Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.100
Filtrar
1.
J Inorg Biochem ; 256: 112542, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38631103

RESUMO

Cytochrome c nitrite reductase, NrfA, is a soluble, periplasmic pentaheme cytochrome responsible for the reduction of nitrite to ammonium in the Dissimilatory Nitrate Reduction to Ammonium (DNRA) pathway, a vital reaction in the global nitrogen cycle. NrfA catalyzes this six-electron and eight-proton reduction of nitrite at a single active site with the help of its quinol oxidase partners. In this review, we summarize the latest progress in elucidating the reaction mechanism of ammonia production, including new findings about the active site architecture of NrfA, as well as recent results that elucidate electron transfer and storage in the pentaheme scaffold of this enzyme.


Assuntos
Compostos de Amônio , Nitratos , Oxirredução , Nitratos/metabolismo , Nitratos/química , Compostos de Amônio/metabolismo , Citocromos c1/metabolismo , Citocromos c1/química , Nitrato Redutases/metabolismo , Nitrato Redutases/química , Domínio Catalítico , Transporte de Elétrons , Nitritos/metabolismo , Citocromos a1
2.
Braz J Biol ; 83: e276264, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37937632

RESUMO

The water deficit in particular, reduces the productivity of vegetable crops. To minimize these harmful effects on agriculture, several agronomic and physiological practices are being studied, such as the use of bacteria and water stress attenuators, such as brassinosteroids. Considering the socioeconomic relevance of corn culture and its sensitivity when exposed to water deficit, the objective of the present study was to evaluate the action of brassinosteroids and azospirillum on nitrogen metabolism in corn plants subjected to water stress conditions. The experiment was carried out in a greenhouse, in a period of 47 days, with corn plants, using the hybrid K9606 VIP3. The design was completely randomized, in a 2x2x3 factorial scheme, with six replications. The first factor corresponds to two water regimes (presence and absence of water deficit). The second corresponds to inoculation via seed of Azospirillum brasiliense and absence of inoculation. And the third corresponds to the application of three concentrations of brassinosteroids (0, 0.3 and 0.6 µM). Were determined Nitrate; nitrate reductase; free ammonium; total soluble aminoacids; soluble proteins; proline; glycine betaine and glutamine synthetase. The lack of water in plants provided a reduction in the protein and nitrate reductase contents, in leaves and roots. For ammonium, plants with water deficit inoculated at a concentration of 0.3 µM, obtained an increase of 7.16 (70.26%) and 13.89 (77.04%) mmol NH4 + .Kg-1. DM (Dry mass) on the leaf and root respectively. The water deficit in the soil provided significant increases in the concentrations of glycine betaine, nitrate, proline and aminoacids, both in the leaves and in the roots of the corn plants. On the other hand, the contents of glutamine synthetase had a reduction in both leaves and roots.


Assuntos
Compostos de Amônio , Azospirillum brasilense , Zea mays , Brassinosteroides/metabolismo , Nitratos , Raízes de Plantas/metabolismo , Secas , Desidratação/metabolismo , Betaína/metabolismo , Glutamato-Amônia Ligase , Aminoácidos/metabolismo , Prolina/metabolismo , Nitrato Redutases/metabolismo , Nitrogênio/metabolismo
3.
Eur J Med Res ; 28(1): 425, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821966

RESUMO

Current research has described improving multisystem disease and organ function through dietary nitrate (DN) supplementation. They have provided some evidence that these floras with nitrate (NO3-) reductase are mediators of the underlying mechanism. Symbiotic bacteria with nitrate reductase activity (NRA) are found in the human digestive tract, including the mouth, esophagus and gastrointestinal tract (GT). Nitrate in food can be converted to nitrite under the tongue or in the stomach by these symbiotic bacteria. Then, nitrite is transformed to nitric oxide (NO) by non-enzymatic synthesis. NO is currently recognized as a potent bioactive agent with biological activities, such as vasodilation, regulation of cardiomyocyte function, neurotransmission, suppression of platelet agglutination, and prevention of vascular smooth muscle cell proliferation. NO also can be produced through the conventional L-arginine-NO synthase (L-NOS) pathway, whereas endogenous NO production by L-arginine is inhibited under hypoxia-ischemia or disease conditions. In contrast, exogenous NO3-/NO2-/NO activity is enhanced and becomes a practical supplemental pathway for NO in the body, playing an essential role in various physiological activities. Moreover, many diseases (such as metabolic or geriatric diseases) are primarily associated with disorders of endogenous NO synthesis, and NO generation from the exogenous NO3-/NO2-/NO route can partially alleviate the disease progression. The imbalance of NO in the body may be one of the potential mechanisms of disease development. Therefore, the impact of these floras with nitrate reductase on host systemic health through exogenous NO3-/NO2-/NO pathway production of NO or direct regulation of floras ecological balance is essential (e.g., regulation of body homeostasis, amelioration of diseases, etc.). This review summarizes the bacteria with nitrate reductase in humans, emphasizing the relationship between the metabolic processes of this microflora and host systemic health and disease. The potential effects of nitrate reduction bacteria on human health and disease were also highlighted in disease models from different human systems, including digestive, cardiovascular, endocrine, nervous, respiratory, and urinary systems, providing innovative ideas for future disease diagnosis and treatment based on nitrate reduction bacteria.


Assuntos
Nitratos , Nitritos , Humanos , Idoso , Nitratos/farmacologia , Nitratos/metabolismo , Nitritos/metabolismo , Óxido Nítrico/metabolismo , Dióxido de Nitrogênio/metabolismo , Bactérias/metabolismo , Nitrato Redutases/metabolismo , Arginina/metabolismo
4.
ISME J ; 17(10): 1639-1648, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37443340

RESUMO

Dissimilatory nitrate reduction to ammonia (DNRA) is a common biochemical process in the nitrogen cycle in natural and man-made habitats, but its significance in wastewater treatment plants is not well understood. Several ammonifying Trichlorobacter strains (former Geobacter) were previously enriched from activated sludge in nitrate-limited chemostats with acetate as electron (e) donor, demonstrating their presence in these systems. Here, we isolated and characterized the new species Trichlorobacter ammonificans strain G1 using a combination of low redox potential and copper-depleted conditions. This allowed purification of this DNRA organism from competing denitrifiers. T. ammonificans is an extremely specialized ammonifier, actively growing only with acetate as e-donor and carbon source and nitrate as e-acceptor, but H2 can be used as an additional e-donor. The genome of G1 does not encode the classical ammonifying modules NrfAH/NrfABCD. Instead, we identified a locus encoding a periplasmic nitrate reductase immediately followed by an octaheme cytochrome c that is conserved in many Geobacteraceae species. We purified this octaheme cytochrome c protein (TaNiR), which is a highly active dissimilatory ammonifying nitrite reductase loosely associated with the cytoplasmic membrane. It presumably interacts with two ferredoxin subunits (NapGH) that donate electrons from the menaquinol pool to the periplasmic nitrate reductase (NapAB) and TaNiR. Thus, the Nap-TaNiR complex represents a novel type of highly functional DNRA module. Our results indicate that DNRA catalyzed by octaheme nitrite reductases is a metabolic feature of many Geobacteraceae, representing important community members in various anaerobic systems, such as rice paddy soil and wastewater treatment facilities.


Assuntos
Amônia , Nitratos , Humanos , Nitratos/metabolismo , Oxirredução , Citocromos c/metabolismo , Nitrato Redutases/química , Nitrato Redutases/genética , Nitrato Redutases/metabolismo , Desnitrificação
5.
J Bacteriol ; 205(4): e0002723, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36920204

RESUMO

The periplasmic (NAP) and membrane-associated (Nar) nitrate reductases of Paracoccus denitrificans are responsible for nitrate reduction under aerobic and anaerobic conditions, respectively. Expression of NAP is elevated in cells grown on a relatively reduced carbon and energy source (such as butyrate); it is believed that NAP contributes to redox homeostasis by coupling nitrate reduction to the disposal of excess reducing equivalents. Here, we show that deletion of either dksA1 (one of two dksA homologs in the P. denitrificans genome) or relA/spoT (encoding a bifunctional ppGpp synthetase and hydrolase) eliminates the butyrate-dependent increase in nap promoter and NAP enzyme activity. We conclude that ppGpp likely signals growth on a reduced substrate and, together with DksA1, mediates increased expression of the genes encoding NAP. Support for this model comes from the observation that nap promoter activity is increased in cultures exposed to a protein synthesis inhibitor that is known to trigger ppGpp synthesis in other organisms. We also show that, under anaerobic growth conditions, the redox-sensing RegAB two-component pair acts as a negative regulator of NAP expression and as a positive regulator of expression of the membrane-associated nitrate reductase Nar. The dksA1 and relA/spoT genes are conditionally synthetically lethal; the double mutant has a null phenotype for growth on butyrate and other reduced substrates while growing normally on succinate and citrate. We also show that the second dksA homolog (dksA2) and relA/spoT have roles in regulation of expression of the flavohemoglobin Hmp and in biofilm formation. IMPORTANCE Paracoccus denitrificans is a metabolically versatile Gram-negative bacterium that is used as a model for studies of respiratory metabolism. The organism can utilize nitrate as an electron acceptor for anaerobic respiration, reducing it to dinitrogen via nitrite, nitric oxide, and nitrous oxide. This pathway (known as denitrification) is important as a route for loss of fixed nitrogen from soil and as a source of the greenhouse gas nitrous oxide. Thus, it is important to understand those environmental and genetic factors that govern flux through the denitrification pathway. Here, we identify four proteins and a small molecule (ppGpp) which function as previously unknown regulators of expression of enzymes that reduce nitrate and oxidize nitric oxide.


Assuntos
Nitratos , Paracoccus denitrificans , Nitratos/metabolismo , Paracoccus denitrificans/genética , Paracoccus denitrificans/metabolismo , Guanosina Tetrafosfato/metabolismo , Óxido Nitroso/metabolismo , Óxido Nítrico/metabolismo , Nitrato Redutase/genética , Nitrato Redutase/metabolismo , Nitrato Redutases/genética , Nitrato Redutases/metabolismo , Respiração , Butiratos/metabolismo
6.
Environ Sci Technol ; 56(20): 14462-14477, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36197061

RESUMO

In shallow, open-water engineered wetlands, design parameters select for a photosynthetic microbial biomat capable of robust pharmaceutical biotransformation, yet the contributions of specific microbial processes remain unclear. Here, we combined genome-resolved metatranscriptomics and oxygen profiling of a field-scale biomat to inform laboratory inhibition microcosms amended with a suite of pharmaceuticals. Our analyses revealed a dynamic surficial layer harboring oxic-anoxic cycling and simultaneous photosynthetic, nitrifying, and denitrifying microbial transcription spanning nine bacterial phyla, with unbinned eukaryotic scaffolds suggesting a dominance of diatoms. In the laboratory, photosynthesis, nitrification, and denitrification were broadly decoupled by incubating oxic and anoxic microcosms in the presence and absence of light and nitrogen cycling enzyme inhibitors. Through combining microcosm inhibition data with field-scale metagenomics, we inferred microbial clades responsible for biotransformation associated with membrane-bound nitrate reductase activity (emtricitabine, trimethoprim, and atenolol), nitrous oxide reduction (trimethoprim), ammonium oxidation (trimethoprim and emtricitabine), and photosynthesis (metoprolol). Monitoring of transformation products of atenolol and emtricitabine confirmed that inhibition was specific to biotransformation and highlighted the value of oscillating redox environments for the further transformation of atenolol acid. Our findings shed light on microbial processes contributing to pharmaceutical biotransformation in open-water wetlands with implications for similar nature-based treatment systems.


Assuntos
Compostos de Amônio , Áreas Alagadas , Atenolol , Biotransformação , Desnitrificação , Emtricitabina/metabolismo , Metoprolol , Nitrato Redutases/metabolismo , Nitrificação , Nitrogênio/metabolismo , Óxido Nitroso , Oxigênio , Preparações Farmacêuticas , Fotossíntese , Trimetoprima , Água
7.
Plant Physiol Biochem ; 190: 231-239, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36137309

RESUMO

This study aimed to investigate the roles of selenium (Se) application on the profile of photosynthetic pigments, oxidant metabolism, flavonoids biosynthesis, nodulation, and its relation to agronomic traits of peanut plants. Two independent experiments were carried out: one conducted in soil and the other in a nutrient solution. When the plants reached the V2 growth stage, five Se doses (0, 7.5, 15, 30, and 45 µg kg-1) and four Se concentrations (0, 5, 10, and 15 µmol L-1) were supplied as sodium selenate. The concentration of photosynthetic pigments, activity of antioxidant enzymes and the concentration of total sugars in peanut leaves increased in response to Se fertilization. In addition, Se improves nitrogen assimilation efficiency by increasing nitrate reductase activity which results in a higher concentration of ureides, amino acids and proteins. Se increases the synthesis of daidzein and genistein in the root, resulting in a greater number of nodules and concentration and transport of ureides to the leaves. Se-treated plants showed greater growth, biomass accumulation in shoots and roots, yield and Se concentration in leaves and grains. Our results contribute to food security and also to increase knowledge about the effects of Se on physiology, biochemistry and biological nitrogen fixation in legume plants.


Assuntos
Fabaceae , Selênio , Aminoácidos/metabolismo , Antioxidantes/metabolismo , Arachis/metabolismo , Fabaceae/metabolismo , Genisteína/metabolismo , Isoflavonas , Nitrato Redutases/metabolismo , Nitrogênio/metabolismo , Oxidantes/metabolismo , Ácido Selênico , Selênio/farmacologia , Solo , Açúcares/metabolismo
8.
Environ Sci Technol ; 56(20): 14852-14866, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36098560

RESUMO

Suspended particulate matter (SPM) contributes to the loss of reactive nitrogen (Nr) in estuarine ecosystems. Although denitrification and anaerobic ammonium oxidation in SPM compensate for the current imbalance of global nitrogen (N) inputs and sinks, it is largely unclear whether other pathways for Nr transformation exist in SPM. Here, we combined stable isotope measurements with metagenomics and metatranscriptomics to verify the occurrence of dissimilatory nitrate reduction to ammonium (DNRA) in the SPM of the Pearl River Estuary (PRE). Surprisingly, the conventional functional genes of DNRA (nirBD) were abundant and highly expressed in SPM, which was inconsistent with a low potential rate. Through taxonomic and comparative genomic analyses, we demonstrated that nitrite reductase (NirBD) in conjunction with assimilatory nitrate reductase (NasA) performed assimilatory nitrate reduction (ANR) in SPM, and diverse alpha- and gamma-proteobacterial lineages were identified as key active heterotrophic ANR bacteria. Moreover, ANR was predicted to have a relative higher occurrence than denitrification and DNRA in a survey of Nr transformation pathways in SPM across the PRE spanning 65 km. Collectively, this study characterizes a previously overlooked pathway of Nr transformation mediated by heterotrophic ANR bacteria in SPM and has important implications for our understanding of N cycling in estuaries.


Assuntos
Compostos de Amônio , Nitrogênio , Compostos de Amônio/metabolismo , Bactérias/genética , Bactérias/metabolismo , Desnitrificação , Ecossistema , Nitrato Redutases/metabolismo , Nitratos/metabolismo , Nitrito Redutases/metabolismo , Nitrogênio/análise , Óxidos de Nitrogênio , Compostos Orgânicos/metabolismo , Oxirredução , Material Particulado
9.
Plant Physiol Biochem ; 191: 34-41, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36179517

RESUMO

The natural mechanism of underlying the low nitrogen (N) tolerance of wild bermudagrass (Cynodon dactylon (L.) Pers.) germplasm was important for reducing N fertilizer input to turf while also maintaining acceptable turf quality. The growth, N uptake, assimilation and remobilization of two wild bermudagrass accessions (C291, low N tolerant and C716, low N sensitive) were determined under low N (0.5 mM) and control N (5 mM) levels. C291 exhibited lower reduction in shoot and plant dry weight than C716. Furthermore, C291 presented a lower decrease in 15NO3- influx compared with C716, maintained its root dry weight and root surface and showed obviously enhanced CyNRT2.2 and CyNRT2.3 expression resulting in higher shoot NO3--N content than the control. Moreover, in C291, nitrate reductase (NR) activity had no significant difference with control, and cytosolic glutamine synthetase (GS1) protein content, glutamate synthetase (GOGAT) activity and glutamate dehydrogenase (GDH) activity higher than control, result in the soluble protein and free amino acid contents in the shoots did not differ compared with that in the control under low N conditions. Overall, the low N tolerant wild bermudagrass accessions adopted a low N supply based on improved root N uptake ability to achieve more nitrate to kept shoot N assimilation, and meanwhile increased N remobilization in the shoots, thereby maintaining a better N status in bermudagrass. The findings may help elucidate the low N tolerance mechanisms in bermudagrass and therefore facilitate genetic improvement of N use efficiency aiming to promote low-input turfgrass management.


Assuntos
Cynodon , Nitrogênio , Aminoácidos/metabolismo , Cynodon/metabolismo , Fertilizantes , Glutamato Desidrogenase/metabolismo , Glutamato-Amônia Ligase/metabolismo , Glutamatos/metabolismo , Nitrato Redutases/metabolismo , Nitratos/metabolismo , Nitrogênio/metabolismo
10.
Infect Immun ; 90(9): e0023922, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35938858

RESUMO

Nitrate metabolism is an adaptation mechanism used by many bacteria for survival in anaerobic environments. As a by-product of inflammation, nitrate is used by the intestinal bacterial pathogens to enable gut infection. However, the responses of bacterial respiratory pathogens to nitrate are less well understood. Actinobacillus pleuropneumoniae is an important bacterial respiratory pathogen of swine. Previous studies have suggested that adaptation of A. pleuropneumoniae to anaerobiosis is important for infection. In this work, A. pleuropneumoniae growth and pathogenesis in response to the nitrate were investigated. Nitrate significantly promoted A. pleuropneumoniae growth under anaerobic conditions in vitro and lethality in mice. By using narQ and narP deletion mutants and single-residue-mutated complementary strains of ΔnarQ, the two-component system NarQ/P was confirmed to be critical for nitrate-induced growth, with Arg50 in NarQ as an essential functional residue. Transcriptome analysis showed that nitrate upregulated multiple energy-generating pathways, including nitrate metabolism, mannose and pentose metabolism, and glycerolipid metabolism via the regulation of NarQ/P. Furthermore, narQ, narP, and its target gene encoding the nitrate reductase Nap contributed to the pathogenicity of A. pleuropneumoniae. The Nap inhibitor tungstate significantly reduced the survival of A. pleuropneumoniae in vivo, suggesting that Nap is a potential drug target. These results give new insights into how the respiratory pathogen A. pleuropneumoniae utilizes the alternative electron acceptor nitrate to overcome the hypoxia microenvironment, which can occur in the inflammatory or necrotic infected tissues.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Actinobacillus pleuropneumoniae/genética , Actinobacillus pleuropneumoniae/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Manose/metabolismo , Camundongos , Nitrato Redutases/genética , Nitrato Redutases/metabolismo , Nitratos/metabolismo , Pentoses/metabolismo , Suínos , Virulência
11.
Plant Biol (Stuttg) ; 24(5): 854-862, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35357062

RESUMO

The nitrogen utilization efficiency of plants varies depending on the plant species. In modern agriculture, nitrogen fertilizer is used to increase crop production, with the amount of fertilizer addition increasing steadily worldwide. This study included the two most used ecotypes of Arabidopsis thaliana, Landsberg erecta (Ler) and Col-0, which were used to identify differences at the molecular level. We found that the efficiency of nitrogen utilization and salt stress resistance differed between these two ecotypes of the same species. We demonstrated distinct salt stress resistance between Ler and Col-0 depending on the differences in nitrate level, which was explained by different regulation of the NIA2 gene expression in these two ecotypes. Our results demonstrate that the genes and promoters regulate expression of these genes and contribute to trait differences. Further studies are required on genes and promoter elements for an improved understanding of the salinity stress resistance mechanism in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ecótipo , Fertilizantes , Nitrato Redutases/genética , Nitrato Redutases/metabolismo , Nitrogênio/metabolismo , Estresse Salino
12.
Biochemistry ; 60(23): 1853-1867, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34061493

RESUMO

Cytochrome c nitrite reductases (CcNIR or NrfA) play important roles in the global nitrogen cycle by conserving the usable nitrogen in the soil. Here, the electron storage and distribution properties within the pentaheme scaffold of Geobacter lovleyi NrfA were investigated via electron paramagnetic resonance (EPR) spectroscopy coupled with chemical titration experiments. Initially, a chemical reduction method was established to sequentially add electrons to the fully oxidized protein, 1 equiv at a time. The step-by-step reduction of the hemes was then followed using ultraviolet-visible absorption and EPR spectroscopy. EPR spectral simulations were used to elucidate the sequence of heme reduction within the pentaheme scaffold of NrfA and identify the signals of all five hemes in the EPR spectra. Electrochemical experiments ascertain the reduction potentials for each heme, observed in a narrow range from +10 mV (heme 5) to -226 mV (heme 3) (vs the standard hydrogen electrode). On the basis of quantitative analysis and simulation of the EPR data, we demonstrate that hemes 4 and 5 are reduced first (before the active site heme 1) and serve the purpose of an electron storage unit within the protein. To probe the role of the central heme 3, an H108M NrfA variant was generated where the reduction potential of heme 3 is shifted positively (from -226 to +48 mV). The H108M mutation significantly impacts the distribution of electrons within the pentaheme scaffold and the reduction potentials of the hemes, reducing the catalytic activity of the enzyme to 1% compared to that of the wild type. We propose that this is due to heme 3's important role as an electron gateway in the wild-type enzyme.


Assuntos
Grupo dos Citocromos c/metabolismo , Citocromos a1/metabolismo , Citocromos c1/metabolismo , Geobacter/metabolismo , Nitrato Redutases/metabolismo , Domínio Catalítico , Cristalografia por Raios X/métodos , Grupo dos Citocromos c/química , Citocromos a1/química , Citocromos c1/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Elétrons , Geobacter/química , Heme/química , Heme/metabolismo , Modelos Moleculares , Nitrato Redutases/química , Nitrito Redutases/química , Nitrito Redutases/metabolismo , Oxirredução , Conformação Proteica
13.
Genes (Basel) ; 11(11)2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158244

RESUMO

Genes coding for enzymes of the denitrification pathway appear randomly distributed among isolates of the ancestral genus Thermus, but only in few strains of the species Thermus thermophilus has the pathway been studied to a certain detail. Here, we review the enzymes involved in this pathway present in T. thermophilus NAR1, a strain extensively employed as a model for nitrate respiration, in the light of its full sequence recently assembled through a combination of PacBio and Illumina technologies in order to counteract the systematic errors introduced by the former technique. The genome of this strain is divided in four replicons, a chromosome of 2,021,843 bp, two megaplasmids of 370,865 and 77,135 bp and a small plasmid of 9799 pb. Nitrate respiration is encoded in the largest megaplasmid, pTTHNP4, within a region that includes operons for O2 and nitrate sensory systems, a nitrate reductase, nitrate and nitrite transporters and a nitrate specific NADH dehydrogenase, in addition to multiple insertion sequences (IS), suggesting its mobility-prone nature. Despite nitrite is the final product of nitrate respiration in this strain, the megaplasmid encodes two putative nitrite reductases of the cd1 and Cu-containing types, apparently inactivated by IS. No nitric oxide reductase genes have been found within this region, although the NorR sensory gene, needed for its expression, is found near the inactive nitrite respiration system. These data clearly support that partial denitrification in this strain is the consequence of recent deletions and IS insertions in genes involved in nitrite respiration. Based on these data, the capability of this strain to transfer or acquire denitrification clusters by horizontal gene transfer is discussed.


Assuntos
Nitrato Redutases/metabolismo , Nitratos/metabolismo , Thermus thermophilus/metabolismo , Proteínas de Bactérias/genética , Elementos de DNA Transponíveis/genética , Transferência Genética Horizontal/genética , Nitrato Redutases/genética , Nitritos/metabolismo , Óxidos de Nitrogênio/metabolismo , Óperon/genética , Plasmídeos/genética , Thermus thermophilus/genética
14.
J Biol Chem ; 295(33): 11455-11465, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32518164

RESUMO

Cytochrome c nitrite reductase (NrfA) catalyzes the reduction of nitrite to ammonium in the dissimilatory nitrate reduction to ammonium (DNRA) pathway, a process that competes with denitrification, conserves nitrogen, and minimizes nutrient loss in soils. The environmental bacterium Geobacter lovleyi has recently been recognized as a key driver of DNRA in nature, but its enzymatic pathway is still uncharacterized. To address this limitation, here we overexpressed, purified, and characterized G. lovleyi NrfA. We observed that the enzyme crystallizes as a dimer but remains monomeric in solution. Importantly, its crystal structure at 2.55-Å resolution revealed the presence of an arginine residue in the region otherwise occupied by calcium in canonical NrfA enzymes. The presence of EDTA did not affect the activity of G. lovleyi NrfA, and site-directed mutagenesis of this arginine reduced enzymatic activity to <3% of the WT levels. Phylogenetic analysis revealed four separate emergences of Arg-containing NrfA enzymes. Thus, the Ca2+-independent, Arg-containing NrfA from G. lovleyi represents a new subclass of cytochrome c nitrite reductase. Most genera from the exclusive clades of Arg-containing NrfA proteins are also represented in clades containing Ca2+-dependent enzymes, suggesting convergent evolution.


Assuntos
Proteínas de Bactérias/metabolismo , Citocromos a1/metabolismo , Citocromos c1/metabolismo , Geobacter/metabolismo , Nitrato Redutases/metabolismo , Compostos de Amônio/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cristalografia por Raios X , Citocromos a1/química , Citocromos a1/genética , Citocromos c1/química , Citocromos c1/genética , Geobacter/química , Geobacter/genética , Cinética , Modelos Moleculares , Nitrato Redutases/química , Nitrato Redutases/genética , Nitratos/metabolismo , Filogenia , Conformação Proteica
15.
Microb Ecol ; 79(4): 1044-1053, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31828388

RESUMO

We have recently shown that commercial alfalfa inoculants (e.g., Sinorhizobium meliloti B399), which are closely related to the denitrifier model strain Sinorhizobium meliloti 1021, have conserved nitrate, nitrite, and nitric oxide reductases associated with the production of the greenhouse gas nitrous oxide (N2O) from nitrate but lost the N2O reductase related to the degradation of N2O to gas nitrogen. Here, we screened a library of nitrogen-fixing alfalfa symbionts originating from different ecoregions and containing N2O reductase genes and identified novel rhizobia (Sinorhizobium meliloti INTA1-6) exhibiting exceptionally low N2O emissions. To understand the genetic basis of this novel eco-friendly phenotype, we sequenced and analyzed the genomes of these strains, focusing on their denitrification genes, and found mutations only in the nitrate reductase structural gene napC. The evolutionary analysis supported that, in these natural strains, the denitrification genes were inherited by vertical transfer and that their defective nitrate reductase napC alleles emerged by independent spontaneous mutations. In silico analyses showed that mutations in this gene occurred in ssDNA loop structures with high negative free energy (-ΔG) and that the resulting mutated stem-loop structures exhibited increased stability, suggesting the occurrence of transcription-associated mutation events. In vivo assays supported that at least one of these ssDNA sites is a mutational hot spot under denitrification conditions. Similar benefits from nitrogen fixation were observed when plants were inoculated with the commercial inoculant B399 and strains INTA4-6, suggesting that the low-N2O-emitting rhizobia can be an ecological alternative to the current inoculants without resigning economic profitability.


Assuntos
Proteínas de Bactérias/genética , Clima , Mutação , Nitrato Redutases/genética , Óxido Nitroso/metabolismo , Sinorhizobium meliloti/fisiologia , Sequência de Aminoácidos , Argentina , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência de Bases , Nitrato Redutases/química , Nitrato Redutases/metabolismo , Filogenia , Alinhamento de Sequência , Sinorhizobium meliloti/genética
16.
Mol Biol Evol ; 37(3): 849-863, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31794607

RESUMO

It is known that adaptive evolution in permanently cold environments drives cold adaptation in enzymes. However, how the relatively high enzyme activities were achieved in cold environments prior to cold adaptation of enzymes is unclear. Here we report that an Antarctic strain of Chlorella vulgaris, called NJ-7, acquired the capability to grow at near 0 °C temperatures and greatly enhanced freezing tolerance after systematic increases in abundance of enzymes/proteins and positive selection of certain genes. Having diverged from the temperate strain UTEX259 of the same species 2.5 (1.1-4.1) to 2.6 (1.0-4.5) Ma, NJ-7 retained the basic mesophilic characteristics and genome structures. Nitrate reductases in the two strains are highly similar in amino acid sequence and optimal temperature, but the NJ-7 one showed significantly higher abundance and activity. Quantitative proteomic analyses indicated that several cryoprotective proteins (LEA), many enzymes involved in carbon metabolism and a large number of other enzymes/proteins, were more abundant in NJ-7 than in UTEX259. Like nitrate reductase, most of these enzymes were not upregulated in response to cold stress. Thus, compensation of low specific activities by increased enzyme abundance appears to be an important strategy for early stage cold adaptation to Antarctica, but such enzymes are mostly not involved in cold acclimation upon transfer from favorable temperatures to near 0 °C temperatures.


Assuntos
Adaptação Fisiológica , Chlorella vulgaris/crescimento & desenvolvimento , Nitrato Redutases/genética , Nitrato Redutases/metabolismo , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Regiões Antárticas , Chlorella vulgaris/classificação , Chlorella vulgaris/genética , Temperatura Baixa , Evolução Molecular , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Filogenia , Proteômica , Seleção Genética , Análise de Sequência de DNA
17.
J Am Chem Soc ; 141(34): 13358-13371, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31381304

RESUMO

Cytochrome c nitrite reductase (ccNiR) is a periplasmic, decaheme homodimeric enzyme that catalyzes the six-electron reduction of nitrite to ammonia. Under standard assay conditions catalysis proceeds without detected intermediates, and it has been assumed that this is also true in vivo. However, this report demonstrates that it is possible to trap a putative intermediate by controlling the electrochemical potential at which reduction takes place. UV/vis spectropotentiometry showed that nitrite-loaded Shewanella oneidensis ccNiR is reduced in a concerted two-electron step to generate an {FeNO}7 moiety at the active site, with an associated midpoint potential of +246 mV vs SHE at pH 7. By contrast, cyanide-bound active site reduction is a one-electron process with a midpoint potential of +20 mV, and without a strong-field ligand the active site midpoint potential shifts 70 mV lower still. EPR analysis subsequently revealed that the {FeNO}7 moiety possesses an unusual spectral signature, different from those normally observed for {FeNO}7 hemes, that may indicate magnetic interaction of the active site with nearby hemes. Protein film voltammetry experiments previously showed that catalytic nitrite reduction to ammonia by S. oneidensis ccNiR requires an applied potential of at least -120 mV, well below the midpoint potential for {FeNO}7 formation. Thus, it appears that an {FeNO}7 active site is a catalytic intermediate in the ccNiR-mediated reduction of nitrite to ammonia, whose degree of accumulation depends exclusively on the applied potential. At low potentials the species is rapidly reduced and does not accumulate, while at higher potentials it is trapped, thus preventing catalytic ammonia formation.


Assuntos
Citocromos a1/metabolismo , Citocromos c1/metabolismo , Nitrato Redutases/metabolismo , Nitritos/metabolismo , Shewanella/enzimologia , Amônia/metabolismo , Catálise , Domínio Catalítico , Citocromos a1/química , Citocromos c1/química , Modelos Moleculares , Nitrato Redutases/química , Oxirredução , Conformação Proteica , Shewanella/química , Shewanella/metabolismo , Espectrofotometria Ultravioleta , Especificidade por Substrato
18.
Int J Mycobacteriol ; 7(4): 328-331, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30531029

RESUMO

Background: In spite of the fact that the standard test for nitrate reductase activity is negative for Mycobacterium avium, it can grow in a defined minimal medium with either nitrate (NO3) or nitrite (NO2) as sole nitrogen sources. Methods: NO3-and NO2-reductase activities were measured in soluble and membrane fractions of aerobically grown cells of M. avium and those grown aerobically and shifted to anaerobiosis. Results: NO3- and NO2-reductase activities were only detected in the membrane fractions and the two enzyme activities were significantly reduced if cells were grown aerobically in the presence of ammonia (NH4). The NO2-reductase activity of membrane fractions was 2-fold higher than that of NO3-reductase consistent with the fact that NO3-reductase activity of M. avium cannot be detected if measured by nitrite formation. Membrane fractions of M. avium cells grown 1 week aerobically and then 2 weeks under anaerobic conditions had NO3-and NO2-reductase activities. Conclusion: The results are consistent with the presence of assimilatory NO3-and NO2-reductase activities in cells of M. avium grown under aerobic conditions. Further, the data suggest that a shift to anaerobic conditions results in the appearance of ammonium-insensitive NO3-and NO2-reductase activities; quite possibly that function in a dissimilatory role (redox balancing).


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium avium/enzimologia , Nitrato Redutases/metabolismo , Nitrito Redutases/metabolismo , Compostos de Amônio/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Oxirredução
19.
Sci Rep ; 8(1): 13300, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30185870

RESUMO

Burley tobacco (Nicotiana Tabacum) is a chlorophyll-deficiency mutant. Nitrate is one precursor of tobacco-specific nitrosamines (TSNAs) and is largely accumulated in burley tobacco. To decrease nitrate accumulation in burley tobacco, glycerol, a polyhydric alcohol compound and physiological regulating material, was sprayed and its effects were investigated based on metabolomic technology and molecular biology. The results showed that glucose, glutamine and glutamic acid increased by 2.6, 5.1 and 196, folds, respectively, in tobacco leaves after glycerol application. Nitrate content was significantly decreased by 12-16% and expression of eight genes responsible for carbon and nitrogen metabolism were up-regulated with glycerol applications under both normal and 20% reduced nitrogen levels (P < 0.01). Leaf biomass of plants sprayed with glycerol and 20% nitrogen reduction was equivalent to that of no glycerol control with normal nitrogen application. Carbohydrates biosynthesis, nitrate transport and nitrate assimilation were enhanced in glycerol sprayed burley tobacco seedlings which might contribute to reduced nitrate and increased carbohydrates contents. In conclusion, glyerol spray coupled with 20% nitrogen reduction would be an effective method to reduce nitrate accumulation in burley tobacco.


Assuntos
Glicerol/metabolismo , Nicotiana/metabolismo , Nitratos/metabolismo , Metabolismo dos Carboidratos/fisiologia , Carboidratos/biossíntese , Carbono/metabolismo , Clorofila/metabolismo , Metaboloma/genética , Nitrato Redutase/metabolismo , Nitrato Redutases/metabolismo , Nitrogênio/metabolismo , Óxidos de Nitrogênio/metabolismo , Nitrosaminas/metabolismo , Folhas de Planta/metabolismo , Plântula/genética , Plântula/metabolismo , Ativação Transcricional , Regulação para Cima
20.
Environ Microbiol ; 20(10): 3851-3861, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30187633

RESUMO

In many Thermus thermophilus strains, nitrate respiration is encoded in mobile genetic regions, along with regulatory circuits that modulate its expression based on anoxia and nitrate presence. The oxygen-responsive system has been identified as the product of the dnrST (dnr) operon located immediately upstream of the nar operon (narCGHJIKT), which encodes the nitrate reductase (NR) and nitrate/nitrite transporters. In contrast, the nature of the nitrate sensory system is not known. Here, we analyse the putative nitrate-sensing role of the bicistronic drp operon (drpAB) present downstream of the nar operon in most denitrifying Thermus spp. Expression of drp was found to depend on the master regulator DnrT, whereas the absence of DrpA or DrpB increased the expression of both DnrS and DnrT and, concomitantly, of the NR. Absence of both proteins made expression from the dnr and nar operons independent of nitrate. Polyclonal antisera allowed us to identify DrpA as a periplasmic protein and DrpB as a membrane protein, with capacity to bind to the cytoplasmic membrane. Here, we propose a role for DrpA/DrpB as nitrate sensors during denitrification.


Assuntos
Proteínas de Bactérias/metabolismo , Nitratos/metabolismo , Thermus thermophilus/metabolismo , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Proteínas de Bactérias/genética , Desnitrificação , Regulação Bacteriana da Expressão Gênica , Nitrato Redutase/genética , Nitrato Redutase/metabolismo , Nitrato Redutases/genética , Nitrato Redutases/metabolismo , Transportadores de Nitrato , Nitritos/metabolismo , Óperon , Oxigênio/metabolismo , Periplasma/genética , Periplasma/metabolismo , Thermus thermophilus/química , Thermus thermophilus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...