, decreased numbers of reactive astrocytes, activated microglia, and infiltrating lymphocytes were found in the lumbar section of the spinal cord of Cav1.2KO mice 40 days after immunization. The degree of myelin protein loss and size of demyelinated lesions were also attenuated in Cav1.2KO spinal cords. Similar results were found in EAE animals treated with nimodipine, a Cav1.2 Ca++ channel inhibitor with high affinity to the CNS. Mice injected with nimodipine during the acute and chronic phases of the disease exhibited lower numbers of reactive astrocytes, activated microglial, and infiltrating immune cells, as well as fewer demyelinated lesions in the spinal cord. These changes were correlated with improved clinical scores and motor performance. In summary, these data suggest that antagonizing Cav1.2 channels in astrocytes during EAE alleviates neuroinflammation and protects the spinal cord from autoimmune demyelination.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Esclerose Múltipla/patologia , Nimodipina/metabolismo , Doenças Neuroinflamatórias , Astrócitos/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/patologia , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Medula Espinal/patologia , Camundongos Knockout , Camundongos Endogâmicos C57BL
15.
AAPS PharmSciTech ; 24(8): 234, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973673

RESUMO

Nimodipine (NMD) is a 1,4-dihydropyridine calcium antagonist that is effective in the prevention and treatment of cerebral arterial vasospasm and cerebral ischemic injury caused by subarachnoid hemorrhage. Since the drug itself is highly insoluble in water and has low oral bioavailability, while injectable formulations may cause pain and inflammation, the blood-brain barrier (BBB) prevents the effective delivery of therapeutic agents to the brain tissue. Therefore, in the present study, NMD liposomes were prepared by ethanol injection and innovatively lyophilised and loaded into temperature-sensitive in situ gels for intranasal administration as sprays to deliver drugs to brain tissues bypassing the blood-brain barrier. The optimal gel formulation was obtained by screening in which liposomes were divided into lecithin, cholesterol, and NMD in the ratio of 40:10: 1; Pluronic P407, Pluronic P188, Tween 80, polyvinyl ketone and ethyl nipagin in the ratio of (180:20:3:1:1); Pluronic P407, Pluronic P188, Tween 80, polyvinyl ketone, and ethyl nipagin in the ratio of (180:20:3:1:1). The prepared flow gel can form a solidified gel after a temperature of 31.07-32.07°C and a time of 58.51-59.89 s. Meanwhile, the NMD liposome gel formulation achieved sustained release over 56 h. The pharmacokinetic results of the developed NMD liposomal temperature-sensitive in situ gel and NMD temperature-sensitive in situ gel showed that liposomal nasal mucosal in situ gel is a more effective brain-targeted drug delivery system for NMD.


Assuntos
Lipossomos , Nimodipina , Poloxâmero , Polissorbatos , Polivinil , Sistemas de Liberação de Medicamentos/métodos , Administração Intranasal , Géis , Mucosa Nasal , Temperatura , Cetonas
17.
Mol Pharm ; 20(11): 5753-5762, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37750866

RESUMO

Parenteral depot systems can provide a constant release of drugs over a few days to months. Most of the parenteral depot products on the market are based on poly(lactic acid) and poly(lactide-co-glycolide) (PLGA). Studies have shown that acidic monomers of these polymers can lead to nonlinear release profiles or even drug inactivation before release. Therefore, finding alternatives for these polymers is of great importance. Our previous study showed the potential of starch as a natural and biodegradable polymer to form a controlled release system. Subarachnoid hemorrhage (SAH) is a life-threatening type of stroke and a major cause of death and disability in patients. Nimotop® (nimodipine (NMD)) is an FDA-approved drug for treating SAH-induced vasospasms. In addition, NMD has, in contrast to other Ca antagonists, unique neuroprotective effects. The oral administration of NMD is linked to variable absorption and systemic side effects. Therefore, the development of a local parenteral depot formulation is desirable. To avoid the formation of an acidic microenvironment and autocatalytic polymer degradation, we avoided PLGA as a matrix and investigated starch as an alternative. Implants with drug loads of 20 and 40% NMD were prepared by hot melt extrusion (HME) and sterilized with an electron beam. The effects of HME and electron beam on NMD and starch were evaluated with NMR, IR, and Raman spectroscopy. The release profile of NMD from the systems was assessed by high-performance liquid chromatography. Different spectroscopy methods confirmed the stability of NMD during the sterilization process. The homogeneity of the produced system was proven by Raman spectroscopy and scanning electron microscopy images. In vitro release studies demonstrated the sustained release of NMD over more than 3 months from both NMD systems. In summary, homogeneous nimodipine-starch implants were produced and characterized, which can be used for therapeutic purposes in the brain.


Assuntos
Nimodipina , Parassimpatolíticos , Humanos , Nimodipina/química , Preparações de Ação Retardada , Amido , Portadores de Fármacos/química , Polímeros/química , Encéfalo
18.
Medicine (Baltimore) ; 102(39): e34789, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773855

RESUMO

BACKGROUND: A systematic review and network meta-analysis (NMA) were conducted to explore the optimal administration route of nimodipine for treatment subarachnoid hemorrhage. METHODS: Electronic databases (Pubmed, Embase, Web of Science and Cochrane databases) were systematically searched to identify randomized controlled trials evaluating different administration route of nimodipine (intravenous and enteral) versus placebo for treatment subarachnoid hemorrhage. Outcomes included case fatality at 3 months, poor outcome measured at 3 months (defined as death, vegetative state, or severe disability), incidence of delayed cerebral ischemia (DCI), delayed ischemic neurological deficit. A random-effect Bayesian NMA was conducted for outcomes of interest, and results were presented as odds ratios (ORs) and 95% credible intervals. The NMA was performed using R Software with a GeMTC package. A Bayesian NMA was performed and relative ranking of agents was assessed using surface under the cumulative ranking (SUCRA) probabilities. RESULTS: Nine randomized controlled trials met criteria for inclusion and finally included in this NMA. There was no statistically significant between intravenous and enteral in terms of case fatality, the occurrence of DCI, delayed ischemic neurologic deficit and poor outcomes (P > .05). Both intravenous and enteral could reduce case fatality, the occurrence of DCI, delayed ischemic neurologic deficit and poor outcomes (P < .05). The SUCRA shows that enteral ranked first, intravenous ranked second and placebo ranked the last for case fatality, the occurrence of DCI and poor outcomes. The SUCRA shows that intravenous ranked first, enteral ranked second and placebo ranked the last for delayed ischemic neurologic deficit. CONCLUSIONS: It is possible that both enteral and intravenous nimodipine have comparable effectiveness in preventing poor outcomes, DCI, and delayed ischemic neurological deficits. However, further investigation may be necessary to determine the exact role of intravenous nimodipine in current clinical practice.


Assuntos
Isquemia Encefálica , Hemorragia Subaracnóidea , Humanos , Nimodipina , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/tratamento farmacológico , Metanálise em Rede , Teorema de Bayes , Administração Intravenosa , Isquemia Encefálica/tratamento farmacológico , Infarto Cerebral/tratamento farmacológico
19.
Stroke ; 54(10): 2666-2670, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37675614

RESUMO

BACKGROUND: The only established pharmacological treatment option improving outcomes for patients suffering from subarachnoid hemorrhage (SAH) is the L-type-calcium channel inhibitor nimodipine. However, the exact mechanisms of action of nimodipine conferring neuroprotection after SAH have yet to be determined. More recently, spasms of the cerebral microcirculation were suggested to play an important role in reduced cerebral perfusion after SAH and, ultimately, outcome. It is unclear whether nimodipine may influence microvasospasms and, thus, microcirculatory dysfunction. The aim of the current study was, therefore, to assess the effect of nimodipine on microvasospasms after experimental SAH. METHODS: Male C57Bl/6 N mice (n=3-5/group) were subjected to SAH using the middle cerebral artery perforation model. Six hours after SAH induction, a cranial window was prepared, and the diameter of cortical microvessels was assessed in vivo by 2-photon-microscopy before, during, and after nimodipine application. RESULTS: Nimodipine significantly reduced the number of posthemorrhagic microvasospasms. The diameters of nonspastic vessels were not affected. CONCLUSIONS: Our results show that nimodipine reduces the formation of microvasospasms, thus, shedding new light on the mode of action of a drug routinely used for the treatment of SAH for >3 decades. Furthermore, L-type Ca2+ channels may be involved in the pathophysiology of microvasospasm formation.


Assuntos
Nimodipina , Hemorragia Subaracnóidea , Humanos , Animais , Camundongos , Masculino , Nimodipina/farmacologia , Nimodipina/uso terapêutico , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/tratamento farmacológico , Microcirculação , Camundongos Endogâmicos C57BL , Microvasos
20.
Pak J Pharm Sci ; 36(2): 547-556, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37530164

RESUMO

In the present study fast dispersible nimodipine tablets were developed by direct compression method using quality by design (QbD) approach as per the central composite design by selecting avicel PH 102 (X1) and crospovidone (X2) as independent variables while % friability (R1), disintegration (R2) and hardness (R3) as output variables. Powder blends were assessed for flow characterization. At post compressional stage, several quality assessments were carried out. Particles morphology was observed using scanning electron microscopy (SEM). The stability study on the drug and optimized formulation were determined using thermal gravimetric analysis (TGA) and differential thermal analysis (DTA). RSM plots expressed the interaction of avicel PH 102 and crospovidone to determine the adequate quantities of excipients for the optimized formulation. Polynomial equations were used to validate the experimental design. The optimized formulations were evaluated for friability, disintegration and hardness. Results indicated that formulation (F4) containing avicel PH 102 (35%) and crospovidone (5%) was selected as best optimized formulation having friability 0.59%, disintegration 9 sec, % dissolution 95.703% and hardness 4.14 kg. Results of kinetics models indicated that all the developed formulations followed weibull model.


Assuntos
Química Farmacêutica , Nimodipina , Química Farmacêutica/métodos , Cinética , Povidona , Solubilidade , Comprimidos , Celulose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...