Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Int J Biol Sci ; 17(15): 4442-4458, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803509

RESUMO

Background: Autophagy regulates many cell functions related to cancer, ranging from cell proliferation and angiogenesis to metabolism. Due to the close relationship between autophagy and tumors, we investigated the predictive value of autophagy-related genes. Methods: Data from patients with hepatocellular carcinoma were obtained from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) databases. A regression analysis of differentially expressed genes was performed. Based on a prognostic model, patients were divided into a high-risk or low-risk group. Kaplan-Meier survival analyses of patients were conducted. The immune landscapes, as determined using single-sample gene set enrichment analysis (ssGSEA), exhibited different patterns in the two groups. The prognostic model was verified using the ICGC database and clinical data from patients collected at Zhongnan Hospital. Based on the results of multivariate Cox regression analysis, 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate (IMP) cyclohydrolase (ATIC) had the largest hazard ratio, and thus we studied the effect of ATIC on autophagy and tumor progression by performing in vitro and in vivo experiments. Results: Fifty-eight autophagy-related genes were differentially expressed (false discovery rate (FDR)<0.05, log2 fold change (logFC)>1); 23 genes were related to the prognosis of patients. A prognostic model based on 12 genes (ATG10, ATIC, BIRC5, CAPN10, FKBP1A, GAPDH, HDAC1, PRKCD, RHEB, SPNS1, SQSTM1 and TMEM74) was constructed. A significant difference in survival rate was observed between the high-risk group and low-risk group distinguished by the model (P<0.001). The model had good predictive power (area under the curve (AUC)>0.7). Risk-related genes were related to the terms type II IFN response, MHC class I (P<0.001) and HLA (P<0.05). ATIC was confirmed to inhibit autophagy and promote the proliferation, invasion and metastasis of liver cancer cells through the AKT/Forkhead box subgroup O3 (FOXO3) signaling pathway in vitro and in vivo. Conclusions: The prediction model effectively predicts the survival time of patients with liver cancer. The risk score reflects the immune cell features and immune status of patients. ATIC inhibits autophagy and promotes the progression of liver cancer through the AKT/FOXO3 signaling pathway.


Assuntos
Carcinoma Hepatocelular/metabolismo , Cromonas/farmacologia , Proteína Forkhead Box O3/metabolismo , Hidroximetil e Formil Transferases/metabolismo , Neoplasias Hepáticas/metabolismo , Morfolinas/farmacologia , Complexos Multienzimáticos/metabolismo , Nucleotídeo Desaminases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Acetatos/farmacologia , Benzopiranos/farmacologia , Biomarcadores Tumorais , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Proteína Forkhead Box O3/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/fisiologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Hidroximetil e Formil Transferases/genética , Neoplasias Hepáticas/genética , Modelos Biológicos , Complexos Multienzimáticos/genética , Nucleotídeo Desaminases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Sobrevida
2.
Int J Rheum Dis ; 24(5): 654-662, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33780152

RESUMO

INTRODUCTION: The adenosine pathway is one of the ways through which methotrexate (MTX) ameliorates inflammation. We therefore explored an association of polymorphism of genes involved in adenosine and MTX metabolic pathways with response to MTX. METHODS: Association of polymorphism in 7 genes (rs2236225 [MTHFD1 1958G>A], rs17602729 [AMPD1 G>A], rs1127354 [ITPA C>A], rs1431131 [TGFBR2 A>T], rs2372536 [ATIC C>G], rs11188513 [ENTPD1 C>T] and rs5751876 [ADORA2A T>C]) with efficacy of MTX was studied in Indian rheumatoid arthritis (RA) patients. The patients, classified by European League Against Rheumatology (EULAR)/American College of Rheumatology (ACR) 2010 criteria, were DMARD (disease-modifying antirheumatic drug)-naïve, with Disease Activity Score (DAS28) >3.2. After 4 months of MTX monotherapy, patients were classified as responders (R) or non-responders (NR) based on EULAR response criteria. Genotyping was done by TaqMan 5' nuclease assay and association of gene polymorphisms with response to MTX was determined by Chi-squared test. RESULTS: Two hundred and twenty-six patients (86% female, median age 40 [interquartile range, IQR = 17.25] years), with disease duration of 24 (IQR = 38.25) months and DAS28-C-reactive protein score of 4.61 (IQR = 1.34) were enrolled. After therapy, 186 patients were classified as R and 40 as NR. GG genotype of ATIC (P = .01, odds ratio [OR] 2.56, 95% CI, 1.04-6.30) and CC genotype of ITPA (P = .009, OR 1.34, 95% CI 1.02-1.76) genes were found to be associated with the response. On binary logistic regression analysis, GG genotype of ATIC and CC of ITPA genes were independent predictors of the response. CONCLUSION: Polymorphisms of ATIC and ITPA genes alone or with clinical variables were associated with response to MTX therapy in Indian RA patients.


Assuntos
Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Hidroximetil e Formil Transferases/metabolismo , Metotrexato/uso terapêutico , Complexos Multienzimáticos/metabolismo , Nucleotídeo Desaminases/metabolismo , Pirofosfatases/metabolismo , Adulto , Artrite Reumatoide/epidemiologia , Genótipo , Humanos , Hidroximetil e Formil Transferases/genética , Imunossupressores , Índia/epidemiologia , Metotrexato/efeitos adversos , Pessoa de Meia-Idade , Complexos Multienzimáticos/genética , Nucleotídeo Desaminases/genética , Polimorfismo de Nucleotídeo Único , Pirofosfatases/genética
3.
Nat Protoc ; 16(2): 1170-1192, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33462439

RESUMO

Digested genome sequencing (Digenome-seq) is a highly sensitive, easy-to-carry-out, cell-free method for experimentally identifying genome-wide off-target sites of programmable nucleases and deaminases (also known as base editors). Genomic DNA is digested in vitro using clustered regularly interspaced short palindromic repeats ribonucleoproteins (RNPs; plus DNA-modifying enzymes to cleave both strands of DNA at sites containing deaminated base products, in the case of base editors) and subjected to whole-genome sequencing (WGS) with a typical sequencing depth of 30×. A web-based program is available to map in vitro cleavage sites corresponding to on- and off-target sites. Chromatin DNA, in parallel with histone-free genomic DNA, can also be used to account for the effects of chromatin structure on off-target nuclease activity. Digenome-seq is more sensitive and comprehensive than cell-based methods for identifying off-target sites. Unlike other cell-free methods, Digenome-seq does not involve enrichment of DNA ends through PCR amplification. The entire process other than WGS, which takes ~1-2 weeks, including purification and preparation of RNPs, digestion of genomic DNA and bioinformatic analysis after WGS, takes about several weeks.


Assuntos
Edição de Genes/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Sequência de Bases , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , Cromatina , Mapeamento Cromossômico/métodos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA , Endonucleases/metabolismo , Genoma Humano , Humanos , Nucleotídeo Desaminases/genética , Nucleotídeo Desaminases/metabolismo , RNA Guia de Cinetoplastídeos/genética , Ribonucleases/genética , Ribonucleases/metabolismo , Sequenciamento Completo do Genoma/métodos
4.
Int J Lab Hematol ; 43(3): 409-417, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33226193

RESUMO

PURPOSE: Multiple myeloma (MM) is characterized by the malignant proliferation of plasma cells, which produce a monoclonal immunoglobulin protein. The role of 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC) has not yet been well studied in the area of MM. Thus, in the current study, we sought to examine the expression levels, including mRNA and protein levels of ATIC in MM. METHODS: Multiple myeloma microarray and RNA-seq data were screened from the SRA, GEO, ArrayExpress, and Oncomine databases. The mRNA level of ATIC was extracted from the high throughput data, and the prognostic value was studied. The protein level of ATIC was also detected by in-house immunohistochemistry on a tissue microarray. Potential signaling pathways were enriched with ATIC-related genes in MM. RESULTS: Both the mRNA and protein levels of ATIC were significantly upregulated in MM samples as compared to normal samples. Furthermore, the summarized Standardized Mean Difference was 1.66 with 674 cases of MM based on 10 independent studies including the in-house tissue microarray. The overall hazard ratio of ATIC in MM was 1.7 with 1631 cases of MM based on five microarrays. In the KEGG pathway analysis, the ATIC-related genes were mainly enriched in the pathway of complement and coagulation cascades. CONCLUSION: We provided the first evidence supporting the upregulation of ATIC may play an essential part in the tumorigenesis and development of MM. The promoting cancer capacity may be related to the pathway of complement and coagulation cascades.


Assuntos
Hidroximetil e Formil Transferases/genética , Complexos Multienzimáticos/genética , Mieloma Múltiplo/genética , Nucleotídeo Desaminases/genética , Regulação para Cima , Regulação Neoplásica da Expressão Gênica , Humanos , Mieloma Múltiplo/diagnóstico , Análise de Sequência com Séries de Oligonucleotídeos , Prognóstico , RNA Mensageiro/genética
5.
Mol Cell ; 79(5): 758-767.e6, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32755596

RESUMO

During proteotoxic stress, bacteria maintain critical processes like DNA replication while removing misfolded proteins, which are degraded by the Lon protease. Here, we show that in Caulobacter crescentus Lon controls deoxyribonucleoside triphosphate (dNTP) pools during stress through degradation of the transcription factor CcrM. Elevated dNTP/nucleotide triphosphate (NTP) ratios in Δlon cells protects them from deletion of otherwise essential deoxythymidine triphosphate (dTTP)-producing pathways and shields them from hydroxyurea-induced loss of dNTPs. Increased dNTP production in Δlon results from higher expression of ribonucleotide reductase driven by increased CcrM. We show that misfolded proteins can stabilize CcrM by competing for limited protease and that Lon-dependent control of dNTPs improves fitness during protein misfolding conditions. We propose that linking dNTP production with availability of Lon allows Caulobacter to maintain replication capacity when misfolded protein burden increases, such as during rapid growth. Because Lon recognizes misfolded proteins regardless of the stress, this mechanism allows for response to a variety of unanticipated conditions.


Assuntos
Caulobacter crescentus/metabolismo , Nucleotídeos/metabolismo , Protease La/metabolismo , Dobramento de Proteína , Proteínas de Bactérias/metabolismo , Caulobacter crescentus/enzimologia , Elementos de DNA Transponíveis , Didesoxinucleosídeos/metabolismo , Regulação Bacteriana da Expressão Gênica , Nucleotídeo Desaminases/genética , Nucleotídeo Desaminases/metabolismo , Ribonucleotídeo Redutases/metabolismo , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Regulação para Cima
6.
J Inherit Metab Dis ; 43(6): 1254-1264, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32557644

RESUMO

5-Amino-4-imidazolecarboxamide-ribosiduria (AICA)-ribosiduria is an exceedingly rare autosomal recessive condition resulting from the disruption of the bifunctional purine biosynthesis protein PURH (ATIC), which catalyzes the last two steps of de novo purine synthesis. It is characterized biochemically by the accumulation of AICA-riboside in urine. AICA-ribosiduria had been reported in only one individual, 15 years ago. In this article, we report three novel cases of AICA-ribosiduria from two independent families, with two novel pathogenic variants in ATIC. We also provide a clinical update on the first patient. Based on the phenotypic features shared by these four patients, we define AICA-ribosiduria as the syndromic association of severe-to-profound global neurodevelopmental impairment, severe visual impairment due to chorioretinal atrophy, ante-postnatal growth impairment, and severe scoliosis. Dysmorphic features were observed in all four cases, especially neonatal/infancy coarse facies with upturned nose. Early-onset epilepsy is frequent and can be pharmacoresistant. Less frequently observed features are aortic coarctation, chronic hepatic cytolysis, minor genital malformations, and nephrocalcinosis. Alteration of the transformylase activity of ATIC might result in a more severe impairment than the alteration of the cyclohydrolase activity. Data from literature points toward a cytotoxic mechanism of the accumulated AICA-riboside.


Assuntos
Anormalidades Congênitas/genética , Epilepsia/genética , Hidroximetil e Formil Transferases/deficiência , Deficiência Intelectual/genética , Complexos Multienzimáticos/genética , Nucleotídeo Desaminases/deficiência , Aminoimidazol Carboxamida/metabolismo , Criança , Pré-Escolar , Feminino , Humanos , Hidroximetil e Formil Transferases/genética , Hidroximetil e Formil Transferases/metabolismo , Lactente , Recém-Nascido , Masculino , Complexos Multienzimáticos/metabolismo , Mutação , Nucleotídeo Desaminases/genética , Nucleotídeo Desaminases/metabolismo , Fenótipo , Ribonucleosídeos/metabolismo
7.
J Biol Chem ; 295(28): 9551-9566, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32439803

RESUMO

The purinosome is a dynamic metabolic complex composed of enzymes responsible for de novo purine biosynthesis, whose formation has been associated with elevated purine demand. However, the physiological conditions that govern purinosome formation in cells remain unknown. Here, we report that purinosome formation is up-regulated in cells in response to a low-oxygen microenvironment (hypoxia). We demonstrate that increased purinosome assembly in hypoxic human cells requires the activation of hypoxia inducible factor 1 (HIF-1) and not HIF-2. Hypoxia-driven purinosome assembly was inhibited in cells lacking 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC), a single enzyme in de novo purine biosynthesis, and in cells treated with a small molecule inhibitor of ATIC homodimerization. However, despite the increase in purinosome assembly in hypoxia, we observed no associated increase in de novo purine biosynthesis in cells. Our results indicate that this was likely due to a reduction in mitochondrial one-carbon metabolism, resulting in reduced mitochondrion-derived one-carbon units needed for de novo purine biosynthesis. The findings of our study further clarify and deepen our understanding of purinosome formation by revealing that this process does not solely depend on cellular purine demand.


Assuntos
Hidroximetil e Formil Transferases/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Complexos Multienzimáticos/metabolismo , Nucleotídeo Desaminases/metabolismo , Purinas/biossíntese , Hipóxia Celular , Células HeLa , Humanos , Hidroximetil e Formil Transferases/genética , Fator 1 Induzível por Hipóxia/genética , Complexos Multienzimáticos/genética , Nucleotídeo Desaminases/genética
8.
Pharmacogenomics ; 20(2): 85-93, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30628539

RESUMO

AIM: To study the performance of a clinical pharmacogenetic model for the prediction of nonresponse in rheumatoid arthritis (RA) patients treated with methotrexate (MTX) in combination with other synthetic or biologic disease-modifying anti-rheumatic drugs . This prediction model includes gender, smoking status, rheumatoid factor positivity and four genetic variants in AMPD1 (rs17602729), ATIC (rs2372536), ITPA (rs1127354) and MTHFD1 (rs17850560). METHODS: A total of 314 RA patients from three Dutch studies were retrospectively included. Eligible patients were adults diagnosed with RA and had a treatment duration with MTX and follow-up for at least two study evaluation visits. Prediction model risk scores at the first and second evaluation were calculated and compared with the actual nonresponse (disease activity score >2.4). Regression and receiver operating characteristic curve analyses of the prediction model were performed. Also, the sensitivity, specificity and the positive and negative predictive values (PPV and NPV) were determined. RESULTS: The receiver operating characteristic area under the curve was 75% at first and 70% after second evaluation. At the second evaluation, prediction nonresponse had a sensitivity of 67% (CI: 54-78%), specificity of 69% (CI: 60-77%), PPV of 52% (CI: 45-60%) and NPV of 80% (CI: 73-85%). CONCLUSIONS: This study demonstrates that the clinical pharmacogenetic model has an inadequate performance for the prediction of nonresponse to MTX in RA patients treated with combination therapies.


Assuntos
Antirreumáticos/efeitos adversos , Artrite Reumatoide/tratamento farmacológico , Metotrexato/efeitos adversos , Testes Farmacogenômicos , AMP Desaminase/genética , Adulto , Antirreumáticos/administração & dosagem , Artrite Reumatoide/genética , Artrite Reumatoide/patologia , Combinação de Medicamentos , Feminino , Humanos , Hidroximetil e Formil Transferases/genética , Masculino , Metotrexato/administração & dosagem , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Pessoa de Meia-Idade , Antígenos de Histocompatibilidade Menor/genética , Complexos Multienzimáticos/genética , Nucleotídeo Desaminases/genética , Pirofosfatases/genética , Resultado do Tratamento
9.
Mol Oncol ; 12(10): 1778-1796, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30099851

RESUMO

Although metabolomics has attracted considerable attention in the field of lung cancer (LC) detection and management, only a very limited number of works have applied it to tissues. As such, the aim of this study was the thorough analysis of metabolic profiles of relevant LC tissues, including the most important histological subtypes (adenocarcinoma and squamous cell lung carcinoma). Mass spectrometry-based metabolomics, along with genetic expression and histological analyses, were performed as part of this study, the widest to date, to identify metabolic alterations in tumors of the most relevant histological subtypes in lung. A total of 136 lung tissue samples were analyzed and 851 metabolites were identified through metabolomic analysis. Our data show the existence of a clear metabolic alteration not only between tumor vs. nonmalignant tissue in each patient, but also inherently intrinsic changes in both AC and SCC. Significant changes were observed in the most relevant biochemical pathways, and nucleotide metabolism showed an important number of metabolites with high predictive capability values. The present study provides a detailed analysis of the metabolomic changes taking place in relevant biochemical pathways of the most important histological subtypes of LC, which can be used as biomarkers and also to identify novel targets.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/terapia , Metabolômica/métodos , Nucleotídeos/metabolismo , Idoso , Feminino , Regulação Neoplásica da Expressão Gênica , Glucose/metabolismo , Glutationa/metabolismo , Humanos , Hidroximetil e Formil Transferases/genética , Hidroximetil e Formil Transferases/metabolismo , Neoplasias Pulmonares/genética , Masculino , Metaboloma , Pessoa de Meia-Idade , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Nucleotídeo Desaminases/genética , Nucleotídeo Desaminases/metabolismo , Estresse Oxidativo , Poliaminas/metabolismo , Purinas/metabolismo , Curva ROC
10.
Biochem Biophys Res Commun ; 503(1): 195-201, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-29864427

RESUMO

Archaeal/fungal Rib7 and eubacterial RibG possess a reductase domain for ribosyl reduction in the second and third steps, respectively, of riboflavin biosynthesis. These enzymes are specific for an amino and a carbonyl group of the pyrimidine ring, respectively. Here, several crystal structures of Methanosarcina mazei Rib7 are reported at 2.27-1.95 Šresolution, which are the first archaeal dimeric Rib7 structures. Mutational analysis displayed that no detectable activity was observed for the Bacillus subtilis RibG K151A, K151D, and K151E mutants, and the M. mazei Rib7 D33N, D33K, and E156Q variants, while 0.1-0.6% of the activity was detected for the M. mazei Rib7 N9A, S29A, D33A, and D57N variants. Our results suggest that Lys151 in B. subtilis RibG, while Asp33 together with Arg36 in M. mazei Rib7, ensure the specific substrate recognition. Unexpectedly, an endogenous NADPH cofactor is observed in M. mazei Rib7, in which the 2'-phosphate group interacts with Ser88, and Arg91. Replacement of Ser88 with glutamate eliminates the endogenous NADPH binding and switches preference to NADH. The lower melting temperature of ∼10 °C for the S88E and R91A mutants suggests that nature had evolved a tightly bound NADPH to greatly enhance the structural stability of archaeal Rib7.


Assuntos
Proteínas Arqueais/metabolismo , Proteínas de Bactérias/metabolismo , Nucleotídeo Desaminases/metabolismo , Oxirredutases/metabolismo , Riboflavina/biossíntese , Desidrogenase do Álcool de Açúcar/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas Arqueais/química , Proteínas Arqueais/genética , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Domínio Catalítico/genética , Cristalografia por Raios X , Estabilidade Enzimática , Evolução Molecular , Methanosarcina/enzimologia , Methanosarcina/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , NAD/metabolismo , NADP/metabolismo , Nucleotídeo Desaminases/química , Nucleotídeo Desaminases/genética , Oxirredutases/química , Oxirredutases/genética , Estrutura Quaternária de Proteína , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Especificidade por Substrato , Desidrogenase do Álcool de Açúcar/química , Desidrogenase do Álcool de Açúcar/genética
11.
Microbiology (Reading) ; 164(7): 982-991, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29799386

RESUMO

Dihydrofolate reductase (DHFR) and 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase/IMP cyclohydrolase (PurH) play key roles in maintaining folate pools in cells, and are targets of antimicrobial and anticancer drugs. While the activities of bacterial DHFR and PurH on their classical substrates (DHF and 10-CHO-THF, respectively) are known, their activities and kinetic properties of utilisation of 10-CHO-DHF are unknown. We have determined the kinetic properties (kcat/Km) of conversion of 10-CHO-DHF to 10-CHO-THF by DHFR, and to DHF by PurH. We show that DHFR utilises 10-CHO-DHF about one third as efficiently as it utilises DHF. The 10-CHO-DHF is also utilised (as a formyl group donor) by PurH albeit slightly less efficiently than 10-CHO-THF. The utilisation of 10-CHO-DHF by DHFR is ~50 fold more efficient than its utilisation by PurH. A folate deficient Escherichia coli (∆pabA) grows well when supplemented with adenine, glycine, thymine and methionine, the metabolites that arise from the one-carbon metabolic pathway. Notably, when the ∆pabA strain harboured a folate transporter, it grew in the presence of 10-CHO-DHF alone, suggesting that it (10-CHO-DHF) can enter one-carbon metabolic pathway to provide the required metabolites. Thus, our studies reveal that both DHFR and PurH could utilise 10-CHO-DHF for folate homeostasis in E. coli.


Assuntos
Escherichia coli/metabolismo , Ácido Fólico/análogos & derivados , Nucleotídeo Desaminases/metabolismo , Fosforribosilaminoimidazolcarboxamida Formiltransferase/metabolismo , Tetra-Hidrofolato Desidrogenase/metabolismo , Ácido 4-Aminobenzoico , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Ácido Fólico/metabolismo , Deficiência de Ácido Fólico/genética , Homeostase , Cinética , Redes e Vias Metabólicas , Nucleotídeo Desaminases/genética , Fosforribosilaminoimidazolcarboxamida Formiltransferase/genética , Tetra-Hidrofolato Desidrogenase/genética
12.
J Biol Chem ; 293(13): 4845-4859, 2018 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-29414769

RESUMO

The enzyme AICAR-transformylase/IMP cyclohydrolase (ATIC) catalyzes the last two steps of purine de novo synthesis. It metabolizes 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), which is an AMP analogue, leading to activation of AMP-activated kinase (AMPK). We investigated whether the AICAR-ATIC pathway plays a role in the high glucose (HG)-mediated DNA damage response and AICAR-mediated AMPK activation, explaining the detrimental effects of glucose on neuronal damage and shortening of the lifespan. HG up-regulated the expression and activity of the Caenorhabditis elegans homologue of ATIC, C55F2.1 (atic-1), and increased the levels of reactive oxygen species and methylglyoxal-derived advanced glycation end products. Overexpression of atic-1 decreased the lifespan and head motility and increased neuronal damage under both standard and HG conditions. Inhibition of atic-1 expression, by RNAi, under HG was associated with increased lifespan and head motility and reduced neuronal damage, reactive oxygen species, and methylglyoxal-derived advanced glycation end product accumulation. This effect was independent of an effect on DNA damage or antioxidant defense pathways, such as superoxide dismutase (sod-3) or glyoxalase-1 (glod-4), but was dependent on AMPK and accumulation of AICAR. Through AMPK, AICAR treatment also reduced the negative effects of HG. The mitochondrial inhibitor rotenone abolished the AICAR/AMPK-induced amelioration of HG effects, pointing to mitochondria as a prime target of the glucotoxic effects in C. elegans We conclude that atic-1 is involved in glucotoxic effects under HG conditions, either by blocked atic-1 expression or via AICAR and AMPK induction.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Glucose/metabolismo , Hidroximetil e Formil Transferases/metabolismo , Complexos Multienzimáticos/metabolismo , Nucleotídeo Desaminases/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Hidroximetil e Formil Transferases/genética , Complexos Multienzimáticos/genética , Neurônios/metabolismo , Nucleotídeo Desaminases/genética , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
13.
Biochim Biophys Acta Proteins Proteom ; 1866(2): 254-263, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29042184

RESUMO

Aminoimidazolecarboxamide ribonucleotide formyl transferase (AICARFT): Inosine monophosphate cyclohydrolase (IMPCH, collectively called ATIC) is a bifunctional enzyme that catalyses the penultimate and final steps in the purine de novo biosynthesis pathway. The bifunctional protein is dimeric and each monomer contains two different active sites both of which are capable of binding nucleotide substrates, this means to a potential total of four distinct binding events might be observed. Within this work we used a combination of site-directed and truncation mutants of ATIC to independently investigate the binding at these two sites using calorimetry. A single S10W mutation is sufficient to block the IMPCH active site allowing investigation of the effects of mutation on ligand binding in the AICARFT active site. The majority of nucleotide ligands bind selectively at one of the two active sites with the exception of xanthosine monophosphate, XMP, which, in addition to binding in both AICARFT and IMPCH active sites, shows evidence for cooperative binding with communication between symmetrically-related active sites in the two IMPCH domains. The AICARFT site is capable of independently binding both nucleotide and folate substrates with high affinity however no evidence for positive cooperativity in binding could be detected using the model ligands employed in this study.


Assuntos
Hidroximetil e Formil Transferases/química , Modelos Moleculares , Complexos Multienzimáticos/química , Nucleotídeo Desaminases/química , Nucleotídeos/química , Domínio Catalítico , Humanos , Hidroximetil e Formil Transferases/genética , Hidroximetil e Formil Transferases/metabolismo , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Nucleotídeo Desaminases/genética , Nucleotídeo Desaminases/metabolismo , Nucleotídeos/genética , Nucleotídeos/metabolismo , Ligação Proteica , Especificidade por Substrato/fisiologia
14.
Int J Radiat Oncol Biol Phys ; 100(1): 162-173, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29029884

RESUMO

PURPOSE: Mutations in the gene encoding 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC), a bifunctional enzyme that catalyzes the final 2 steps of the purine de novo biosynthetic pathway, were identified in a subject referred for radiation sensitivity testing. Functional studies were performed to determine whether ATIC inhibition was radiosensitizing and, if so, to elucidate the mechanism of this effect and determine whether small molecule inhibitors of ATIC could act as effective radiosensitizing agents. METHODS AND MATERIALS: Both small interfering RNA knockdown and small molecule inhibitors were used to inactivate ATIC in cell culture. Clonogenic survival assays, the neutral comet assay, and γH2AX staining were used to assess the effects of ATIC inhibition or depletion on cellular DNA damage responses. RESULTS: Depletion of ATIC or inhibition of its transformylase activity significantly reduced the surviving fraction of cells in clonogenic survival assays in multiple cancer cell lines. In the absence of ionizing radiation exposure, ATIC knockdown or chemical inhibition activated cell cycle checkpoints, shifting cells to the more radiosensitive G2/M phase of the cell cycle, and depleted cellular adenosine triphosphate but did not result in detectable DNA damage. Cells in which ATIC was knocked down or inhibited and then treated with ionizing radiation displayed increased numbers of DNA double-strand breaks and a delay in the repair of those breaks relative to irradiated, but otherwise untreated, controls. Supplementation of culture media with exogenous adenosine triphosphate ameliorated the DNA repair phenotypes. CONCLUSIONS: These findings implicate ATIC as an effective, and previously unrecognized, target for chemoradiosensitization and, more broadly, suggest that purine levels in cells might have an underappreciated role in modulating the efficiency of DNA damage responses that could be exploited in radiosensitizing strategies.


Assuntos
Quimiorradioterapia , Quebras de DNA de Cadeia Dupla , Inibidores Enzimáticos/uso terapêutico , Mutação da Fase de Leitura , Hidroximetil e Formil Transferases/antagonistas & inibidores , Complexos Multienzimáticos/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Nucleotídeo Desaminases/antagonistas & inibidores , Radiossensibilizantes/uso terapêutico , Trifosfato de Adenosina/administração & dosagem , Pontos de Checagem do Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Ensaio Cometa , Dano ao DNA , Reparo do DNA , Técnicas de Silenciamento de Genes , Histonas/análise , Humanos , Hidroximetil e Formil Transferases/deficiência , Hidroximetil e Formil Transferases/genética , Terapia de Alvo Molecular/métodos , Complexos Multienzimáticos/deficiência , Complexos Multienzimáticos/genética , Proteínas de Neoplasias/deficiência , Proteínas de Neoplasias/genética , Nucleotídeo Desaminases/deficiência , Nucleotídeo Desaminases/genética , Ensaio Tumoral de Célula-Tronco
15.
Cell Commun Signal ; 15(1): 52, 2017 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-29246230

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the cancer types with poor prognosis. To effectively treat HCC, new molecular targets and therapeutic approaches must be identified. 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate (IMP) cyclohydrolase (ATIC), a bifunctional protein enzyme, catalyzes the last two steps of the de novo purine biosynthetic pathway. Whether ATIC contributes to cancer development remains unclear. METHODS: ATIC mRNA levels in different types of human HCC samples or normal tissues were determined from Gene Expression across Normal and Tumor tissue (GENT) database. The expression level of ATIC in human HCC samples or cell lines were examined by RT-PCR and western blot. Overall survival and disease-free survival of HCC patients in the ATIC low and ATIC high groups were determined by Kaplan-Meier analysis. Effects of ATIC knockdown by lentivirus infection were evaluated on cell-proliferation, cell-apoptosis, colony formation and migration. The mechanisms involved in HCC cells growth, apoptosis and migration were analyzed by western blot and Compound C (C-C) rescue assays. RESULTS: Here, we first demonstrated that expression of ATIC is aberrantly up-regulated in HCC tissues and high level of ATIC is correlated with poor survival in HCC patients. Knockdown of ATIC expression resulted in a dramatic decrease in proliferation, colony formation and migration of HCC cells. We also identified ATIC as a novel regulator of adenosine monophosphate-activated protein kinase (AMPK) and its downstream signaling mammalian target of rapamycin (mTOR). ATIC suppresses AMPK activation, thus activates mTOR-S6 K1-S6 signaling and supports growth and motility activity of HCC cells. CONCLUSION: Taken together, our results indicate that ATIC acts as an oncogenic gene that promotes survival, proliferation and migration by targeting AMPK-mTOR-S6 K1 signaling.


Assuntos
Adenilato Quinase/metabolismo , Carcinoma Hepatocelular/patologia , Hidroximetil e Formil Transferases/metabolismo , Neoplasias Hepáticas/patologia , Complexos Multienzimáticos/metabolismo , Nucleotídeo Desaminases/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Intervalo Livre de Doença , Ativação Enzimática , Técnicas de Silenciamento de Genes , Humanos , Hidroximetil e Formil Transferases/deficiência , Hidroximetil e Formil Transferases/genética , Terapia de Alvo Molecular , Complexos Multienzimáticos/deficiência , Complexos Multienzimáticos/genética , Nucleotídeo Desaminases/deficiência , Nucleotídeo Desaminases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação para Cima
16.
FEBS J ; 284(24): 4233-4261, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29063699

RESUMO

The 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase/inosine monophosphate (IMP) cyclohydrolase (ATIC) catalyzes final two steps of purine nucleotide de novo biosynthetic pathway. This study reports the characterization of ATIC from Staphylococcus lugdunensis (SlugATIC). Apart from kinetic analysis and a detailed biophysical characterization of SlugATIC, the role of ATIC in cell proliferation has been demonstrated for the first time. The purified recombinant SlugATIC and its truncated domains exist mainly in dimeric form was revealed in gel-filtration and glutaraldehyde cross-linking studies. The two activities reside on separate domains was demonstrated in kinetic analysis of SlugATIC and reconstituted truncated N-terminal IMP cyclohydrolase (IMPCHase) and C-terminal AICAR transformylase (AICAR TFase) domains. Site-directed mutagenesis showed that Lys255 and His256 are the key catalytic residues, while Asn415 substantially contributes to AICAR TFase activity in SlugATIC. The differential scanning calorimetry (DSC) analysis revealed a molten globule-like structure for independent N-terminal domain as compared with a relatively stable conformational state in full-length SlugATIC signifying the importance of covalently linked domains. Unlike reported crystal structures, the DSC studies revealed significant conformational changes on binding of leading ligand to AICAR TFase domain in SlugATIC. The cell proliferation activity of SlugATIC was observed where it promoted proliferation and viability of NIH 3T3 and RIN-5F cells, exhibited in vitro wound healing in NIH 3T3 fibroblast cells, and rescued RIN-5F cells from the cytotoxic effects of palmitic acid and high glucose. The results suggest that ATIC, an important drug target, can also be exploited for its cell proliferative properties.


Assuntos
Proteínas de Bactérias/fisiologia , Hidroximetil e Formil Transferases/fisiologia , Complexos Multienzimáticos/fisiologia , Nucleotídeo Desaminases/fisiologia , Staphylococcus lugdunensis/enzimologia , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Varredura Diferencial de Calorimetria , Divisão Celular/efeitos dos fármacos , Glucose/toxicidade , Hidroximetil e Formil Transferases/química , Hidroximetil e Formil Transferases/genética , Hidroximetil e Formil Transferases/isolamento & purificação , Inosina Monofosfato/farmacologia , Camundongos , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/isolamento & purificação , Mutação , Células NIH 3T3 , Nucleotídeo Desaminases/química , Nucleotídeo Desaminases/genética , Nucleotídeo Desaminases/isolamento & purificação , Ácido Palmítico/toxicidade , Conformação Proteica , Domínios Proteicos , Ratos , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Ribonucleotídeos/farmacologia , Staphylococcus lugdunensis/genética , Cicatrização/efeitos dos fármacos
17.
Haematologica ; 102(9): 1605-1616, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28659337

RESUMO

Anaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphoma is characterized by 2p23/ALK aberrations, including the classic t(2;5)(p23;q35)/NPM1-ALK rearrangement present in ~80% of cases and several variant t(2p23/ALK) occurring in the remaining cases. The ALK fusion partners play a key role in the constitutive activation of the chimeric protein and its subcellular localization. Using various molecular technologies, we have characterized ALK fusions in eight recently diagnosed anaplastic large cell lymphoma cases with cytoplasmic-only ALK expression. The identified partner genes included EEF1G (one case), RNF213/ALO17 (one case), ATIC (four cases) and TPM3 (two cases). Notably, all cases showed copy number gain of the rearranged ALK gene, which is never observed in NPM1-ALK-positive lymphomas. We hypothesized that this could be due to lower expression levels and/or lower oncogenic potential of the variant ALK fusions. Indeed, all partner genes, except EEF1G, showed lower expression in normal and malignant T cells, in comparison with NPM1 In addition, we investigated the transformation potential of endogenous Npm1-Alk and Atic-Alk fusions generated by clustered regularly interspaced short palindromic repeats/Cas9 genome editing in Ba/F3 cells. We found that Npm1-Alk has a stronger transformation potential than Atic-Alk, and we observed a subclonal gain of Atic-Alk after a longer culture period, which was not observed for Npm1-Alk Taken together, our data illustrate that lymphomas driven by the variant ATIC-ALK fusion (and likely by RNF213-ALK and TPM3-ALK), but not the classic NPM1-ALK, require an increased dosage of the ALK hybrid gene to compensate for the relatively low and insufficient expression and signaling properties of the chimeric gene.


Assuntos
Adenosina Trifosfatases/genética , Rearranjo Gênico , Hidroximetil e Formil Transferases/genética , Linfoma Anaplásico de Células Grandes/genética , Complexos Multienzimáticos/genética , Nucleotídeo Desaminases/genética , Proteínas de Fusão Oncogênica/genética , Receptores Proteína Tirosina Quinases/genética , Translocação Genética , Tropomiosina/genética , Ubiquitina-Proteína Ligases/genética , Adolescente , Idoso , Quinase do Linfoma Anaplásico , Pré-Escolar , Feminino , Humanos , Linfoma Anaplásico de Células Grandes/patologia , Masculino , Pessoa de Meia-Idade , Nucleofosmina
18.
Medicine (Baltimore) ; 96(11): e6337, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28296761

RESUMO

BACKGROUND: Methotrexate (MTX) is widely used and considered a first-line disease modifying antirheumatic drug (DMARD) for the treatment of rheumatoid arthritis (RA). However, 10% to 30% of patients discontinue therapy within a year of starting the treatment, usually because of undesirable side effects. Many of the relevant genes have been investigated to estimate the association between gene polymorphisms and MTX toxicity in RA patients, although inconsistent results have been reported. METHODS: We searched EMBASE and PubMed in February 2016 for polymorphisms and pharmacogenomics study of the toxicity of MTX monotherapy in RA patients. The meta-analysis was stratified by whether genetic variants associated with MTX toxicity. RESULTS: A total of 42 publications that included 28 genes with 88 gene SNPs associated with the transporters, enzymes, and metabolites of MTX or the progression of RA were included in the SR, and 31 studies were included in 7 meta-analyses. The meta-analysis showed a significant association between the toxicity of MTX and the RFC-1 80G > A (rs1051266) polymorphism in the European RA patients. CONCLUSION: RFC-1 80G > A (rs1051266) polymorphism was associated with MTX toxicity, and larger and more stringent study designs may provide more accurate results for the effect of these SNPs on the MTX toxicity.


Assuntos
Antirreumáticos/efeitos adversos , Artrite Reumatoide/tratamento farmacológico , Metotrexato/efeitos adversos , Proteína de Replicação C/genética , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Antirreumáticos/uso terapêutico , Biomarcadores , Ferredoxina-NADP Redutase/genética , Humanos , Hidroximetil e Formil Transferases/genética , Metotrexato/uso terapêutico , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Complexos Multienzimáticos/genética , Nucleotídeo Desaminases/genética , Farmacogenética , Polimorfismo de Nucleotídeo Único
19.
J Pediatr Hematol Oncol ; 39(5): e270-e274, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28267080

RESUMO

Accumulating evidence indicates that polymorphisms in folate pathway genes play a role in response to methotrexate (MTX) treatment in various diseases. This study explored the influence of these genetic polymorphisms on treatment outcome in pediatric osteosarcoma. Blood and tissue samples from 48 osteosarcoma patients were obtained, and the following polymorphisms were analyzed; SLC19A1 80G>A, DHFR 829C>T, MTHFR 677C>T, MTHFR 1298A>C, and ATIC 347C>G. We evaluated associations between these candidate gene polymorphisms and treatment outcome, including histologic response and event-free and overall survival, of patients treated with high-dose MTX. Patients with ATIC 347C>G exhibited a good histologic response to chemotherapy (odds ratio, 0.13; 95% confidence interval, 0.017-0.978; P=0.048). However, none of these single nucleotide polymorphisms we examined affected event-free survival or overall survival rates of the patients. Even though the role of single nucleotide polymorphisms of ATIC in chemotherapy-induced tumor necrosis has not been investigated yet, the ATIC 347C>G polymorphism may influence the levels of adenosine after MTX treatment, which may affect the histologic response of osteosarcoma. This relationship warrants validation in a larger, prospective cohort study.


Assuntos
Hidroximetil e Formil Transferases/genética , Complexos Multienzimáticos/genética , Nucleotídeo Desaminases/genética , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Polimorfismo de Nucleotídeo Único , Adenosina/sangue , Adolescente , Antineoplásicos/uso terapêutico , Criança , Pré-Escolar , Intervalo Livre de Doença , Feminino , Humanos , Masculino , Metotrexato/uso terapêutico , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Osteossarcoma/mortalidade , Proteína Carregadora de Folato Reduzido/genética , Taxa de Sobrevida , Tetra-Hidrofolato Desidrogenase/genética
20.
Reumatol Clin ; 13(6): 318-325, 2017.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-27751863

RESUMO

OBJECTIVE: To analyze the effect of single nucleotide polymorphisms (SNPs) with well-known functional impact of methylenetetrahydrofolatereductase (MTHFR; rs1801131 and rs1801133), the membrane transporter ABCB1 (rs1045642), the AICAR transformylase/IMP cyclohydrolase (ATIC; rs2372536) and folyl-polyglutamatesynthetase (FPGS; rs1544105), on liver and bone marrow toxicity of methotrexate (MTX). PATIENTS AND METHODS: We analyzed 1415 visits from 350 patients of the PEARL (Princesa Early Arthritis Register Longitudinal) study: (732 with MTX, 683 without MTX). The different SNPs were genotyped using specific TaqMan probes (Applied Biosystems). Multivariate analyzes were performed using generalized linear models in which the dependent variables were the levels of serum alanine aminotransferase (liver toxicity), leukocytes, platelets or hemoglobin (hematologic toxicity) and adjusted for clinical variables (disease activity, etc.), analytical (renal function, etc.), sociodemographic (age, sex, etc.) and genetic variants of MTHFR, ABCB1, ATIC and FPGS. The effect of these variables on the MTX doses prescribed throughout follow-up was also analyzed through multivariate analysis nested by visit and patient. RESULTS: When taking MTX, those patients carrying the CC genotype of rs1045642 in ABCB1 showed significantly higher GPT levels (7.1±2.0 U/L; P<.001). Carrying at least one G allele of rs1544105 in FPGS was associated with lower leukocyte (-0.67±0.32; 0.038), hemoglobin (-0.34±0.11g/dL; P=.002), and platelet (-11.8±4.7; P=.012) levels. The presence of the G allele of rs1544105 in FPGS, and the T allele of rs1801133 in MTHFR, was significantly associated with the use of lower doses of MTX. DISCUSSION: Our data suggest that genotyping functional variants in FGPS and MTHFR enzymes and the transporter ABCB1 could help to identify patients with increased risk of MTX toxicity.


Assuntos
Artrite/genética , Hidroximetil e Formil Transferases/genética , Imunossupressores/uso terapêutico , Metotrexato/uso terapêutico , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Complexos Multienzimáticos/genética , Nucleotídeo Desaminases/genética , Peptídeo Sintases/genética , Polimorfismo de Nucleotídeo Único , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/fisiologia , Adulto , Fatores Etários , Idoso , Alanina Transaminase/sangue , Artrite/sangue , Artrite/tratamento farmacológico , Biotransformação/genética , Creatinina/sangue , Feminino , Hemoglobinas/análise , Humanos , Hidroximetil e Formil Transferases/fisiologia , Imunossupressores/efeitos adversos , Imunossupressores/farmacocinética , Contagem de Leucócitos , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Metotrexato/efeitos adversos , Metotrexato/farmacocinética , Metilenotetra-Hidrofolato Redutase (NADPH2)/fisiologia , Pessoa de Meia-Idade , Complexos Multienzimáticos/fisiologia , Nucleotídeo Desaminases/fisiologia , Peptídeo Sintases/fisiologia , Contagem de Plaquetas , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...