Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 305
Filtrar
1.
Environ Sci Pollut Res Int ; 28(37): 51471-51479, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33983610

RESUMO

Pesticides and nanoparticles may coexist in soil; however, influences of nanoparticles on accumulation of pesticides in terrestrial organisms are still unclear. This study aims to investigate the influences and mechanisms of metal oxide nanoparticles (nano ZnO and nano CuO) on accumulation of pentachloronitrobenzene (PCNB) in earthworms and their combined toxicity. The earthworms were cultivated in the soil spiked with nanoparticles (10, 50, 250 mg/kg) and PCNB (100 µg/kg) for 21 days. The concentrations of PCNB in earthworms in binary exposure treatments (PCNB + ZnO and PCNB + CuO) reached 2.47 and 3.13 times of that in individual PCNB exposure treatment, indicating that nanoparticles facilitated the accumulation of PCNB in earthworms. The contents of reactive oxygen species (ROS) in earthworms in treatments PCNB + ZnO 250 and PCNB + CuO 250 reached 379 and 316 fluorescence intensity/mg Protein, respectively, which were significantly higher than that in control group (183 fluorescence intensity/mg protein), indicating that nanoparticles would cause oxidative stress to earthworms. Earthworm coelomocytes were extracted from healthy earthworms and cultivated in culture media in cytotoxicity tests. Changes of intracellular ROS contents and cell viability suggested that PCNB and nanoparticles caused serious oxidative damage to earthworm coelomocytes, thus leading to the damage of cell membrane and cell death. In in vivo tests, changes of biomarkers (ROS and malondialdehyde) demonstrated that these pollutants injured the earthworms. Increased accumulation of PCNB in binary exposure treatments was due to the damage of body cavity caused by nanoparticles. This study provides a novel hypothesis for nanoparticles facilitating organic pollutants entering terrestrial organisms and determines whether nanoparticles would bring about greater environmental risks of other pollutants.


Assuntos
Nanopartículas Metálicas , Oligoquetos , Poluentes do Solo , Animais , Nanopartículas Metálicas/toxicidade , Nitrobenzenos/toxicidade , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
2.
J Appl Toxicol ; 41(10): 1634-1648, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33636015

RESUMO

The amino acid derivative reactivity assay (ADRA) is an in chemico alternative to animal testing that focuses on protein binding. The ADRA is a skin sensitization test that solves problems associated with the direct peptide reactivity assay. However, when utilizing the ADRA to evaluate highly hydrophobic substances with octanol/water partition coefficients (logKow) of >6, the test substances may not dissolve in the reaction solution, which can prevent the accurate assessment of skin sensitization. Therefore, we developed the ADRA-organic solvent (ADRA-OS) reaction system, which is a novel skin sensitization test that enables the assessment of highly hydrophobic substances with a logKow of >6. We discovered that the organic solvent ratio, the triethylamine concentration, and the ethylenediaminetetraacetic acid disodium salt dihydrate concentration participate in reactions with the nucleophile N-(2-(1-naphthyl)acetyl)-l-cysteine (NAC) and sensitizers that are used in ADRA and in stabilizing NAC. Thus, we determined the optimal reaction composition of the ADRA-OS according to L9 (33 ) orthogonal array experiments. Using this test, we assessed 14 types of highly hydrophobic substances. When we compared the results with ADRA, we found that ADRA-OS reaction system has high solubility for highly hydrophobic substances and that it has a high predictive capacity (sensitivity: 63%, specificity: 100%, accuracy: 79%). The implication of the results is that the novel ADRA-OS reaction system should provide a useful method for assessing the skin sensitization of highly hydrophobic substances with a logKow of >6.


Assuntos
Aminoácidos/metabolismo , Dermatite de Contato/diagnóstico , Interações Hidrofóbicas e Hidrofílicas , Nitrobenzenos/metabolismo , Nitrobenzenos/toxicidade , Pele/efeitos dos fármacos , Pele/metabolismo , Alternativas aos Testes com Animais/métodos , Animais , Bioensaio/métodos , Solventes/química
3.
Environ Geochem Health ; 42(1): 109-120, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31037581

RESUMO

Nowadays, nanocarbon is widely employed to enwrap into fertilizers. However, the influence of nanocarbon on the transportation of contaminants from soil to plants and its mechanism remain unclear. In this study, pentachloronitrobenzene (PCNB), a typical organochlorine fungicide utilized all over the world, was chosen as the target contaminant to investigate the influence of nanocarbon on its transportation in soil-pak choi system. The maximum PCNB concentration in the root and leaf reached to 112 and 86 ng/g, respectively, demonstrating that PCNB would be absorbed by pak choi. The ratio of PCNB between leaf and root indicated that nanocarbon promoted root of pak choi to absorb PCNB. The transportation of PCNB inside plant was inhibited when pak choi was planted in soil containing higher concentration of nanocarbon. Human risk assessment showed that people consuming the pak choi in this study would not experience risk. However, in vitro toxicity test indicated that PCNB could directly impair intestinal epithelial cells (Caco-2 cells) and thus pose a potential risk to human intestine.


Assuntos
Brassica/metabolismo , Fertilizantes , Nitrobenzenos/farmacocinética , Nitrobenzenos/toxicidade , Poluentes do Solo/farmacocinética , Transporte Biológico , Brassica/química , Células CACO-2 , Exposição Dietética , Contaminação de Alimentos , Fungicidas Industriais/farmacocinética , Fungicidas Industriais/toxicidade , Humanos , Nanoestruturas , Folhas de Planta/química , Folhas de Planta/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Medição de Risco , Solo/química , Poluentes do Solo/toxicidade , Testes de Toxicidade Aguda
4.
Chem Commun (Camb) ; 55(61): 9039-9042, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31292589
5.
Eur J Med Chem ; 174: 66-75, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31029945

RESUMO

Two Zn(II) nitro porphyrin derivatives bearing combinations of meso-4-nitrophenyl and meso-4-methylpyridinium moieties and their free-base precursors were synthesized through one-pot microwave process, purified and characterized. The biological activity of these nitroporphyrins was assessed under both photodynamic and non-photodynamic conditions to correlate their structure-activity relationship (SAR). Unlike, the free-base precursors, Zn(II) complexes of these nitroporphyrins displayed nearly complete inhibition in the entry of lentiviruses such as HIV-1 and SIVmac under non-photodynamic conditions. In addition, the Zn(II) complexes also exhibited a higher in vitro photodynamic activity towards human lung cancer cell-line A549 than their free-base precursors. Our results strongly suggest that incorporation of Zn(II) has improved the antiviral and anticancer properties of the nitroporphyrins. To the best of our knowledge, this is the first report demonstrating the dual activity of nitroporphyrin-zinc complexes as antiviral and anti-cancer, which will aid in their development as therapeutics in clinics.


Assuntos
Antineoplásicos/farmacologia , Inibidores da Fusão de HIV/farmacologia , Metaloporfirinas/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Zinco/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/efeitos da radiação , Antineoplásicos/toxicidade , Células CHO , Linhagem Celular Tumoral , Cricetulus , Fluorescência , Células HEK293 , Inibidores da Fusão de HIV/síntese química , Inibidores da Fusão de HIV/efeitos da radiação , Inibidores da Fusão de HIV/toxicidade , HIV-1/efeitos dos fármacos , Humanos , Luz , Metaloporfirinas/síntese química , Metaloporfirinas/efeitos da radiação , Metaloporfirinas/toxicidade , Estrutura Molecular , Nitrobenzenos/síntese química , Nitrobenzenos/farmacologia , Nitrobenzenos/efeitos da radiação , Nitrobenzenos/toxicidade , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/efeitos da radiação , Fármacos Fotossensibilizantes/toxicidade
6.
Ecotoxicol Environ Saf ; 174: 429-434, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30852307

RESUMO

Pentachloronitrobenzene (PCNB) has been widely utilized as a fungicide to control diseases. However, toxic effect data of PCNB on terrestrial invertebrate are not available till now. Herein, the earthworms (Eisenia fetida) were exposed to soil containing different levels of PCNB. Mortality, weight, accumulation, and physiological indexes of earthworms were determined on certain days. PCNB inhibited the growth of earthworms and induced a significant increase in the activity of antioxidative enzymes. ROS, SOD, and MDA of earthworms in the highest treatment group were 6.8, 4.4, and 3.8 times higher than those in the control group, respectively. In addition, earthworm coelomocytes were successfully extracted, cultured, and innovatively employed in in-vitro toxicity test to evaluate the toxic effect of PCNB. The biomarkers utilized in in-vitro toxicity test, including cell viability, intracellular ROS and extracellular LDH showed significant correlations with the PCNB in the culture media, indicating that the in-vitro toxicity test may serve as a useful tool for toxic assessment of pollutants to earthworms and other organisms.


Assuntos
Antioxidantes/metabolismo , Fungicidas Industriais/toxicidade , Nitrobenzenos/toxicidade , Oligoquetos/efeitos dos fármacos , Poluentes do Solo/toxicidade , Animais , Biomarcadores/metabolismo , Fungicidas Industriais/metabolismo , Nitrobenzenos/metabolismo , Oligoquetos/crescimento & desenvolvimento , Oligoquetos/metabolismo , Solo/química , Poluentes do Solo/metabolismo
7.
Sci Total Environ ; 658: 809-817, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30583176

RESUMO

Photosynthetic pigment content, antioxidant enzyme activities of plants, microbial enzyme activities and community structure were analyzed to investigate the effects of glucose and starch on the toxicity of nitrobenzene (NB) to plants and microbes in constructed wetlands (CWs). As the influent NB concentration increased from 10 mg/L to 100 mg/L, the NB removal efficiency of the blank group decreased from 97.1% to 75.02%. However, the NB removal efficiencies of the external carbon source groups were maintained at nearly 100%. External carbon sources accelerated the transformation process of NB to aniline (AN), thus decreasing NB toxicity to the microbes and plants. When the influent NB concentration reached 100 mg/L, the NB removal rates and NB reductase activities of the external carbon source groups were 2.4 times and 4 times higher, respectively, than those of the blank group. Most of the dominant genera found in the three CWs could reduce nitroaromatics to the corresponding aromatic amines according to the results of high-throughput sequencing. The performance of NB removal in the CWs indicated the potential of CWs for NB treatment and the necessity of external carbon sources under high NB concentrations.


Assuntos
Bactérias/efeitos dos fármacos , Glucose/metabolismo , Nitrobenzenos/toxicidade , Plantas/efeitos dos fármacos , Amido/metabolismo , Poluentes Químicos da Água/toxicidade , Áreas Alagadas , Biodegradação Ambiental , Glucose/administração & dosagem , Amido/administração & dosagem , Eliminação de Resíduos Líquidos/métodos
8.
Regul Toxicol Pharmacol ; 98: 18-23, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30008378

RESUMO

It is well known that the critical body residue (CBR) can be estimated via bioconcentration factor (BCF). However, the relationship between CBR and BCF in zebrafish has not been carried out based on bio-uptake kinetics for nitro-aromatics. In this paper, the time-variable concentrations and CBRs in zebrafish were determined for five nitro substituted benzenes. The result shows that CBR values can well be calculated from the BCF and external critical concentrations (LC50). Although CBRs measured from 5 h exposure period are greater than the CBRs obtained from 96 h for the five nitro-aromatics, no significant difference was observed, indicating that the CBR approach is a truer measure of chemical levels in exposed organisms and an ideal indicator to reflect the toxicity of a chemical. The bio-uptake can well be described by first-order kinetics and reach steady-state within 48 h. Almost same BCF values are obtained from the ratio of concentration in the fish (Cf) and in the water (Cw) at apparent steady-state and the ratio of the rate constants of uptake (k1) and depuration (k2) assuming first-order kinetics. The toxicity ratio (TR) can reflect the difference of internal critical concentrations and be used to identify mode of action.


Assuntos
Nitrobenzenos/farmacocinética , Poluentes Químicos da Água/farmacocinética , Peixe-Zebra/metabolismo , 1-Octanol/química , Animais , Cinética , Dose Letal Mediana , Nitrobenzenos/química , Nitrobenzenos/toxicidade , Água/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade
9.
Ecotoxicol Environ Saf ; 147: 656-663, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28934709

RESUMO

Water quality criteria (WQC) are considered to be an effective management tool for protecting aquatic environments. To derive site-specific WQC for an area, local data based on local species are essential to improve the applicability of WQC derived. Due to the paucity of local fish data available for the development of site-specific WQC for the Liao River, China, four local and widespread fishes (Pseudorasbora parva, Abbottina liaoningensis, Ctenogobius giurinus, and Misgurnus anguillicaudatus) were chosen to test their sensitivities to ammonia, cadmium and nitrobenzene. These compounds are common and regularly-measured pollutants in Chinese rivers. In addition to the published data for species resident in the Liao River, site-specific WQC for the three chemicals were derived using both a log-logistic species sensitivity distribution (SSD) and the method recommended by the USEPA, in line with current best practice, which were then compared with Chinese national WQC. It was found that A. liaoningensis was the most sensitive, followed, in order, by P. parva, C. giurinus and M. anguillicaudatus was the least sensitive, and this trend was the same to all three chemicals tested. When comparing the SSD derived solely from previously-published data with that including our data on local fish, there were significant differences identified among parameters describing the SSD curves for ammonia and nitrobenzene and significant differences were detected for site-specific WQC derived for all of the three chemicals. Based on the dataset with local fish data taxa, site-specific WQC of Liao River for ammonia, cadmium, and nitrobenzene were derived to be 20.53mg/L (at a pH of 7.0 and temperature of 20°C), 3.76µg/L (at a hardness of 100mg/L CaCO3), and 0.49mg/L, respectively. Using the same deriving method for each chemical, the national Chinese WQC were higher than site-specific WQC derived in this study for ammonia (national WQC of 25.16mg/L) and nitrobenzene (national WQC of 0.57mg/L), while the national WQC for cadmium was lower (national WQC of 1.81µg/L). These results indicated that published data can be helpful for use when deriving site-specific WQC but that there were differences between site-specific and national WQC which may lead to either over- or under-protection depending on the pollutant if national WQC were used as the basis for the water management of specific river systems, like the Liao River.


Assuntos
Amônia/toxicidade , Cádmio/toxicidade , Peixes/crescimento & desenvolvimento , Nitrobenzenos/toxicidade , Rios/química , Poluentes Químicos da Água/toxicidade , Qualidade da Água/normas , Amônia/análise , Animais , Cádmio/análise , China , Dose Letal Mediana , Nitrobenzenos/análise , Especificidade da Espécie , Testes de Toxicidade , Poluentes Químicos da Água/análise
10.
Med Chem ; 14(5): 495-507, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29189173

RESUMO

BACKGROUND: Directed Enzyme Prodrugs Therapy (DEPT) as an alternative method against conventional cancer treatments, in which the non-toxic prodrugs is converted to highly cytotoxic derivative, has attracted an ample attention in recent years for cancer therapy studies. OBJECTIVE: The metabolite profile, cell cytotoxicity and molecular modeling interactions of a series of nitro benzamides with Ssap-NtrB were investigated in this study. METHOD: A series of nitro-substituted benzamide prodrugs (1-4) were synthesized and firstly investigated their enzymatic reduction by Ssap-NtrB (S. saprophyticus Nitroreductase B) using HPLC analysis. Resulting metabolites were analyzed by LC-MS/MS. Molecular docking studies were performed with the aim of investigating the relationship between nitro benzamide structures (prodrugs 1-4) and Ssap-NtrB at the molecular level. Cell viability assay was conducted on two cancer cell lines, hepatoma (Hep3B) and colon (HT-29) cancer models and healthy cell model HUVEC. Upon reduction of benzamide prodrugs by Ssap-NtrB, the corresponding amine effectors were tested in a cell line panel comprising PC-3, Hep3B and HUVEC cells and were compared with the established NTR substrates, CB1954 (an aziridinyl dinitrobenzamide). RESULTS: Cell viability assay resulted in while prodrugs 1, 2 and 3 had no remarkable cytotoxic effects, prodrug 4 showed the differential effect, showing moderate cytotoxicity with Hep3B and HUVEC. The metabolites that obtained from the reduction of nitro benzamide prodrugs (1-4) by Ssap-NtrB, showed differential cytotoxic effects, with none toxic for HUVEC cells, moderate toxic for Hep3B cells, but highly toxic for PC3 cells. CONCLUSION: Amongst all metabolites of prodrugs after Ssap-NtrB reduction, N-(2,4- dinitrophenyl)-4-nitrobenzamide (3) was efficient and toxic in PC3 cells as comparable as CB1954. Kinetic parameters, molecular docking and HPLC results also confirm that prodrug 3 is better for Ssap-NtrB than 1, 2 and 4 or known cancer prodrugs of CB1954 and SN23862, demonstrating that prodrug 3 is an efficient candidate for NTR based cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Benzamidas/farmacologia , Nitrobenzenos/farmacologia , Nitrorredutases/metabolismo , Pró-Fármacos/farmacologia , Mostarda de Anilina/análogos & derivados , Mostarda de Anilina/farmacologia , Antineoplásicos/metabolismo , Antineoplásicos/toxicidade , Aziridinas/farmacologia , Benzamidas/metabolismo , Benzamidas/toxicidade , Linhagem Celular Tumoral , Células Endoteliais da Veia Umbilical Humana , Humanos , Cinética , Simulação de Acoplamento Molecular , Nitrobenzenos/metabolismo , Nitrobenzenos/toxicidade , Nitrorredutases/química , Pró-Fármacos/metabolismo , Pró-Fármacos/toxicidade , Staphylococcus saprophyticus/enzimologia
11.
Ecotoxicol Environ Saf ; 144: 475-481, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28667859

RESUMO

The toxicity of a mixture depends not only on the mixture concentration level but also on the mixture ratio. For a multiple-component mixture (MCM) system with a definite chemical composition, the mixture toxicity can be predicted only if the global concentration additivity (GCA) is validated. The so-called GCA means that the toxicity of any mixture in the MCM system is the concentration additive, regardless of what its mixture ratio and concentration level. However, many mixture toxicity reports have usually employed one mixture ratio (such as the EC50 ratio), the equivalent effect concentration ratio (EECR) design, to specify several mixtures. EECR mixtures cannot simulate the concentration diversity and mixture ratio diversity of mixtures in the real environment, and it is impossible to validate the GCA. Therefore, in this paper, the uniform design ray (UD-Ray) was used to select nine mixture ratios (rays) in the mixture system of five nitrobenzene derivatives (NBDs). The representative UD-Ray mixtures can effectively and rationally describe the diversity in the NBD mixture system. The toxicities of the mixtures to Vibrio qinghaiensis sp.-Q67 were determined by the microplate toxicity analysis (MTA). For each UD-Ray mixture, the concentration addition (CA) model was used to validate whether the mixture toxicity is additive. All of the UD-Ray mixtures of five NBDs are global concentration additive. Afterwards, the CA is employed to predict the toxicities of the external mixtures from three EECR mixture rays with the NOEC, EC30, and EC70 ratios. The predictive toxicities are in good agreement with the experimental toxicities, which testifies to the predictability of the mixture toxicity of the NBDs.


Assuntos
Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Poluentes Ambientais/toxicidade , Modelos Teóricos , Nitrobenzenos/análise , Nitrobenzenos/toxicidade , Relação Dose-Resposta a Droga , Interações Medicamentosas , Vibrio/efeitos dos fármacos
12.
Toxicology ; 383: 1-12, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28342779

RESUMO

Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used for the alleviation of pain and inflammation, but these drugs are also associated with a suite of negative side effects. Gastrointestinal (GI) toxicity is particularly concerning since it affects an estimated 70% of individuals taking NSAIDs routinely, and evidence suggests the majority of toxicity is occurring in the small intestine. Traditionally, NSAID-induced GI toxicity has been associated with indiscriminate inhibition of cyclooxygenase isoforms, but other mechanisms, including inhibition of cell migration, intestinal restitution, and wound healing, are likely to contribute to toxicity. Previous efforts demonstrated that treatment of cultured intestinal epithelial cells (IEC) with NSAIDs inhibits expression and activity of calpain proteases, but the effects of specific inhibition of calpain expression in vitro or the effects of NSAIDs on intestinal cell migration in vivo remain to be determined. Accordingly, we examined the effect of suppression of calpain protease expression with siRNA on cell migration in cultured IECs and evaluated the effects of NSAID treatment on epithelial cell migration and calpain protease expression in rat duodenum. Our results show that calpain siRNA inhibits protease expression and slows migration in cultured IECs. Additionally, NSAID treatment of rats slowed migration up the villus axis and suppressed calpain expression in duodenal epithelial cells. Our results are supportive of the hypothesis that suppression of calpain expression leading to slowing of cell migration is a potential mechanism through which NSAIDs cause GI toxicity.


Assuntos
Anti-Inflamatórios não Esteroides/toxicidade , Calpaína/antagonistas & inibidores , Células Epiteliais/efeitos dos fármacos , Animais , Calpaína/genética , Calpaína/metabolismo , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Duodeno/efeitos dos fármacos , Duodeno/metabolismo , Duodeno/patologia , Células Epiteliais/fisiologia , Indometacina/toxicidade , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Nitrobenzenos/toxicidade , RNA Interferente Pequeno/genética , Ratos Wistar , Sulfonamidas/toxicidade
13.
Environ Toxicol Chem ; 36(8): 2227-2233, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28169452

RESUMO

The toxicity data of 90 nitroaromatic compounds related to their 50% lethal dose concentration for rats (LD50) were analyzed to develop quantitative structure-activity relationship (QSAR) models. Quantum-chemically calculated descriptors together with molecular descriptors generated by DRAGON, PaDEL, and HiT-QSAR software were utilized to build QSAR models. Quality and validity of the models were determined by internal and external validation techniques. The results show that the toxicity of nitroaromatic compounds depends on various factors, such as the number of nitro-groups, the topological state, and the presence of certain structural fragments. The developed models based on the largest (to date) dataset of nitroaromatics in vivo toxicity showed a good predictive ability. The results provide important input that could be applied in a preliminary assessment of nitroaromatic compounds' toxicity to mammals. Environ Toxicol Chem 2017;36:2227-2233. © 2017 SETAC.


Assuntos
Poluentes Ambientais , Modelos Teóricos , Nitrobenzenos , Animais , Poluentes Ambientais/química , Poluentes Ambientais/toxicidade , Dose Letal Mediana , Nitrobenzenos/química , Nitrobenzenos/toxicidade , Valor Preditivo dos Testes , Relação Quantitativa Estrutura-Atividade , Ratos , Software
14.
Water Res ; 93: 110-120, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26900972

RESUMO

The removal of emerging contaminants during water treatment is a current issue and various technologies are being explored. These include UV- and ozone-based advanced oxidation processes (AOPs). In this study, AOPs were explored for their degradation capabilities of 25 chemical contaminants on the US Environmental Protection Agency's Contaminant Candidate List 3 (CCL3) in drinking water. Twenty-three of these were found to be amenable to hydroxyl radical-based treatment, with second-order rate constants for their reactions with hydroxyl radicals (OH) in the range of 3-8 × 10(9) M(-1) s(-1). The development of biological activity of the contaminants, focusing on mutagenicity and estrogenicity, was followed in parallel with their degradation using the Ames and YES bioassays to detect potential changes in biological effects during oxidative treatment. The majority of treatment cases resulted in a loss of biological activity upon oxidation of the parent compounds without generation of any form of estrogenicity or mutagenicity. However, an increase in mutagenic activity was detected by oxidative transformation of the following CCL3 parent compounds: nitrobenzene (OH, UV photolysis), quinoline (OH, ozone), methamidophos (OH), N-nitrosopyrolidine (OH), N-nitrosodi-n-propylamine (OH), aniline (UV photolysis), and N-nitrosodiphenylamine (UV photolysis). Only one case of formation of estrogenic activity was observed, namely, for the oxidation of quinoline by OH. Overall, this study provides fundamental and practical information on AOP-based treatment of specific compounds of concern and represents a framework for evaluating the performance of transformation-based treatment processes.


Assuntos
Água Potável/química , Radical Hidroxila/química , Ozônio/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Compostos de Anilina/química , Compostos de Anilina/toxicidade , Cinética , Estrutura Molecular , Mutagênicos/química , Mutagênicos/toxicidade , Nitrobenzenos/química , Nitrobenzenos/toxicidade , Nitrosaminas/química , Nitrosaminas/toxicidade , Oxirredução , Fotólise/efeitos da radiação , Quinolinas/química , Quinolinas/toxicidade , Testes de Toxicidade/métodos , Raios Ultravioleta , Estados Unidos , United States Environmental Protection Agency , Poluentes Químicos da Água/toxicidade
15.
J Appl Toxicol ; 36(4): 483-500, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26542997

RESUMO

When reactive centers are formed in chemical conversions, intermolecular reactions tend to dominate over intramolecular alternatives whenever both alternatives are possible. Hence, when reactive metabolites are formed from xenobiotics, intramolecular quenching by moieties adjacent to a toxicophore may play an important role in reducing toxicity related to reactive intermediates. The phenomenon is likely to be particularly noticeable for toxicophores that are readily associated with a type of toxicity that is rarely caused by other structural motives. In two demonstrative investigations, it is concluded that nitrobenzenes for which the expected nitrosyl metabolite is likely to react with adjacent groups are less toxic than what is rationally expected, and that among aryl amine drugs allowing for the immediate quenching of the corresponding N-aryl hydroxylamine metabolite, the typical erythrocyte toxicity often seen with aryl amines is absent. The deliberate introduction of effective quenching groups nearby a toxicophoric moiety may present a potential strategy for reducing toxicity in the design of drugs and other man-made xenobiotics.


Assuntos
Desenho de Fármacos , Xenobióticos/toxicidade , Animais , Avaliação Pré-Clínica de Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Eritrócitos/efeitos dos fármacos , Furosemida/química , Furosemida/toxicidade , Humanos , Nitrobenzenos/química , Nitrobenzenos/toxicidade , Tetrahymena pyriformis/efeitos dos fármacos , Tetrahymena pyriformis/metabolismo , Testes de Toxicidade , Xenobióticos/química
16.
Huan Jing Ke Xue ; 36(8): 3074-9, 2015 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-26592043

RESUMO

Acute toxic effects of three typical organic pollutants 1 ,2,4-trichlorobenzene (1,2,4-TCB), nitrobenzene and chlorpyrifos were investigated using Tetrahymena thermophila and Limnodrilus hoffmeisteri as living test organisms under laboratory conditions. The results showed that with the increase of pollutants' concentration and the extension of time, toxicity of the three kinds of pollutants significantly enhanced, and the mortality of two kinds of aquatic organisms also had a rising trend, and an obvious dose-effect relationship. The 96 h-LC50. values of 1 ,2, 4-TCB, nitrobenzene and chlorpyrifos were 71.88, 285.76, and 5.50 mg x L(-1) for L. hoffmeisteri and 15.58, 140.22, and 14.69 mg x L(-1) for T. thermophila. These results showed that the toxicity among the three typical pollutants to T. thermophila was 1 , 2,4-TCB > chlorpyrifos > nitrobenzene. Findings were able to provide more information on water quality criteria and more data on their toxicity to indigenous aquatic organisms in China.


Assuntos
Clorobenzenos/toxicidade , Clorpirifos/toxicidade , Nitrobenzenos/toxicidade , Oligoquetos/efeitos dos fármacos , Tetrahymena thermophila/efeitos dos fármacos , Animais , Organismos Aquáticos/efeitos dos fármacos , Testes de Toxicidade Aguda , Qualidade da Água
17.
Sci Total Environ ; 527-528: 211-9, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25958368

RESUMO

In the context of reducing CO2 emissions to the atmosphere, chemical absorption with amines is emerging as the most advanced technology for post-combustion CO2 capture from exhaust gases of fossil fuel power plants. Despite amine solvent recycling during the capture process, degradation products are formed and released into the environment, among them aliphatic nitramines, for which the environmental impact is unknown. In this study, we determined the acute and chronic toxicity of two nitramines identified as important transformation products of amine-based carbon capture, dimethylnitramine and ethanolnitramine, using a multi-trophic suite of bioassays. The results were then used to produce the first environmental risk assessment for the marine ecosystem. In addition, the in vivo genotoxicity of nitramines was studied by adapting the comet assay to cells from experimentally exposed fish. Overall, based on the whole organism bioassays, the toxicity of both nitramines was considered to be low. The most sensitive response to both compounds was found in oysters, and dimethylnitramine was consistently more toxic than ethanolnitramine in all bioassays. The Predicted No Effect Concentrations for dimethylnitramine and ethanolnitramine were 0.08 and 0.18 mg/L, respectively. The genotoxicity assessment revealed contrasting results to the whole organism bioassays, with ethanolnitramine found to be more genotoxic than dimethylnitramine by three orders of magnitude. At the lowest ethanolnitramine concentration (1mg/L), 84% DNA damage was observed, whereas 100mg/L dimethylnitramine was required to cause 37% DNA damage. The mechanisms of genotoxicity were also shown to differ between the two compounds, with oxidation of the DNA bases responsible for over 90% of the genotoxicity of dimethylnitramine, whereas DNA strand breaks and alkali-labile sites were responsible for over 90% of the genotoxicity of ethanolnitramine. Fish exposed to >3mg/L ethanolnitramine had virtually no DNA left in their red blood cells.


Assuntos
Compostos de Anilina/toxicidade , Mutagênicos/toxicidade , Nitrobenzenos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos , Ensaio Cometa , Monitoramento Ambiental , Testes de Mutagenicidade , Água do Mar/química
18.
Artigo em Inglês | MEDLINE | ID: mdl-25726173

RESUMO

Diesel exhausts are partly responsible for the deleterious effects on human health associated with urban pollution, including cardiovascular diseases, asthma, COPD, and possibly lung cancer. Particulate fraction has been incriminated and thus largely investigated for its genotoxic properties, based on exposure conditions that are, however, not relevant for human risk assessment. In this paper, original and more realistic protocols were used to investigate the hazards induced by exhausts emitted by the combustion of standard (DF0) vs. bio-diesel fuels (DF7 and DF30) and to assess the impact of exhaust treatment devices (DOC and DPF). Mutagenicity and genotoxicity were evaluated for (1) resuspended particles ("off line" exposure that takes into account the bioavailability of adsorbed chemicals) and for (2) the whole aerosols (particles+gas phase components) under continuous flow exposure ("on line" exposure). Native particles displayed mutagenic properties associated with nitroaromatic profiles (YG1041), whereas PAHs did not seem to be involved. After DOC treatment, the mutagenicity of particles was fully abolished. In contrast, the level of particle deposition was low under continuous flow exposure, and the observed mutagenicity in TA98 and TA102 was thus attributable to the gas phase. A bactericidal effect was also observed in TA102 after DOC treatment, and a weak but significant mutagenicity persisted after DPF treatment for bio-diesel fuels. No formation of bulky DNA-adducts was observed on A549 cells exposed to diesel exhaust, even in very drastic conditions (organic extracts corresponding to 500 µg equivalent particule/mL, 48 h exposure). Taken together, these data indicate that the exhausts issued from the bio-diesel fuels supplemented with rapseed methyl ester (RME), and generated by current diesel engines equipped with after treatment devices are less mutagenic than older ones. The residual mutagenicity is linked to the gas phase and could be due to pro-oxydants, mainly for RME-supplemented fuels.


Assuntos
Biocombustíveis/toxicidade , Brassica rapa/química , Mutagênicos/toxicidade , Nitrobenzenos/toxicidade , Material Particulado/toxicidade , Salmonella typhimurium/efeitos dos fármacos , Emissões de Veículos/toxicidade , Aerossóis , Brônquios/citologia , Brônquios/efeitos dos fármacos , Catálise , Linhagem Celular Tumoral , Dano ao DNA , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Ésteres , Filtração/métodos , Gasolina , Humanos , Testes de Mutagenicidade , Oxirredução , Salmonella typhimurium/genética , Salmonella typhimurium/crescimento & desenvolvimento
19.
Regul Toxicol Pharmacol ; 71(3): 601-23, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25604881

RESUMO

Carbon capture and storage (CCS) technologies are considered vital and economic elements for achieving global CO2 reduction targets, and is currently introduced worldwide (for more information on CCS, consult for example the websites of the International Energy Agency (http://www.iea.org/topics/ccs/) and the Global CCS Institute (http://www.globalccsinstitute.com/)). One prominent CCS technology, the amine-based post-combustion process, may generate nitrosamines and their related nitramines as by-products, the former well known for their potential mutagenic and carcinogenic properties. In order to efficiently assess the carcinogenic potency of any of these by-products this paper reviews and discusses novel prediction approaches consuming less time, money and animals than the traditionally applied 2-year rodent assay. For this, available animal carcinogenicity studies with N-nitroso compounds and nitramines have been used to derive carcinogenic potency values, that were subsequently used to assess the predictive performance of alternative prediction approaches for these chemicals. Promising cancer prediction models are the QSARs developed by the Helguera group, in vitro transformation assays, and the in vivo initiation-promotion, and transgenic animal assays. All these models, however, have not been adequately explored for this purpose, as the number of N-nitroso compounds investigated is yet too limited, and therefore further testing with relevant N-nitroso compounds is needed.


Assuntos
Compostos de Anilina/toxicidade , Sequestro de Carbono , Transformação Celular Neoplásica/induzido quimicamente , Neoplasias/induzido quimicamente , Nitrobenzenos/toxicidade , Nitrosaminas/toxicidade , Compostos de Anilina/química , Animais , Testes de Carcinogenicidade/métodos , Dose Letal Mediana , Camundongos Transgênicos , Modelos Biológicos , Estrutura Molecular , Testes de Mutagenicidade , Nitrobenzenos/química , Nitrosaminas/química , Relação Quantitativa Estrutura-Atividade , Medição de Risco
20.
Toxicol Ind Health ; 31(12): 1195-201, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23723263

RESUMO

BACKGROUND: Nitrobenzene is a carcinogen, which induces-among others-thyroid tumors. Melatonin is an effective antioxidant, whereas some antioxidative effects of propylthiouracil (PTU; an antithyroid medication used for the treatment of thyrotoxicosis) were also found. The aim of the study was to compare protective effects of melatonin and PTU against lipid peroxidation in homogenates of porcine thyroids, incubated in the presence of nitrobenzene. METHODS: Homogenates of porcine thyroids were incubated for 30 min in the presence of nitrobenzene (0.001, 0.01, 0.1, 0.25, 0.5, 1.0, 2.5, 5.0, 7.5, and 10.0 mM). The level of lipid peroxidation products (malondialdehyde + 4-hydroxyalkenals) was measured spectrophotometrically. Nitrobenzene (7.5 and 10.0 mM) increased lipid peroxidation in the homogenates of porcine thyroids. Subsequently, homogenates of porcine thyroids were incubated for 30 min in the presence of nitrobenzene (7.5 mM) plus one of the antioxidants: melatonin (0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1, 0.25, 0.5, 1.0, 2.5, 5.0, and 7.5 mM) or PTU (0.01, 0.1, 0.25, 0.5, 1.0, 2.5, 5.0, and 7.5 mM). RESULTS: Lipid peroxidation caused by nitrobenzene was effectively prevented by melatonin, with the lowest effective concentration of 0.0001 mM, being only two orders of magnitude higher than physiological blood concentration in humans. At the same time, PTU revealed protective effects only in the highest used concentration (7.5 mM), which is practically never reached during pharmacological treatment in patients with thyrotoxicosis. CONCLUSIONS: Melatonin can serve as an effective agent in protection against nitrobenzene-induced lipid peroxidation in porcine thyroid.


Assuntos
Anticarcinógenos/farmacologia , Carcinógenos/antagonistas & inibidores , Peroxidação de Lipídeos/efeitos dos fármacos , Melatonina/farmacologia , Nitrobenzenos/antagonistas & inibidores , Propiltiouracila/farmacologia , Glândula Tireoide/efeitos dos fármacos , Matadouros , Animais , Antioxidantes/farmacologia , Antitireóideos/farmacologia , Biomarcadores/química , Biomarcadores/metabolismo , Carcinógenos/toxicidade , Sistema Livre de Células/efeitos dos fármacos , Sistema Livre de Células/metabolismo , Compostos Cromogênicos/química , Indóis/química , Masculino , Malondialdeído/química , Malondialdeído/metabolismo , Nitrobenzenos/toxicidade , Concentração Osmolar , Sus scrofa , Glândula Tireoide/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...