Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Med ; 24(11): 1691-1695, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30250142

RESUMO

Mutations of the mitochondrial genome (mtDNA) underlie a substantial portion of mitochondrial disease burden. These disorders are currently incurable and effectively untreatable, with heterogeneous penetrance, presentation and prognosis. To address the lack of effective treatment for these disorders, we exploited a recently developed mouse model that recapitulates common molecular features of heteroplasmic mtDNA disease in cardiac tissue: the m.5024C>T tRNAAla mouse. Through application of a programmable nuclease therapy approach, using systemically administered, mitochondrially targeted zinc-finger nucleases (mtZFN) delivered by adeno-associated virus, we induced specific elimination of mutant mtDNA across the heart, coupled to a reversion of molecular and biochemical phenotypes. These findings constitute proof of principle that mtDNA heteroplasmy correction using programmable nucleases could provide a therapeutic route for heteroplasmic mitochondrial diseases of diverse genetic origin.


Assuntos
Edição de Genes , Mitocôndrias Cardíacas/genética , Doenças Mitocondriais/genética , Nucleases de Dedos de Zinco/genética , Animais , DNA Mitocondrial/genética , Dependovirus/genética , Modelos Animais de Doenças , Humanos , Camundongos , Mitocôndrias Cardíacas/patologia , Doenças Mitocondriais/patologia , Doenças Mitocondriais/terapia , Mutação/genética , Prognóstico , RNA de Transferência/genética , Nucleases de Dedos de Zinco/uso terapêutico
2.
J Med Genet ; 55(3): 143-149, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29301855

RESUMO

Respiratory diseases, which are leading causes of mortality and morbidity in the world, are dysfunctions of the nasopharynx, the trachea, the bronchus, the lung and the pleural cavity. Symptoms of chronic respiratory diseases, such as cough, sneezing and difficulty breathing, may seriously affect the productivity, sleep quality and physical and mental well-being of patients, and patients with acute respiratory diseases may have difficulty breathing, anoxia and even life-threatening respiratory failure. Respiratory diseases are generally heterogeneous, with multifaceted causes including smoking, ageing, air pollution, infection and gene mutations. Clinically, a single pulmonary disease can exhibit more than one phenotype or coexist with multiple organ disorders. To correct abnormal function or repair injured respiratory tissues, one of the most promising techniques is to correct mutated genes by gene editing, as some gene mutations have been clearly demonstrated to be associated with genetic or heterogeneous respiratory diseases. Zinc finger nucleases (ZFN), transcription activator-like effector nucleases (TALEN) and clustered regulatory interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) systems are three innovative gene editing technologies developed recently. In this short review, we have summarised the structure and operating principles of the ZFNs, TALENs and CRISPR/Cas9 systems and their preclinical and clinical applications in respiratory diseases.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/tendências , Pneumopatias/terapia , Humanos , Pneumopatias/genética , Mutação , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/uso terapêutico , Nucleases de Dedos de Zinco/uso terapêutico
3.
AIDS Res Ther ; 14(1): 32, 2017 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-28705213

RESUMO

Current treatment for HIV-1 largely relies on chemotherapy through the administration of antiretroviral drugs. While the search for anti-HIV-1 vaccine remain elusive, the use of highly active antiretroviral therapies (HAART) have been far-reaching and has changed HIV-1 into a manageable chronic infection. There is compelling evidence, including several side-effects of ARTs, suggesting that eradication of HIV-1 cannot depend solely on antiretrovirals. Gene therapy, an expanding treatment strategy, using RNA interference (RNAi) and programmable nucleases such as meganuclease, zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins (CRISPR-Cas9) are transforming the therapeutic landscape of HIV-1. TALENS and ZFNS are structurally similar modular systems, which consist of a FokI endonuclease fused to custom-designed effector proteins but have been largely limited, particularly ZFNs, due to their complexity and cost of protein engineering. However, the newly developed CRISPR-Cas9 system, consists of a single guide RNA (sgRNA), which directs a Cas9 endonuclease to complementary target sites, and serves as a superior alternative to the previous protein-based systems. The techniques have been successfully applied to the development of better HIV-1 models, generation of protective mutations in endogenous/host cells, disruption of HIV-1 genomes and even reactivating latent viruses for better detection and clearance by host immune response. Here, we focus on gene editing-based HIV-1 treatment and research in addition to providing  perspectives for refining these techniques.


Assuntos
Edição de Genes/métodos , Terapia Genética/métodos , Infecções por HIV/terapia , RNA Interferente Pequeno/uso terapêutico , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/uso terapêutico , Nucleases de Dedos de Zinco/uso terapêutico , Sistemas CRISPR-Cas/genética , Engenharia Genética/métodos , Genoma Viral/genética , HIV-1/genética , Humanos , Natronobacterium/enzimologia , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...