Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 423
Filtrar
1.
Molecules ; 26(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34834133

RESUMO

The 5',8-cyclo-2'-deoxypurines (cdPus) affect the DNA structure. When these bulky structures are a part of clustered DNA lesions (CDL), they affect the repair of the other lesions within the cluster. Mitochondria are crucial for cell survival and have their own genome, hence, are highly interesting in the context of CDL repair. However, no studies are exploring this topic. Here, the initial stages of mitochondrial base excision repair (mtBER) were considered-the strand incision and elongation. The repair of a single lesion (apurinic site (AP site)) accompanying the cdPu within the double-stranded CDL has been investigated for the first time. The type of cdPu, its diastereomeric form, and the interlesion distance were taken into consideration. For these studies, the established experimental model of short oligonucleotides (containing AP sites located ≤7 base pairs to the cdPu in both directions) and mitochondrial extracts of the xrs5 cells were used. The obtained results have shown that the presence of cdPus influenced the processing of an AP site within the CDL. Levels of strand incision and elongation were higher for oligos containing RcdA and ScdG than for those with ScdA and RcdG. Investigated stages of mtBER were more efficient for DNA containing AP sites located on 5'-end side of cdPu than on its 3'-end side. In conclusion, the presence of cdPus in mtDNA structure may affect mtBER (processing the second mutagenic lesion within the CDL). As impaired repair processes may lead to serious biological consequences, further studies concerning the mitochondrial repair of CDL are highly demanded.


Assuntos
Dano ao DNA , Reparo do DNA , DNA Mitocondrial/metabolismo , Oligonucleotídeos , Nucleosídeos de Purina , Animais , Células CHO , Cricetulus , Oligonucleotídeos/química , Oligonucleotídeos/farmacologia , Nucleosídeos de Purina/química , Nucleosídeos de Purina/farmacologia
2.
Molecules ; 26(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809603

RESUMO

The de novo synthesis of piperidine nucleosides from our homologating agent 5,6-dihydro-1,4-dithiin is herein reported. The structure and conformation of nucleosides were conceived to faithfully resemble the well-known nucleoside drugs Immucillins H and A in their bioactive conformation. NMR analysis of the synthesized compounds confirmed that they adopt an iminosugar conformation bearing the nucleobases and the hydroxyl groups in the appropriate orientation.


Assuntos
Adenina/análogos & derivados , Adenosina/análogos & derivados , Nucleosídeos/química , Piperidinas/química , Nucleosídeos de Purina/química , Pirimidinonas/química , Pirrolidinas/química , Adenina/química , Adenosina/química , Espectroscopia de Ressonância Magnética/métodos , Conformação Molecular , Relação Estrutura-Atividade
3.
Eur J Med Chem ; 216: 113290, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33667845

RESUMO

Kinetoplastid parasites are the causative agents of neglected tropical diseases with an unmet medical need. These parasites are unable to synthesize the purine ring de novo, and therefore rely on purine salvage to meet their purine demand. Evaluating purine nucleoside analogs is therefore an attractive strategy to identify antikinetoplastid agents. Several anti-Trypanosoma cruzi and anti-Trypanosoma brucei 7-deazapurine nucleosides were previously discovered, with the removal of the 3'-hydroxyl group resulting in a significant boost in activity. In this work we therefore decided to assess the effect of the introduction of a 3'-fluoro substituent in 7-deazapurine nucleosides on the anti-kinetoplastid activities. Hence, we synthesized two series of 3'-deoxy-3'-fluororibofuranosyl and 3'-deoxy-3'-fluoroxylofuranosyl nucleosides comprising 7-deazaadenine and -hypoxanthine bases and assayed these for antiparasitic activity. Several analogs with potent activity against T. cruzi and T. brucei were discovered, indicating that a fluorine atom in the 3'-position is a promising modification for the discovery of antiparasitic nucleosides.


Assuntos
Nucleosídeos de Purina/química , Purinas/química , Tripanossomicidas/síntese química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Nucleosídeos de Purina/síntese química , Nucleosídeos de Purina/farmacologia , Purinas/síntese química , Purinas/farmacologia , Relação Estrutura-Atividade , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos
4.
Artigo em Inglês | MEDLINE | ID: mdl-33416028

RESUMO

Antimetabolites, which are metabolic antagonists used in the treatment of cancer and viral diseases by replacing metabolites, inhibit the action of metabolic enzymes and disrupt the pathways of synthesis of structural units necessary for the formation of nucleic acids. Purine antagonists, that are subunits of antimetabolites, reduce the production of purine bases, and hence, cause the nucleotide production to stop and bring about the death of cancer cells. Fludarabine (2-fluoro-ara-AMP), which is used in chemotherapy, is an antimetabolite of the purine class containing mono phosphate in its structure. In this study, a protocol was presented to effectively and efficiently synthesis of 6-(4-phenylpiperazine-1-yl)-9-(ß-D-ribofuranosyl)-9H-purine-5'- O-phosphate compound in six steps and 25% overall yield starting with commercially available 6-chloropurine.


Assuntos
Nucleosídeos de Purina/química , Modelos Moleculares , Conformação Molecular , Fosforilação , Estereoisomerismo
5.
Biopolymers ; 112(1): e23399, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32969496

RESUMO

The notion of using synthetic heterocycles instead of the native bases to interface with DNA and RNA has been explored for nearly 60 years. Unnatural bases compatible with the DNA/RNA coding interface have the potential to expand the genetic code and co-opt the machinery of biology to access new macromolecular function; accordingly, this body of research is core to synthetic biology. While much of the literature on artificial bases focuses on code expansion, there is a significant and growing effort on docking synthetic heterocycles to noncoding nucleic acid interfaces; this approach seeks to illuminate major processes of nucleic acids, including regulation of transcription, translation, transport, and transcript lifetimes. These major avenues of research at the coding and noncoding interfaces have in common fundamental principles in molecular recognition. Herein, we provide an overview of foundational literature in biophysics of base recognition and unnatural bases in coding to provide context for the developing area of targeting noncoding nucleic acid interfaces with synthetic bases, with a focus on systems developed through iterative design and biophysical study.


Assuntos
DNA/metabolismo , RNA/metabolismo , Pareamento de Bases , DNA/química , Ligação de Hidrogênio , Nucleosídeos de Purina/química , Nucleosídeos de Purina/metabolismo , Nucleosídeos de Pirimidina/química , Nucleosídeos de Pirimidina/metabolismo , RNA/química , Biologia Sintética/métodos
6.
J Biol Chem ; 296: 100175, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33303627

RESUMO

Methods for rapid and high-throughput screening of transcription in vitro to examine reaction conditions, enzyme mutants, promoter variants, and small molecule modulators can be extremely valuable tools. However, these techniques may be difficult to establish or inaccessible to many researchers. To develop a straightforward and cost-effective platform for assessing transcription in vitro, we used the "Broccoli" RNA aptamer as a direct, real-time fluorescent transcript readout. To demonstrate the utility of our approach, we screened the effect of common reaction conditions and components on bacteriophage T7 RNA polymerase (RNAP) activity using a common quantitative PCR instrument for fluorescence detection. Several essential conditions for in vitro transcription by T7 RNAP were confirmed with this assay, including the importance of enzyme and substrate concentrations, covariation of magnesium and nucleoside triphosphates, and the effects of several typical additives. When we used this method to assess all possible point mutants of a canonical T7 RNAP promoter, our results coincided well with previous reports. This approach should translate well to a broad variety of bacteriophage in vitro transcription systems and provides a platform for developing fluorescence-based readouts of more complex transcription systems in vitro.


Assuntos
Aptâmeros de Nucleotídeos/genética , Bioensaio , RNA Polimerases Dirigidas por DNA/genética , DNA/genética , Reação em Cadeia da Polimerase/métodos , Proteínas Virais/genética , Sequência de Aminoácidos , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Sequência de Bases , DNA/química , DNA/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação da Expressão Gênica , Magnésio/química , Magnésio/farmacologia , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação Puntual , Regiões Promotoras Genéticas , Nucleosídeos de Purina/química , Nucleosídeos de Purina/farmacologia , Nucleosídeos de Pirimidina/química , Nucleosídeos de Pirimidina/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Cloreto de Sódio/química , Cloreto de Sódio/farmacologia , Espectrometria de Fluorescência , Espermidina/química , Espermidina/farmacologia , Frações Subcelulares/metabolismo , Transcrição Gênica , Proteínas Virais/química , Proteínas Virais/metabolismo
7.
ACS Chem Biol ; 15(11): 2872-2884, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33090769

RESUMO

The expansion of the genetic alphabet with additional, unnatural base pairs (UBPs) is an important and long-standing goal in synthetic biology. Nucleotides acting as ligands for the coordination of metal cations have advanced as promising candidates for such an expansion of the genetic alphabet. However, the inclusion of artificial metal base pairs in nucleic acids mainly relies on solid-phase synthesis approaches, and very little is known about polymerase-mediated synthesis. Herein, we report the selective and high yielding enzymatic construction of a silver-mediated base pair (dImC-AgI-dPurP) as well as a two-step protocol for the synthesis of DNA duplexes containing such an artificial metal base pair. Guided by DFT calculations, we also shed light into the mechanism of formation of this artificial base pair as well as into the structural and energetic preferences. The enzymatic synthesis of the dImC-AgI-dPurP artificial metal base pair provides valuable insights for the design of future, more potent systems aiming at expanding the genetic alphabet.


Assuntos
DNA/química , Nucleosídeos de Purina/química , Prata/química , Pareamento de Bases , Biocatálise , DNA/genética , Teoria da Densidade Funcional , Código Genético , Modelos Moleculares , Polifosfatos/química , Nucleosídeos de Purina/genética
8.
Curr Protoc Nucleic Acid Chem ; 83(1): e118, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32991077

RESUMO

The protocols presented in this article describe highly detailed synthesis of trifluoromethylated purine nucleotides and nucleosides (G and A). The procedure involves trifluoromethylation of properly protected (acetylated) nucleosides, followed by deprotection leading to key CF3 -containing nucleosides. This gives synthetic access to 8-CF3 -substituted guanosine derivatives and three adenosine derivatives (8-CF3 , 2-CF3 , and 2,8-diCF3 ). In further steps, phosphorylation and phosphate elongation (for selected examples) result in respective trifluoromethylated nucleoside mono-, di-, and triphosphates. Support protocols are included for compound handling, purification procedures, analytical sample preparation, and analytical techniques used throughout the performance of the basic protocols. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of trifluoromethylated guanosine and adenosine derivatives Basic Protocol 2: Synthesis of trifluoromethylated guanosine and adenosine monophosphates Basic Protocol 3: Synthesis of phosphorimidazolides of 8-CF3 GMP and 8-CF3 AMP Basic Protocol 4: Synthesis of trifluoromethylated guanosine and adenosine oligophosphates Support Protocol 1: TLC sample preparation and analysis Support Protocol 2: Purification protocol for Basic Protocol 1 Support Protocol 3: HPLC analysis and preparative HPLC Support Protocol 4: Ion-exchange chromatography.


Assuntos
Nucleosídeos de Purina/síntese química , Purinas/química , Ribonucleotídeos/síntese química , Flúor/química , Metilação , Nucleosídeos de Purina/química , Ribonucleotídeos/química , Análise Espectral/métodos
9.
Molecules ; 25(18)2020 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-32961820

RESUMO

An efficient route to acylated acyclic nucleosides containing a branched hemiaminal ether moiety is reported via three-component alkylation of N-heterocycle (purine nucleobase) with acetal (cyclic or acyclic, variously branched) and anhydride (preferentially acetic anhydride). The procedure employs cheap and easily available acetals, acetic anhydride, and trimethylsilyl trifluoromethanesulfonate (TMSOTf). The multi-component reaction is carried out in acetonitrile at room temperature for 15 min and provides moderate to high yields (up to 88%) of diverse acyclonucleosides branched at the aliphatic side chain. The procedure exhibits a broad substrate scope of N-heterocycles and acetals, and, in the case of purine derivatives, also excellent regioselectivity, giving almost exclusively N-9 isomers.


Assuntos
Nucleosídeos de Purina/química , Acetais/química , Anidridos Acéticos/química , Alquilação , Ácidos de Lewis/química , Mesilatos/química , Nucleosídeos de Purina/síntese química , Solventes/química , Estereoisomerismo
10.
ChemMedChem ; 15(23): 2269-2272, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-32779344

RESUMO

Many cancers lack the expression of methylthioadenosine phosphorylase (MTAP). These cancers require adenylosuccinate synthetase (AdSS) for nucleic acid synthesis. By inhibiting adenylosuccinate synthetase, we potentially have a new therapeutic agent. Bisubstrate inhibitors were synthesized and evaluated against purified AdSS. The best activity was obtained with adenosine bearing a four-carbon linker that connects the N-formyl-N-hydroxy moiety to the 6-position of the purine nucleoside.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Nucleosídeos de Purina/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Nucleosídeos de Purina/síntese química , Nucleosídeos de Purina/química , Purina-Núcleosídeo Fosforilase
11.
Org Lett ; 22(13): 5251-5254, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32567317

RESUMO

Septacidin (1) represents a group of nucleoside antibiotics possessing a unique N6-glycosylated adenine core. They exhibit some fascinating bioactivities that are rare for other nucleoside antibiotics. Here we demonstrate that this unique structure in septacidin is formed by SepE and SepF. SepE is an unprecedented Fe(II)-dependent glycosyltransferase decorating the N6-position of AMP using ADP-l-glycero-ß-d-manno-heptose (6) as a sugar donor. The Fe(II) may help SepE to bind AMP. SepF is an unusual glycosidase that detaches the N9-ribosyl-5-phosphate.


Assuntos
Adenina/química , Glicosídeo Hidrolases/metabolismo , Glicosilação , Nucleosídeos de Purina/biossíntese , Nucleosídeos de Purina/química
12.
Nature ; 582(7810): 60-66, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32494078

RESUMO

The nature of the first genetic polymer is the subject of major debate1. Although the 'RNA world' theory suggests that RNA was the first replicable information carrier of the prebiotic era-that is, prior to the dawn of life2,3-other evidence implies that life may have started with a heterogeneous nucleic acid genetic system that included both RNA and DNA4. Such a theory streamlines the eventual 'genetic takeover' of homogeneous DNA from RNA as the principal information-storage molecule, but requires a selective abiotic synthesis of both RNA and DNA building blocks in the same local primordial geochemical scenario. Here we demonstrate a high-yielding, completely stereo-, regio- and furanosyl-selective prebiotic synthesis of the purine deoxyribonucleosides: deoxyadenosine and deoxyinosine. Our synthesis uses key intermediates in the prebiotic synthesis of the canonical pyrimidine ribonucleosides (cytidine and uridine), and we show that, once generated, the pyrimidines persist throughout the synthesis of the purine deoxyribonucleosides, leading to a mixture of deoxyadenosine, deoxyinosine, cytidine and uridine. These results support the notion that purine deoxyribonucleosides and pyrimidine ribonucleosides may have coexisted before the emergence of life5.


Assuntos
DNA/química , Evolução Química , Origem da Vida , Nucleosídeos de Purina/síntese química , Nucleosídeos de Pirimidina/síntese química , RNA/química , Adenosina/análogos & derivados , Adenosina/química , Citidina/química , DNA/genética , Oxirredução/efeitos da radiação , Nucleosídeos de Purina/química , Nucleosídeos de Purina/genética , Nucleosídeos de Pirimidina/química , Nucleosídeos de Pirimidina/genética , RNA/genética , Uridina/química
13.
Chem Commun (Camb) ; 56(41): 5508-5511, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32296789

RESUMO

In bioconjugation chemistry, achieving a target-specific reaction for a non-modified amino acid is challenging. Here, we report a novel nucleobase-involved native chemical ligation (NbCL) that allows a site-specific oligonucleotide-peptide conjugation via a new S-N acyl transfer reaction between an oxanine nucleobase and N-terminal cysteine.


Assuntos
Cisteína/química , Oligonucleotídeos/química , Peptídeos/química , Nucleosídeos de Purina/química , Estrutura Molecular
14.
Curr Protoc Nucleic Acid Chem ; 81(1): e105, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32255553

RESUMO

6-Methylpurine (MeP) is a cytotoxic adenine analog that does not exhibit selectivity when administered systemically and could be very useful in a gene therapy approach to cancer treatment involving Escherichia coli purine nucleoside phosphorylase (PNP). 9-(6-Deoxy-ß-D-allofuranosyl)-6-methylpurine [methyl(allo)-MePR, 18] and 9-(6-deoxy-α-L-talofuranosyl)-6-methylpurine [methyl(talo)-MePR, 21] were synthesized as potential prodrugs for MeP in the E. coli PNP/prodrug cancer gene therapy approach. The detailed syntheses of [methyl(allo)-MePR] and [methyl(talo)-MePR] are described. The glycosyl donors, 1,2-di-O-acetyl-3,5-di-O-benzyl-α-D-allofuranose (12) and 1-O-acetyl-3-O-benzyl-2,5-di-O-benzoyl-α-L-talofuranose (16) were prepared from 1,2:5,6-di-O-isopropylidene-α-D-glucofuranose (4) in nine and eleven steps, respectively. Vorbrüggen coupling of the latter glycosyl donors with 6-methylpurine (3), followed by deprotection of the sugar hydroxyl groups, gave the title compounds in good overall yields. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Preparation of 6-methylpurine Basic Protocol 2: Preparation of the D-allofuranose derivative (12) Basic Protocol 3: Preparation of 6-deoxy-α-L-talofuranoside Basic Protocol 4: Preparation of methyl(allo)-MePR (18) Basic Protocol 5: Preparation of methyl(talo)-MePR (21).


Assuntos
Nucleosídeos de Purina/síntese química , Cromatografia em Camada Fina , Espectrometria de Massas , Espectroscopia de Prótons por Ressonância Magnética , Nucleosídeos de Purina/química , Nucleosídeos de Purina/farmacologia , Relação Estrutura-Atividade
15.
Molecules ; 25(5)2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-32182773

RESUMO

The bi-enzymatic synthesis of the antiviral drug vidarabine (arabinosyladenine, ara-A), catalyzed by uridine phosphorylase from Clostridium perfringens (CpUP) and a purine nucleoside phosphorylase from Aeromonas hydrophila (AhPNP), was re-designed under continuous-flow conditions. Glyoxyl-agarose and EziGTM1 (Opal) were used as immobilization carriers for carrying out this preparative biotransformation. Upon setting-up reaction parameters (substrate concentration and molar ratio, temperature, pressure, residence time), 1 g of vidarabine was obtained in 55% isolated yield and >99% purity by simply running the flow reactor for 1 week and then collecting (by filtration) the nucleoside precipitated out of the exiting flow. Taking into account the substrate specificity of CpUP and AhPNP, the results obtained pave the way to the use of the CpUP/AhPNP-based bioreactor for the preparation of other purine nucleosides.


Assuntos
Antivirais/química , Enzimas Imobilizadas/química , Purina-Núcleosídeo Fosforilase/química , Vidarabina/química , Aeromonas hydrophila/enzimologia , Biocatálise , Reatores Biológicos , Biotransformação/efeitos dos fármacos , Clostridium perfringens/enzimologia , Enzimas Imobilizadas/genética , Glioxilatos/química , Humanos , Engenharia de Proteínas/métodos , Nucleosídeos de Purina/química , Nucleosídeos de Purina/metabolismo , Purina-Núcleosídeo Fosforilase/genética , Sefarose/química , Especificidade por Substrato , Vidarabina/biossíntese , Vidarabina/genética
16.
Theranostics ; 10(7): 3164-3189, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194861

RESUMO

More than a hundred chemical modifications in coding and non-coding RNAs have been identified so far. Many of the RNA modifications are dynamic and reversible, playing critical roles in gene regulation at the posttranscriptional level. The abundance and functions of RNA modifications are controlled mainly by the modification regulatory proteins: writers, erasers and readers. Modified RNA bases and their regulators form intricate networks which are associated with a vast array of diverse biological functions. RNA modifications are not only essential for maintaining the stability and structural integrity of the RNA molecules themselves, they are also associated with the functional outcomes and phenotypic attributes of cells. In addition to their normal biological roles, many of the RNA modifications also play important roles in various diseases particularly in cancer as evidenced that the modified RNA transcripts and their regulatory proteins are aberrantly expressed in many cancer types. This review will first summarize the most commonly reported RNA modifications and their regulations, followed by discussing recent studies on the roles of RNA modifications in cancer, cancer stemness as wells as functional RNA modification machinery as potential cancer therapeutic targets. It is concluded that, while advanced technologies have uncovered the contributions of many of RNA modifications in cancer, the underlying mechanisms are still poorly understood. Moreover, whether and how environmental pollutants, important cancer etiological factors, trigger abnormal RNA modifications and their roles in environmental carcinogenesis remain largely unknown. Further studies are needed to elucidate the mechanism of how RNA modifications promote cell malignant transformation and generation of cancer stem cells, which will lead to the development of new strategies for cancer prevention and treatment.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Neoplasias/genética , Células-Tronco Neoplásicas/metabolismo , Processamento Pós-Transcricional do RNA , RNA Neoplásico/genética , Antineoplásicos/farmacologia , Desenho de Fármacos , Previsões , Humanos , Metiltransferases/fisiologia , Terapia de Alvo Molecular , Proteínas de Neoplasias/fisiologia , Neoplasias/tratamento farmacológico , Oxirredutases N-Desmetilantes/metabolismo , Pseudouridina/química , Nucleosídeos de Purina/química , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , RNA Neoplásico/metabolismo
17.
Molecules ; 25(4)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32093094

RESUMO

The enzymatic synthesis of nucleoside analogues has been shown to be a sustainable and efficient alternative to chemical synthesis routes. In this study, dihalogenated nucleoside analogues were produced by thermostable nucleoside phosphorylases in transglycosylation reactions using uridine or thymidine as sugar donors. Prior to the enzymatic process, ideal maximum product yields were calculated after the determination of equilibrium constants through monitoring the equilibrium conversion in analytical-scale reactions. Equilibrium constants for dihalogenated nucleosides were comparable to known purine nucleosides, ranging between 0.071 and 0.081. To achieve 90% product yield in the enzymatic process, an approximately five-fold excess of sugar donor was needed. Nucleoside analogues were purified by semi-preparative HPLC, and yields of purified product were approximately 50% for all target compounds. To evaluate the impact of halogen atoms in positions 2 and 6 on the antiproliferative activity in leukemic cell lines, the cytotoxic potential of dihalogenated nucleoside analogues was studied in the leukemic cell line HL-60. Interestingly, the inhibition of HL-60 cells with dihalogenated nucleoside analogues was substantially lower than with monohalogenated cladribine, which is known to show high antiproliferative activity. Taken together, we demonstrate that thermodynamic calculations and small-scale experiments can be used to produce nucleoside analogues with high yields and purity on larger scales. The procedure can be used for the generation of new libraries of nucleoside analogues for screening experiments or to replace the chemical synthesis routes of marketed nucleoside drugs by enzymatic processes.


Assuntos
Antineoplásicos , Hidrocarbonetos Halogenados , Leucemia/tratamento farmacológico , Nucleosídeos de Purina , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Células HL-60 , Humanos , Hidrocarbonetos Halogenados/síntese química , Hidrocarbonetos Halogenados/química , Hidrocarbonetos Halogenados/farmacologia , Leucemia/metabolismo , Leucemia/patologia , Pentosiltransferases/química , Nucleosídeos de Purina/síntese química , Nucleosídeos de Purina/química , Nucleosídeos de Purina/farmacologia , Termodinâmica
18.
Bioorg Med Chem ; 28(2): 115230, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31862308

RESUMO

Cytokinins are naturally occurring substances that act as plant growth regulators promoting plant growth and development, including shoot initiation and branching, and also affecting apical dominance and leaf senescence. Aromatic cytokinin 6-benzylaminopurine (BAP) has been widely used in micropropagation systems and biotechnology. However, its 9-glucoside (BAP9G) accumulates in explants, causing root inhibition and growth heterogenity. To overcome BAP disadvantages, a series of ring-substituted 2'-deoxy-9-(ß)-d-ribofuranosylpurine derivatives was prepared and examined in different classical cytokinin bioassays. Amaranthus, senescence and tobacco callus bioassays were employed to provide details of cytokinin activity of 2'-deoxy-9-(ß)-d-ribosides compared to their respective free bases and ribosides. The prepared derivatives were also tested for their recognition by cytokinin receptors of Arabidopsis thaliana AHK3 and CRE1/AHK4. The ability of aromatic N6-substituted adenine-2'-deoxy-9-(ß)-d-ribosides to promote plant growth and delay senescence was increased considerably and, in contrast to BAP, no loss of cytokinin activity at higher concentrations was observed. The presence of a 2'-deoxyribosyl moiety at the N9-position led to an increase in cytokinin activities in comparison to the free bases and ribosides. The antioxidant capacity, cytotoxicity and effect on the MHV-68 gammaherpesvirus strain were also examined.


Assuntos
Antioxidantes/farmacologia , Arabidopsis/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Nucleosídeos de Purina/farmacologia , Animais , Antioxidantes/síntese química , Antioxidantes/química , Arabidopsis/metabolismo , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Estrutura Molecular , Reguladores de Crescimento de Plantas/síntese química , Reguladores de Crescimento de Plantas/química , Nucleosídeos de Purina/síntese química , Nucleosídeos de Purina/química , Relação Estrutura-Atividade , Células Vero
19.
Microb Cell Fact ; 18(1): 175, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31615513

RESUMO

BACKGROUND: Herbicidin F has an undecose tricyclic furano-pyrano-pyran structure with post-decorations. It was detected from Streptomyces mobaraensis US-43 fermentation broth as a trace component by HPLC-MS analysis. As herbicidins exhibit herbicidal, antibacterial, antifungal and antiparasitic activities, we are attracted to explore more analogues for further development. RESULTS: The genome of S. mobaraensis US-43 was sequenced and a herbicidin biosynthetic gene cluster (hcd) was localized. The cluster contains structural genes, one transporter and three potential transcription regulatory genes. Overexpression of the three regulators respectively showed that only hcdR2 overexpression significantly improved the production of herbicidin F, and obviously increased the transcripts of 7 structural genes as well as the transporter gene. After performing homology searches using BLASTP in the GenBank database, 14 hcd-like clusters were found with a cluster-situated hcdR2 homologue. These HcdR2 orthologues showed overall structural similarity, especially in the C-terminal DNA binding domain. Based on bioinformatics analysis, a 21-bp consensus binding motif of HcdR2 was detected within 30 promoter regions in these genome-mined clusters. EMSA results verified that HcdR2 bound to the predicted consensus sequence. Additionally, we employed molecular networking to explore novel herbicidin analogues in hcdR2 overexpression strain. As a result, ten herbicidin analogues including six new compounds were identified based on MS/MS fragments. Herbicidin O was further purified and confirmed by 1H NMR spectrum. CONCLUSIONS: A herbicidin biosynthetic gene cluster (hcd) was identified in S. mobaraensis US-43. HcdR2, a member of LuxR family, was identified as the pathway-specific positive regulator, and the production of herbicidin F was dramatically increased by overexpression of hcdR2. Combined with molecular networking, ten herbicidin congeners including six novel herbicidin analogues were picked out from the secondary metabolites of hcdR2 overexpression strain. The orthologues of herbicidin F pathway-specific regulator HcdR2 were present in most of the genome-mined homologous biosynthetic gene clusters, which possessed at least one consensus binding motif with LuxR family characteristic. These results indicated that the combination of overexpression of hcdR2 orthologous regulator and molecular networking might be an effective way to exploit the "cryptic" herbicidin-related biosynthetic gene clusters for discovery of novel herbicidin analogues.


Assuntos
Adenosina/análogos & derivados , Nucleosídeos de Purina , Proteínas Repressoras/metabolismo , Streptomyces , Transativadores/metabolismo , Antibacterianos/química , Antifúngicos/química , Regulação Bacteriana da Expressão Gênica , Estrutura Molecular , Família Multigênica , Nucleosídeos de Purina/química , Nucleosídeos de Purina/genética , Streptomyces/genética , Streptomyces/metabolismo
20.
Science ; 366(6461): 76-82, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31604305

RESUMO

Theories about the origin of life require chemical pathways that allow formation of life's key building blocks under prebiotically plausible conditions. Complex molecules like RNA must have originated from small molecules whose reactivity was guided by physico-chemical processes. RNA is constructed from purine and pyrimidine nucleosides, both of which are required for accurate information transfer, and thus Darwinian evolution. Separate pathways to purines and pyrimidines have been reported, but their concurrent syntheses remain a challenge. We report the synthesis of the pyrimidine nucleosides from small molecules and ribose, driven solely by wet-dry cycles. In the presence of phosphate-containing minerals, 5'-mono- and diphosphates also form selectively in one-pot reactions. The pathway is compatible with purine synthesis, allowing the concurrent formation of all Watson-Crick bases.


Assuntos
Nucleosídeos de Purina/síntese química , Nucleosídeos de Pirimidina/síntese química , Ribonucleotídeos/síntese química , Fenômenos Químicos , Hidroxilamina/química , Nucleosídeos de Purina/química , Nucleotídeos de Purina/síntese química , Nucleosídeos de Pirimidina/química , Nucleotídeos de Pirimidina/síntese química , RNA/síntese química , Ribose/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...