Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.472
Filtrar
1.
PLoS One ; 19(4): e0300539, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38574058

RESUMO

Genetic and pharmacological perturbation of the cytoskeleton enhances the regenerative potential of neurons. This response requires Dual-leucine Zipper Kinase (DLK), a neuronal stress sensor that is a central regulator of axon regeneration and degeneration. The damage and repair aspects of this response are reminiscent of other cellular homeostatic systems, suggesting that a cytoskeletal homeostatic response exists. In this study, we propose a framework for understanding DLK mediated neuronal cytoskeletal homeostasis. We demonstrate that low dose nocodazole treatment activates DLK signaling. Activation of DLK signaling results in a DLK-dependent transcriptional signature, which we identify through RNA-seq. This signature includes genes likely to attenuate DLK signaling while simultaneously inducing actin regulating genes. We identify alterations to the cytoskeleton including actin-based morphological changes to the axon. These results are consistent with the model that cytoskeletal disruption in the neuron induces a DLK-dependent homeostatic mechanism, which we term the Cytoskeletal Stress Response (CSR) pathway.


Assuntos
Actinas , Axônios , Axônios/metabolismo , Nocodazol/farmacologia , Actinas/metabolismo , Zíper de Leucina , Regeneração Nervosa/fisiologia , Citoesqueleto/metabolismo , Homeostase , MAP Quinase Quinase Quinases/genética
2.
J Cell Sci ; 137(2)2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38149663

RESUMO

The microtubule network is formed from polymerised tubulin subunits and associating proteins, which govern microtubule dynamics and a diverse array of functions. To identify novel microtubule-binding proteins, we have developed an unbiased biochemical assay, which relies on the selective extraction of cytosolic proteins from U2OS cells, while leaving behind the microtubule network. Candidate proteins are linked to microtubules by their sensitivities to the depolymerising drug nocodazole or the microtubule-stabilising drug taxol, which is quantitated by mass spectrometry. Our approach is benchmarked by co-segregation of tubulin and previously established microtubule-binding proteins. We then identify several novel candidate microtubule-binding proteins, from which we have selected the ubiquitin E3 ligase tripartite motif-containing protein 3 (TRIM3) for further characterisation. We map TRIM3 microtubule binding to its C-terminal NHL-repeat region. We show that TRIM3 is required for the accumulation of acetylated tubulin, following treatment with taxol. Furthermore, loss of TRIM3 partially recapitulates the reduction in nocodazole-resistant microtubules characteristic of α-tubulin acetyltransferase 1 (ATAT1) depletion. These results can be explained by a decrease in ATAT1 following depletion of TRIM3 that is independent of transcription.


Assuntos
Proteômica , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Nocodazol/farmacologia , Microtúbulos/metabolismo , Paclitaxel/farmacologia , Proteínas/metabolismo , Proteínas de Transporte/metabolismo
3.
J Chem Inf Model ; 63(22): 7228-7238, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37947759

RESUMO

Carbendazim derivatives, commonly used as antiparasitic drugs, have shown potential as anticancer agents due to their ability to induce cell cycle arrest and apoptosis in human cancer cells by inhibiting tubulin polymerization. Crystallographic structures of α/ß-tubulin multimers complexed with nocodazole and mebendazole, two carbendazim derivatives with potent anticancer activity, highlighted the possibility of designing compounds that occupy both benzimidazole- and colchicine-binding sites. In addition, previous studies have demonstrated that the incorporation of a phenoxy group at position 5/6 of carbendazim increases the antiproliferative activity in cancer cell lines. Despite the significant progress made in identifying new tubulin-targeting anticancer compounds, further modifications are needed to enhance their potency and safety. In this study, we explored the impact of modifying the phenoxy substitution pattern on antiproliferative activity. Alchemical free energy calculations were used to predict the binding free energy difference upon ligand modification and define the most viable path for structure optimization. Based on these calculations, seven compounds were synthesized and evaluated against lung and colon cancer cell lines. Our results showed that compound 5a, which incorporates an α-naphthyloxy substitution, exhibits the highest antiproliferative activity against both cancer lines (SK-LU-1 and SW620, IC50 < 100 nM) and induces morphological changes in the cells associated with mitotic arrest and mitotic catastrophe. Nevertheless, the tubulin polymerization assay showed that 5a has a lower inhibitory potency than nocodazole. Molecular dynamics simulations suggested that this low antitubulin activity could be associated with the loss of the key H-bond interaction with V236. This study provides insights into the design of novel carbendazim derivatives with anticancer activity.


Assuntos
Antineoplásicos , Moduladores de Tubulina , Humanos , Moduladores de Tubulina/química , Estrutura Molecular , Relação Estrutura-Atividade , Nocodazol/farmacologia , Tubulina (Proteína)/metabolismo , Proliferação de Células , Simulação de Acoplamento Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Polimerização , Ensaios de Seleção de Medicamentos Antitumorais
4.
Biomed Pharmacother ; 164: 114977, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37271075

RESUMO

In recent years, microtubule-targeting agents (MTAs) have gained considerable interest in developing novel small-molecule anticancer drugs. MTAs demonstrate anticancer activity either as microtubule-stabilizing agents (paclitaxel) or microtubule-destabilizing agents (nocodazole). FDA-approved drugs containing a benzimidazole ring (nocodazole, albendazole, mebendazole, etc.) are well-known microtubule-destabilizing agents. Thus, most recent research on benzimidazole scaffold-based MTAs focuses on developing microtubule-destabilizing agents. However, there is no report on the benzimidazole scaffold-based microtubule-stabilizing agent. Here, we present the benzimidazole derivatives NI-11 and NI-18 that showed a profound anticancer activity as microtubule-stabilization agents. About twenty benzimidazole analogues were synthesized with excellent yield (80.0% ∼ 98.0%) and tested for their anticancer activity using two cancer cell lines (A549, MCF-7) and one normal cell line (MRC-5). NI-11 showed IC50 values of 2.90, 7.17, and 16.9 µM in A549, MCF-7, and MRC-5 cell lines. NI-18 showed IC50 values of 2.33, 6.10, and 12.1 µM in A549, MCF-7, and MRC-5 cell lines. Thus, NI-11 and NI-18 demonstrated selectivity indexes of 5.81 and 5.20, respectively, which are much higher than the currently available anticancer agents. NI-11 and NI-18 inhibited the cancer cell motility and migration, induced the early phase apoptosis. Both of these comounds were found to show an upregulation of DeY-α-tubulin and downregulation of Ac-α-tubulin expressions in cancer cells. Eventhough the reported benzimidazole scaffold-based commercially available drugs are known to be microtubule-destabilizing agents, the analogues NI-11 and NI-18 were found to have microtubule-stabilizing activity. The in vitro tubulin polymerization assay and the immunofluorescence assay results indicate that the NI-11 and NI-18 exhibit anticancer activity by stabilizing the microtubule network.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Tubulina (Proteína)/metabolismo , Nocodazol/metabolismo , Nocodazol/farmacologia , Microtúbulos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Benzimidazóis/farmacologia , Proliferação de Células , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais
5.
Curr Protoc ; 3(5): e793, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37235484

RESUMO

The microtubule cytoskeleton is essential for various biological processes such as the intracellular distribution of molecules and organelles, cell morphogenesis, chromosome segregation, and specification of the location of contractile ring formation. Distinct cell types contain microtubules with different extents of stability. For example, microtubules in neurons are highly stabilized to support organelle (or vesicular) transport over large distances, and microtubules in motile cells are more dynamic. In some cases, such as the mitotic spindle, both dynamic and stable microtubules coexist. Alteration of microtubule stability is connected to disease states, making understanding microtubule stability an important area of research. Methods to measure microtubule stability in mammalian cells are described here. Together, these approaches allow microtubule stability to be measured qualitatively or semiquantitatively following staining for post-translational modifications of tubulin or treating cells with microtubule destabilizing agents such as nocodazole. Microtubule stability can also be measured quantitatively by performing fluorescence recovery after photobleaching or fluorescence photoactivation of tubulin in live cells. These methods should be helpful for those seeking to understand microtubule dynamics and stabilization. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Fixing and staining cells for tubulin post-translational modifications Basic Protocol 2: Evaluating microtubule stability following treatment with nocodazole in live or fixed cells Basic Protocol 3: Measurement of microtubule dynamic turnover by quantification of fluorescence recovery after photobleaching Basic Protocol 4: Measurement of microtubule dynamic turnover by quantification of dissipation of fluorescence after photoactivation.


Assuntos
Microtúbulos , Tubulina (Proteína) , Animais , Tubulina (Proteína)/metabolismo , Nocodazol/farmacologia , Nocodazol/metabolismo , Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Fluorescência , Mamíferos/metabolismo
6.
J Cancer Res Clin Oncol ; 149(10): 7689-7701, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37000265

RESUMO

PURPOSE: Tau/MAPT (microtubule associated protein tau) protein is actively studied for the pathologic consequences of its aberrant proteostasis in central nervous system leading to neurodegenerative diseases. Besides its ability to generate insoluble toxic oligomers, Tau homeostasis has attracted attention for its involvement in the formation of the mitotic spindle. This evidence, in association with the description of Tau expression in extra-neuronal tissues, and mainly in cancer tissues, constitutes the rationale for a more in-depth investigation of Tau role also in neoplastic diseases. METHODS: In our study, we investigated the expression of phosphorylated Tau in prostate cancer cell lines with particular focus on the residue Thr231 present in microtubule binding domain. RESULTS: The analysis of prostate cancer cells synchronized with nocodazole demonstrated that the expression of Tau protein phosphorylated at residue Thr231 is restricted to G2/M cell cycle phase. The phosphorylated form was unable to bind tubulin and it does not localize on mitotic spindle. As demonstrated by the use of specific inhibitors, the phosphorylation status of Tau is under the direct control of cdk5 and PP2A, while cdk1 activation was able to exert an indirect control. These mechanisms were also active in cells treated with docetaxel, where counteracting the expression of the dephosphorylated form, by kinase inhibition or protein silencing, determined resistance to drug toxicity. CONCLUSIONS: We hypothesize that phosphorylation status of Tau is a key marker for G2/M phase in prostate cancer cells and that the forced modulation of Tau phosphorylation can interfere with the capacity of cell to efficiently progress through G2/M phase.


Assuntos
Neoplasias da Próstata , Proteínas tau , Masculino , Humanos , Fosforilação , Mitose , Nocodazol/farmacologia , Ciclo Celular
7.
Cell Rep ; 42(3): 112215, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36917609

RESUMO

Drugs targeting microtubules rely on the mitotic checkpoint to arrest cell proliferation. The prolonged mitotic arrest induced by such drugs is followed by a G1 arrest. Here, we follow for several weeks the fate of G1-arrested human cells after treatment with nocodazole. We find that a small fraction of cells escapes from the arrest and resumes proliferation. These escaping cells experience reduced DNA damage and p21 activation. Cells surviving treatment are enriched for anti-apoptotic proteins, including Triap1. Increasing Triap1 levels allows cells to survive the first treatment with reduced DNA damage and lower levels of p21; accordingly, decreasing Triap1 re-sensitizes cells to nocodazole. We show that Triap1 upregulation leads to the retention of cytochrome c in the mitochondria, opposing the partial activation of caspases caused by nocodazole. In summary, our results point to a potential role of Triap1 upregulation in the emergence of resistance to drugs that induce prolonged mitotic arrest.


Assuntos
Apoptose , Mitose , Humanos , Nocodazol/farmacologia , Regulação para Cima , Proliferação de Células , Fase G1 , Peptídeos e Proteínas de Sinalização Intracelular/genética
8.
Cell Signal ; 106: 110630, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36805843

RESUMO

Gßγ subunits regulate several non-canonical functions at distinct intracellular organelles. Previous studies have shown that Gßγ signaling at the Golgi is necessary to mediate vesicular protein transport function and to regulate mitotic Golgi fragmentation. Disruption of Golgi structure also occurs in response to microtubule depolymerizing agents, such as nocodazole. In this study, we use siRNA against Gß1/2 or specific Gγ subunits to deplete their expression, and show that their knockdown causes a significant reduction in nocodazole-induced Golgi fragmentation. We establish that knockdown of Gßγ or inhibition of Gßγ with gallein resulted in decreased activation of protein kinase D (PKD) in response to nocodazole treatment. We demonstrate that restricting the amount of free Gßγ available for signaling by either inhibiting Gαi activation using pertussis toxin or by knockdown of the non-GPCR GEF, Girdin/GIV protein, results in a substantial decrease in nocodazole-induced Golgi fragmentation and PKD phosphorylation. Our results also indicate that depletion of Gßγ or inhibition with gallein or pertussis toxin significantly reduces the microtubule disruption-dependent Golgi fragmentation phenotype observed in cells transfected with mutant SOD1, a major causative protein in familial amyotrophic lateral sclerosis (ALS). These results provide compelling evidence that Gßγ signaling is critical for the regulation of Golgi integrity.


Assuntos
Subunidades beta da Proteína de Ligação ao GTP , Subunidades gama da Proteína de Ligação ao GTP , Nocodazol/farmacologia , Toxina Pertussis , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Microtúbulos/metabolismo
9.
Biotechnol J ; 18(3): e2200450, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36495042

RESUMO

Recombinant adeno-associated virus (rAAV) has established itself as a highly efficacious gene delivery vector with a well characterised safety profile allowing broad clinical application. Recent successes in rAAV-mediated gene therapy clinical trials will continue to drive demand for improved rAAV production processes to reduce costs. Here, we demonstrate that small molecule bioactive chemical additives can significantly increase recombinant AAV vector production by human embryonic kidney (HEK) cells up to three-fold. Nocodazole (an anti-mitotic agent) and M344 (a selective histone deacetylase inhibitor) were identified as positive regulators of rAAV8 genome titre in a microplate screening assay. Addition of nocodazole to triple-transfected HEK293 suspension cells producing rAAV arrested cells in G2/M phase, increased average cell volume and reduced viable cell density relative to untreated rAAV producing cells at harvest. Final crude genome vector titre from nocodazole treated cultures was >2-fold higher compared to non-treated cultures. Further investigation showed nocodazole addition to cultures to be time critical. Genome titre improvement was found to be scalable and serotype independent across two distinct rAAV serotypes, rAAV8 and rAAV9. Furthermore, a combination of M344 and nocodazole produced a positive additive effect on rAAV8 genome titre, resulting in a three-fold increase in genome titre compared to untreated cells.


Assuntos
Dependovirus , Vetores Genéticos , Humanos , Vetores Genéticos/genética , Células HEK293 , Dependovirus/genética , Nocodazol/farmacologia , Vorinostat
10.
Methods Mol Biol ; 2557: 113-125, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36512213

RESUMO

The Golgi complex is essential for protein transport and posttranslational modification in mammalian cells. It is critical to know the cisternal distribution of Golgi proteins to understand Golgi functions. The cis-to-trans or axial localization of a Golgi protein can be obtained using our previously developed method, Golgi protein localization by imaging centers of mass (GLIM), in nocodazole-induced Golgi ministacks (hereafter referred to as ministacks). However, there is no effective light microscopic method to reveal the lateral localization of a Golgi protein, which is the distribution within the Golgi cisternae. The challenge is partially caused by the random orientations and the tight congregation of Golgi stacks at the perinuclear region. Here, we summarize our method to identify en face and side views of ministacks. It takes advantage of the characteristic ring and double-punctum staining patterns exhibited by cisternal rim-localized proteins. After averaging multiple en face views, the resulting image reveals the intrinsic organization of cisternae in a non-biased manner.


Assuntos
Complexo de Golgi , Microscopia , Animais , Complexo de Golgi/metabolismo , Nocodazol/farmacologia , Transporte Proteico , Proteínas/metabolismo , Mamíferos/metabolismo
11.
Methods Mol Biol ; 2579: 73-86, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36045199

RESUMO

Cell synchronization allows the examination of cell cycle progression. Nocodazole and other microtubule poisons have been used extensively to interfere with microtubule function and arrest cells in mitosis. Since microtubules are important for many cellular functions, alternative cell cycle synchronization techniques independent of microtubule inhibition are also used for synchronizing cells in mitosis. Here we describe using nocodazole, STLC, and combining thymidine block with MG132 to synchronize cells in mitosis. These inhibitors are reversible and mitotic cells can be released into the G1 phase synchronously. These techniques can be applied to both Western blot and timelapse imaging to study mitotic progression.


Assuntos
Microtúbulos , Mitose , Ciclo Celular , Fase G1 , Nocodazol/farmacologia
12.
J Cell Biol ; 221(6)2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35467701

RESUMO

The mammalian Golgi comprises tightly adjacent and flattened membrane sacs called cisternae. We still do not understand the molecular organization of the Golgi and intra-Golgi transport of cargos. One of the most significant challenges to studying the Golgi is resolving Golgi proteins at the cisternal level under light microscopy. We have developed a side-averaging approach to visualize the cisternal organization and intra-Golgi transport in nocodazole-induced Golgi ministacks. Side-view images of ministacks acquired from Airyscan microscopy are transformed and aligned before intensity normalization and averaging. From side-average images of >30 Golgi proteins, we uncovered the organization of the pre-Golgi, cis, medial, trans, and trans-Golgi network membrane with an unprecedented spatial resolution. We observed the progressive transition of a synchronized cargo wave from the cis to the trans-side of the Golgi. Our data support our previous finding, in which constitutive cargos exit at the trans-Golgi while the secretory targeting to the trans-Golgi network is signal dependent.


Assuntos
Complexo de Golgi , Rede trans-Golgi , Animais , Transporte Biológico , Complexo de Golgi/metabolismo , Mamíferos , Nocodazol/farmacologia , Rede trans-Golgi/metabolismo
13.
Int J Mol Sci ; 23(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35456926

RESUMO

The connection between cytoskeleton alterations and diseases is well known and has stimulated research on cell mechanics, aiming to develop reliable biomarkers. In this study, we present results on rheological, adhesion, and morphological properties of primary rat cardiac fibroblasts, the cytoskeleton of which was altered by treatment with cytochalasin D (Cyt-D) and nocodazole (Noc), respectively. We used two complementary techniques: quartz crystal microbalance (QCM) and digital holographic microscopy (DHM). Qualitative data on cell viscoelasticity and adhesion changes at the cell-substrate near-interface layer were obtained with QCM, while DHM allowed the measurement of morphological changes due to the cytoskeletal alterations. A rapid effect of Cyt-D was observed, leading to a reduction in cell viscosity, loss of adhesion, and cell rounding, often followed by detachment from the surface. Noc treatment, instead, induced slower but continuous variations in the rheological behavior for four hours of treatment. The higher vibrational energy dissipation reflected the cell's ability to maintain a stable attachment to the substrate, while a cytoskeletal rearrangement occurs. In fact, along with the complete disaggregation of microtubules at prolonged drug exposure, a compensatory effect of actin polymerization emerged, with increased stress fiber formation.


Assuntos
Microscopia , Técnicas de Microbalança de Cristal de Quartzo , Animais , Citocalasina D/farmacologia , Citoesqueleto/metabolismo , Microtúbulos , Nocodazol/farmacologia , Técnicas de Microbalança de Cristal de Quartzo/métodos , Ratos , Viscosidade
14.
Life Sci Alliance ; 5(8)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35470240

RESUMO

Microtubule (MT) dynamics are modulated through the coordinated action of various MT-associated proteins (MAPs). However, the regulatory mechanisms underlying MT dynamics remain unclear. We show that the MAP7 family protein Map7D2 stabilizes MTs to control cell motility and neurite outgrowth. Map7D2 directly bound to MTs through its N-terminal half and stabilized MTs in vitro. Map7D2 localized prominently to the centrosome and partially on MTs in mouse N1-E115 neuronal cells, which expresses two of the four MAP7 family members, Map7D2 and Map7D1. Map7D2 loss decreased the resistance to the MT-destabilizing agent nocodazole without affecting acetylated/detyrosinated stable MTs, suggesting that Map7D2 stabilizes MTs via direct binding. In addition, Map7D2 loss increased the rate of random cell migration and neurite outgrowth, presumably by disturbing the balance between MT stabilization and destabilization. Map7D1 exhibited similar subcellular localization and gene knockdown phenotypes to Map7D2. However, in contrast to Map7D2, Map7D1 was required for the maintenance of acetylated stable MTs. Taken together, our data suggest that Map7D2 and Map7D1 facilitate MT stabilization through distinct mechanisms in cell motility and neurite outgrowth.


Assuntos
Microtúbulos , Neurônios , Animais , Movimento Celular/genética , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Neurônios/metabolismo , Nocodazol/metabolismo , Nocodazol/farmacologia
15.
Int J Mol Sci ; 23(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35054928

RESUMO

The brain capillary endothelium is highly regulatory, maintaining the chemical stability of the brain's microenvironment. The role of cytoskeletal proteins in tethering nanotubules (TENTs) during barrier-genesis was investigated using the established immortalized mouse brain endothelial cell line (bEnd5) as an in vitro blood-brain barrier (BBB) model. The morphology of bEnd5 cells was evaluated using both high-resolution scanning electron microscopy and immunofluorescence to evaluate treatment with depolymerizing agents Cytochalasin D for F-actin filaments and Nocodazole for α-tubulin microtubules. The effects of the depolymerizing agents were investigated on bEnd5 monolayer permeability by measuring the transendothelial electrical resistance (TEER). The data endorsed that during barrier-genesis, F-actin and α-tubulin play a cytoarchitectural role in providing both cell shape dynamics and cytoskeletal structure to TENTs forming across the paracellular space to provide cell-cell engagement. Western blot analysis of the treatments suggested a reduced expression of both proteins, coinciding with a reduction in the rates of cellular proliferation and decreased TEER. The findings endorsed that TENTs provide alignment of the paracellular (PC) spaces and tight junction (TJ) zones to occlude bEnd5 PC spaces. The identification of specific cytoskeletal structures in TENTs endorsed the postulate of their indispensable role in barrier-genesis and the maintenance of regulatory permeability across the BBB.


Assuntos
Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/ultraestrutura , Proteínas do Citoesqueleto/metabolismo , Actinas/metabolismo , Animais , Biomarcadores , Linhagem Celular , Proteínas do Citoesqueleto/antagonistas & inibidores , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Endotélio Vascular/metabolismo , Endotélio Vascular/ultraestrutura , Imunofluorescência , Expressão Gênica , Camundongos , Nocodazol/farmacologia , Permeabilidade/efeitos dos fármacos
16.
Mol Biol Cell ; 33(6): ar52, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-34705476

RESUMO

Microtubules establish the directionality of intracellular transport by kinesins and dynein through polarized assembly, but it remains unclear how directed transport occurs along microtubules organized with mixed polarity. We investigated the ability of the plus end-directed kinesin-4 motor KIF21B to navigate mixed polarity microtubules in mammalian dendrites. Reconstitution assays with recombinant KIF21B and engineered microtubule bundles or extracted neuronal cytoskeletons indicate that nucleotide-independent microtubule-binding regions of KIF21B modulate microtubule dynamics and promote directional switching on antiparallel microtubules. Optogenetic recruitment of KIF21B to organelles in live neurons induces unidirectional transport in axons but bidirectional transport with a net retrograde bias in dendrites. Removal of the secondary microtubule-binding regions of KIF21B or dampening of microtubule dynamics with low concentrations of nocodazole eliminates retrograde bias in live dendrites. Further exploration of the contribution of microtubule dynamics in dendrites to directionality revealed plus end-out microtubules to be more dynamic than plus end-in microtubules, with nocodazole preferentially stabilizing the plus end-out population. We propose a model in which both nucleotide-sensitive and -insensitive microtubule-binding sites of KIF21B motors contribute to the search and selection of stable plus end-in microtubules within the mixed polarity microtubule arrays characteristic of mammalian dendrites to achieve net retrograde movement of KIF21B-bound cargoes.


Assuntos
Dendritos , Cinesinas , Animais , Dendritos/fisiologia , Mamíferos , Microtúbulos/fisiologia , Neurônios , Nocodazol/farmacologia , Nucleotídeos
17.
Sci Rep ; 11(1): 20224, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34642354

RESUMO

The V-shaped arrangement of hair bundles on cochlear hair cells is critical for auditory sensing. However, regulation of hair bundle arrangements has not been fully understood. Recently, defects in hair bundle arrangement were reported in postnatal Dishevelled-associating protein (ccdc88c, alias Daple)-deficient mice. In the present study, we found that adult Daple-/- mice exhibited hearing disturbances over a broad frequency range through auditory brainstem response testing. Consistently, distorted patterns of hair bundles were detected in almost all regions, more typically in the basal region of the cochlear duct. In adult Daple-/- mice, apical microtubules were irregularly aggregated, and the number of microtubules attached to plasma membranes was decreased. Similar phenotypes were manifested upon nocodazole treatment in a wild type cochlea culture without affecting the microtubule structure of the kinocilium. These results indicate critical role of Daple in hair bundle arrangement through the orchestration of apical microtubule distribution, and thereby in hearing, especially at high frequencies.


Assuntos
Proteínas de Transporte/genética , Cóclea/patologia , Perda Auditiva/patologia , Microtúbulos/patologia , Estereocílios/patologia , Animais , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Cóclea/citologia , Cóclea/efeitos dos fármacos , Cóclea/metabolismo , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico , Técnicas de Inativação de Genes , Perda Auditiva/genética , Camundongos , Microscopia Eletrônica de Varredura , Microtúbulos/metabolismo , Nocodazol/farmacologia , Técnicas de Cultura de Órgãos , Estereocílios/metabolismo
18.
Nat Commun ; 12(1): 6079, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34707124

RESUMO

While the importance of RNA localization in highly differentiated cells is well appreciated, basic principles of RNA localization in skeletal muscle remain poorly characterized. Here, we develop a method to detect and quantify single molecule RNA localization patterns in skeletal myofibers, and uncover a critical role for directed transport of RNPs in muscle. We find that RNAs localize and are translated along sarcomere Z-disks, dispersing tens of microns from progenitor nuclei, regardless of encoded protein function. We find that directed transport along the lattice-like microtubule network of myofibers becomes essential to achieve this localization pattern as muscle development progresses; disruption of this network leads to extreme accumulation of RNPs and nascent protein around myonuclei. Our observations suggest that global active RNP transport may be required to distribute RNAs in highly differentiated cells and reveal fundamental mechanisms of gene regulation, with consequences for myopathies caused by perturbations to RNPs or microtubules.


Assuntos
Microtúbulos/metabolismo , Músculo Esquelético/metabolismo , RNA/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Diferenciação Celular , Núcleo Celular/metabolismo , Simulação por Computador , Camundongos , Imagem Molecular , Desenvolvimento Muscular , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/crescimento & desenvolvimento , Junção Neuromuscular/metabolismo , Nocodazol/farmacologia , Polimerização/efeitos dos fármacos , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Ribonucleoproteínas/metabolismo , Ribossomos/metabolismo , Sarcômeros/metabolismo
19.
Nat Commun ; 12(1): 5608, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556639

RESUMO

The formation of a hollow lumen in a formerly solid mass of cells is a key developmental process whose dysregulation leads to diseases of the kidney and other organs. Hydrostatic pressure has been proposed to drive lumen expansion, a view that is supported by experiments in the mouse blastocyst. However, lumens formed in other tissues adopt irregular shapes with cell apical faces that are bowed inward, suggesting that pressure may not be the dominant contributor to lumen shape in all cases. Here we use live-cell imaging to study the physical mechanism of lumen formation in Madin-Darby Canine Kidney cell spheroids, a canonical cell-culture model for lumenogenesis. We find that in this system, lumen shape reflects basic geometrical considerations tied to the establishment of apico-basal polarity. A physical model incorporating both cell geometry and intraluminal pressure can account for our observations as well as cases in which pressure plays a dominant role.


Assuntos
Algoritmos , Citoesqueleto/metabolismo , Células Epiteliais/metabolismo , Epitélio/metabolismo , Modelos Teóricos , Esferoides Celulares/metabolismo , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Citoesqueleto/efeitos dos fármacos , Desamino Arginina Vasopressina/farmacologia , Cães , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Células Madin Darby de Rim Canino , Microscopia Confocal/métodos , Nocodazol/farmacologia , Ouabaína/farmacologia , Esferoides Celulares/citologia , Esferoides Celulares/efeitos dos fármacos , Moduladores de Tubulina/farmacologia
20.
IEEE/ACM Trans Comput Biol Bioinform ; 18(6): 2828-2834, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34582352

RESUMO

This interdisciplinary work focuses on the interest of a new auto-encoder for supervised classification of live cell populations growing in a thermostated imaging station and acquired by a Quantitative Phase Imaging (QPI) camera. This type of camera produces interferograms that have to be processed to extract features derived from quantitative linear retardance and birefringence measurements. QPI is performed on living populations without any manipulation or treatment of the cells. We use the efficient new autoencoder classification method instead of the classical Douglas-Rachford method. Using this new supervised autoencoder, we show that the accuracy of the classification of the cells present in the mitotic phase of the cell cycle is very high using QPI features. This is a very important finding since we demonstrate that it is now possible to very precisely follow cell growth in a non-invasive manner, without any bias. No dye or any kind of markers are necessary for this live monitoring. Any studies requiring analysis of cell growth or cellular response to any treatment could benefit from this new approach by simply monitoring the proportion of cells entering mitosis in the studied cell population.


Assuntos
Ciclo Celular/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Índice Mitótico/métodos , Aprendizado de Máquina Supervisionado , Algoritmos , Ciclo Celular/efeitos dos fármacos , Células HeLa , Humanos , Microscopia , Nocodazol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...