Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 228
Filtrar
2.
Arch Biochem Biophys ; 699: 108733, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33388313

RESUMO

Muscle myosins are molecular motors that hydrolyze ATP and generate force through coordinated interactions with actin filaments, known as cross-bridge cycling. During the cross-bridge cycle, functional sites in myosin 'sense' changes in interactions with actin filaments and the nucleotide binding region, resulting in allosteric transmission of information throughout the structure. We investigated whether the dynamics of the post-powerstroke state of the cross-bridge cycle are modulated in a nucleotide-dependent fashion. We compared molecular dynamics simulations of the myosin II motor domain (M) from Dictyostelium discoideum in the presence of ADP (M.ADP) versus 2'-deoxy-ADP bound myosin (M.dADP). We found that dADP was more flexible than ADP and the two nucleotides interacted with myosin in different ways. Replacement of ADP with dADP in the post-powerstroke state also altered the conformation of the actin binding region in myosin heads. Our results provide atomic level insights into allosteric communication networks in myosin that provide insight into the nucleotide-dependent dynamics of the cross-bridge cycle.


Assuntos
Nucleotídeos de Desoxiadenina/metabolismo , Miosina Tipo II/metabolismo , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Sítios de Ligação , Nucleotídeos de Desoxiadenina/química , Dictyostelium/enzimologia , Simulação de Dinâmica Molecular , Miosina Tipo II/química , Maleabilidade , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Domínios Proteicos
3.
ACS Chem Biol ; 15(11): 2996-3003, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33108866

RESUMO

Fluorescent nucleoside triphosphates are powerful probes of DNA synthesis, but their potential use in living animals has been previously underexplored. Here, we report the synthesis and characterization of 7-deaza-(1,2,3-triazole)-2'-deoxyadenosine-5'-triphosphate (dATP) derivatives of tetramethyl rhodamine ("TAMRA-dATP"), cyanine ("Cy3-dATP"), and boron-dipyrromethene ("BODIPY-dATP"). Upon microinjection into live zebrafish embryos, all three compounds were incorporated into the DNA of dividing cells; however, their impact on embryonic toxicity was highly variable, depending on the exact structure of the dye. TAMRA-EdATP exhibited superior characteristics in terms of its high brightness, low toxicity, and rapid incorporation and depletion kinetics in both a vertebrate (zebrafish) and a nematode (Caenorhabditis elegans). TAMRA-EdATP allows for unprecedented, real-time visualization of DNA replication and chromosome segregation in vivo.


Assuntos
Replicação do DNA , DNA/análise , Nucleotídeos de Desoxiadenina/química , Corantes Fluorescentes/química , Animais , Compostos de Boro/síntese química , Compostos de Boro/química , Caenorhabditis elegans/ultraestrutura , Carbocianinas/síntese química , Carbocianinas/química , Nucleotídeos de Desoxiadenina/síntese química , Corantes Fluorescentes/síntese química , Imagem Óptica/métodos , Rodaminas/síntese química , Rodaminas/química , Peixe-Zebra/embriologia
4.
Nat Commun ; 11(1): 5288, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082336

RESUMO

Telomerase is a specialized reverse transcriptase that adds GGTTAG repeats to chromosome ends and is upregulated in most human cancers to enable limitless proliferation. Here, we uncover two distinct mechanisms by which naturally occurring oxidized dNTPs and therapeutic dNTPs inhibit telomerase-mediated telomere elongation. We conduct a series of direct telomerase extension assays in the presence of modified dNTPs on various telomeric substrates. We provide direct evidence that telomerase can add the nucleotide reverse transcriptase inhibitors ddITP and AZT-TP to the telomeric end, causing chain termination. In contrast, telomerase continues elongation after inserting oxidized 2-OH-dATP or therapeutic 6-thio-dGTP, but insertion disrupts translocation and inhibits further repeat addition. Kinetics reveal that telomerase poorly selects against 6-thio-dGTP, inserting with similar catalytic efficiency as dGTP. Furthermore, telomerase processivity factor POT1-TPP1 fails to restore processive elongation in the presence of inhibitory dNTPs. These findings reveal mechanisms for targeting telomerase with modified dNTPs in cancer therapy.


Assuntos
Inibidores Enzimáticos/metabolismo , Telomerase/antagonistas & inibidores , Telomerase/metabolismo , Nucleotídeos de Desoxiadenina/química , Nucleotídeos de Desoxiadenina/metabolismo , Nucleotídeos de Desoxiguanina/química , Nucleotídeos de Desoxiguanina/metabolismo , Inibidores Enzimáticos/química , Humanos , Cinética , Modelos Moleculares , Oxirredução , Complexo Shelterina , Telomerase/química , Telomerase/genética , Telômero/metabolismo , Proteínas de Ligação a Telômeros
5.
Sci Rep ; 10(1): 14298, 2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32868795

RESUMO

Atmospheric and room-temperature plasma (ARTP) has been successfully developed as a useful mutation tool for mutation breeding of various microbes and plants as well animals by genetic alterations. However, understanding of the molecular mechanisms underlying the biological responses to ARTP irradiation is still limited. Therefore, to gain a molecular understanding of how irradiation with ARTP damages DNA, we irradiated the artificially synthesized mononucleotides of dATP, dTTP, dGTP, and dCTP, and the oligonucleotides of dA8, dT8, dG8, dC8, and dA2dT2dG2dC2 as chemical building blocks of DNA with ARTP for 1-4 min, identified the mononucleotide products using 31P- and 1H-nuclear magnetic resonance spectroscopy (NMR), and identified the oligonucleotide products using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) during ARTP treatment. The observed 31P-and 1H-NMR spectrum signals for the plasma-treated and untreated mononucleotides indicated that dATP was less stable to plasma irradiation than the other mononucleotides. The oligonucleotides after treatment with ARTP were found to have been broken into small fragments as shown by mass spectrometry, with the cleaved bonds and produced fragments identified according to their expected spectral m/z values or molecular weights derived from their m/z values. The stabilities of the oligonucleotides differed to ARTP irradiation, with dT8 being the most stable and was more beneficial to stabilizing single-stranded oligonucleotide structures compared to the other base groups (A, G, and C). This was consistent with the average potential energy level obtained by the molecular dynamic simulation of the oligonucleotides, i.e., dT8 > dC8 > dA8 > dG8 > dA2dT2dG2dC2. In summary, we found that ARTP treatment caused various structural changes to the oligonucleotides that may account for the wide and successful applications reported for ARTP-induced mutation breeding of various organisms.


Assuntos
Nucleotídeos/química , Oligonucleotídeos/química , Gases em Plasma/química , DNA/química , Nucleotídeos de Desoxiadenina/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
6.
J Biol Chem ; 295(46): 15576-15587, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32883811

RESUMO

Ribonucleotide reductase (RNR) is a central enzyme for the synthesis of DNA building blocks. Most aerobic organisms, including nearly all eukaryotes, have class I RNRs consisting of R1 and R2 subunits. The catalytic R1 subunit contains an overall activity site that can allosterically turn the enzyme on or off by the binding of ATP or dATP, respectively. The mechanism behind the ability to turn the enzyme off via the R1 subunit involves the formation of different types of R1 oligomers in most studied species and R1-R2 octamers in Escherichia coli To better understand the distribution of different oligomerization mechanisms, we characterized the enzyme from Clostridium botulinum, which belongs to a subclass of class I RNRs not studied before. The recombinantly expressed enzyme was analyzed by size-exclusion chromatography, gas-phase electrophoretic mobility macromolecular analysis, EM, X-ray crystallography, and enzyme assays. Interestingly, it shares the ability of the E. coli RNR to form inhibited R1-R2 octamers in the presence of dATP but, unlike the E. coli enzyme, cannot be turned off by combinations of ATP and dGTP/dTTP. A phylogenetic analysis of class I RNRs suggests that activity regulation is not ancestral but was gained after the first subclasses diverged and that RNR subclasses with inhibition mechanisms involving R1 oligomerization belong to a clade separated from the two subclasses forming R1-R2 octamers. These results give further insight into activity regulation in class I RNRs as an evolutionarily dynamic process.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridium botulinum/enzimologia , Ribonucleotídeo Redutases/metabolismo , Proteínas de Bactérias/classificação , Domínio Catalítico , Cristalografia por Raios X , Nucleotídeos de Desoxiadenina/química , Dimerização , Escherichia coli/metabolismo , Filogenia , Estrutura Quaternária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Ribonucleotídeo Redutases/classificação
7.
J Phys Chem Lett ; 11(16): 6812-6818, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32787210

RESUMO

A unique member of the family of cobalamin (Cbl)-dependent radical S-adenosylmethionine (SAM) enzymes, OxsB, catalyzes the ring constriction of deoxyadenosine triphosphate (dATP) to the base oxetane aldehyde phosphate, a crucial precursor for oxetanocin A (OXT-A), which is an antitumor, antiviral, and antibacterial compound. This enzyme reveals a new catalytic function for this big family that is different from the common methylation. On the basis of density functional theory calculations, a mechanism has been proposed to mainly include that the generation of 5'-deoxyadenosine radical, a hydrogen transfer forming 2'-dATP radical, and a Cbl-catalyzed ring contraction of the deoxyribose in 2'-dATP radical. The ring contraction is a concerted rearrangement step accompanied by an electron transfer from the deoxyribose hydroxyl oxygen to CoIII without any ring-opening intermediate. CoIICbl has been ruled out as an active state. Other mechanistic characteristics are also revealed. This unprecedented non-methylation mechanism provides a new catalytic repertoire for the family of radical SAM enzymes, representing a new class of ring-contraction enzymes.


Assuntos
Oxirredutases do Álcool/química , Proteínas de Bactérias/química , Nucleotídeos de Desoxiadenina/química , Transferases Intramoleculares/química , S-Adenosilmetionina/química , Bacillus megaterium/enzimologia , Biocatálise , Teoria da Densidade Funcional , Radicais Livres/química , Modelos Químicos , Simulação de Dinâmica Molecular
8.
Chempluschem ; 85(6): 1164-1170, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32496002

RESUMO

2-Formyl-2'-deoxyadenosine triphosphate (dCHO ATP) was synthesized and tested as a substrate in enzymatic synthesis of DNA modified in the minor groove with a reactive aldehyde group. The multistep synthesis of dCHO ATP was based on the preparation of protected 2-dihydroxyethyl-2'-deoxyadenosine intemediate, which was triphosphorylated and converted to aldehyde through oxidative cleavage. The dCHO ATP triphosphate was a moderate substrate for KOD XL DNA polymerase, and was used for enzymatic synthesis of some sequences using primer extension (PEX). On the other hand, longer sequences (31-mer) with higher number of modifications, or sequences with modifications at adjacent positions did not give full extension. Single-nucleotide extension followed by PEX was used for site-specific incorporation of one aldehyde-linked adenosine into a longer 49-mer sequence. The reactive formyl group was used for cross-linking with peptides and proteins using reductive amination and for fluorescent labelling through oxime formation with an AlexaFluor647-linked hydroxylamine.


Assuntos
Reagentes de Ligações Cruzadas/química , DNA Polimerase Dirigida por DNA/química , DNA/química , Nucleotídeos de Desoxiadenina/química , Sequência de Bases , Reagentes de Ligações Cruzadas/síntese química , Nucleotídeos de Desoxiadenina/síntese química , Conformação de Ácido Nucleico
9.
Electrophoresis ; 41(20): 1793-1803, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32335921

RESUMO

Testing for bioluminescent pyrophosphate is a convenient method of DNA detection without complex equipments, but it is insufficiently sensitive and offers no particular time advantage over other rapid detection methods. The shortcomings of the traditional bioluminescent pyrophosphate method have been addressed by using 2-deoxyadenosine-5-(α-thio)-triphosphate (dATPαS) instead of dATP for LAMP, thus reducing the high background signal and generating a constant background value. In this study, LAMP coupled to a novel bioluminescent pyrophosphate assay was developed to detect E. coli O157:H7. The new method has a limit of detection of <10 copies/µL or 5 CFU/mL; its sensitivity is higher than that of the conventional LAMP assay. Moreover, a food-borne pathogen can be detected when a single DNA template is included in the LAMP assay, making it 100 times more sensitive than the traditional LAMP method. Three hundred food samples were tested with this assay and the accuracy of detection was verified with a culture method and MALDI Biotyper. The assay only took 90-120 min and detected <10 copies of the pathogen. This method had the advantages of rapidity, sensitivity, and simplicity, so it is very competitive for the rapid and highly sensitive detection of food-borne pathogens.


Assuntos
DNA Bacteriano/análise , Escherichia coli O157/genética , Microbiologia de Alimentos/métodos , Medições Luminescentes/métodos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , DNA Bacteriano/genética , Nucleotídeos de Desoxiadenina/química , Limite de Detecção , Reprodutibilidade dos Testes , Tionucleotídeos/química
10.
J Biol Chem ; 295(15): 4761-4772, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32144205

RESUMO

MutT homologue 1 (MTH1) removes oxidized nucleotides from the nucleotide pool and thereby prevents their incorporation into the genome and thereby reduces genotoxicity. We previously reported that MTH1 is an efficient catalyst of O6-methyl-dGTP hydrolysis suggesting that MTH1 may also sanitize the nucleotide pool from other methylated nucleotides. We here show that MTH1 efficiently catalyzes the hydrolysis of N6-methyl-dATP to N6-methyl-dAMP and further report that N6-methylation of dATP drastically increases the MTH1 activity. We also observed MTH1 activity with N6-methyl-ATP, albeit at a lower level. We show that N6-methyl-dATP is incorporated into DNA in vivo, as indicated by increased N6-methyl-dA DNA levels in embryos developed from MTH1 knock-out zebrafish eggs microinjected with N6-methyl-dATP compared with noninjected embryos. N6-methyl-dATP activity is present in MTH1 homologues from distantly related vertebrates, suggesting evolutionary conservation and indicating that this activity is important. Of note, N6-methyl-dATP activity is unique to MTH1 among related NUDIX hydrolases. Moreover, we present the structure of N6-methyl-dAMP-bound human MTH1, revealing that the N6-methyl group is accommodated within a hydrophobic active-site subpocket explaining why N6-methyl-dATP is a good MTH1 substrate. N6-methylation of DNA and RNA has been reported to have epigenetic roles and to affect mRNA metabolism. We propose that MTH1 acts in concert with adenosine deaminase-like protein isoform 1 (ADAL1) to prevent incorporation of N6-methyl-(d)ATP into DNA and RNA. This would hinder potential dysregulation of epigenetic control and RNA metabolism via conversion of N6-methyl-(d)ATP to N6-methyl-(d)AMP, followed by ADAL1-catalyzed deamination producing (d)IMP that can enter the nucleotide salvage pathway.


Assuntos
Enzimas Reparadoras do DNA/metabolismo , Nucleotídeos de Desoxiadenina/química , Nucleotídeos de Desoxiadenina/metabolismo , Desoxirribonucleotídeos/metabolismo , Evolução Molecular , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Domínio Catalítico , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/genética , Embrião não Mamífero/metabolismo , Humanos , Hidrólise , Cinética , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/genética , Pirofosfatases/genética , Pirofosfatases/metabolismo , Especificidade por Substrato , Peixe-Zebra , Nudix Hidrolases
11.
J Phys Chem B ; 124(9): 1585-1591, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32043891

RESUMO

Low-energy (3-25 eV) electron interactions with multilayers of 2'-deoxyadenosine 5'-monophosphate (dAMP) were probed using X-ray photoelectron spectroscopy (XPS). Understanding how electrons damage the nucleotide dAMP, which is a building block of DNA, can give insight into how the DNA undergoes radiation damage. Chemical modifications to the constituent units of the nucleotide were revealed in situ through monitoring of the O 1s, C 1s, and N 1s elemental transitions. It is shown that direct electron irradiation causes decomposition of both the base and sugar subunits, as well as cleavage of glycosidic and phosphoester bonds. Incident electrons undergo inelastic energy losses, including creation of core-excited resonances above 3-4 eV. In the condensed phase, these resonances decay via autoionization, producing electronically excited targets and <3 eV electrons. The excited states dissociate and the slow (<3 eV) electrons are captured by neighboring molecules, forming molecular shape resonances that can lead to bond rupture. Since the observed chemical changes were similar at all incident electron energies studied, they can be primarily attributed to formation and decay of transient negative ions. Damage enhancements in the energy ranges typical of all scattering resonances are expected, with the damage probability dominated by the low-energy shape resonances.


Assuntos
Nucleotídeos de Desoxiadenina/química , Elétrons/efeitos adversos , Espectroscopia Fotoeletrônica , Dano ao DNA
12.
Sci Rep ; 10(1): 611, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31953472

RESUMO

The levels of the four deoxynucleoside triphosphates (dNTPs) are under strict control in the cell, as improper or imbalanced dNTP pools may lead to growth defects and oncogenesis. Upon treatment of cancer cells with therapeutic agents, changes in the canonical dNTPs levels may provide critical information for evaluating drug response and mode of action. The radioisotope-labeling enzymatic assay has been commonly used for quantitation of cellular dNTP levels. However, the disadvantage of this method is the handling of biohazard materials. Here, we described the use of click chemistry to replace radioisotope-labeling in template-dependent DNA polymerization for quantitation of the four canonical dNTPs. Specific oligomers were designed for dCTP, dTTP, dATP and dGTP measurement, and the incorporation of 5-ethynyl-dUTP or C8-alkyne-dCTP during the polymerization reaction allowed for fluorophore conjugation on immobilized oligonucleotides. The four reactions gave a linear correlation coefficient >0.99 in the range of the concentration of dNTPs present in 106 cells, with little interference of cellular rNTPs. We present evidence indicating that data generated by this methodology is comparable to radioisotope-labeling data. Furthermore, the design and utilization of a robust microplate assay based on this technology evidenced the modulation of dNTPs in response to different chemotherapeutic agents in cancer cells.


Assuntos
Química Click/métodos , Cobre/química , Desoxirribonucleotídeos/análise , Nucleotídeos de Desoxiuracil/química , Reação de Cicloadição , Nucleotídeos de Desoxiadenina/análise , Nucleotídeos de Desoxiadenina/química , Nucleotídeos de Desoxicitosina/análise , Nucleotídeos de Desoxicitosina/química , Nucleotídeos de Desoxiguanina/análise , Nucleotídeos de Desoxiguanina/química , Desoxirribonucleotídeos/química , Células HCT116 , Células HEK293 , Humanos , Células K562 , Rodaminas/química , Coloração e Rotulagem , Nucleotídeos de Timina/análise , Nucleotídeos de Timina/química
13.
Molecules ; 24(14)2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31319565

RESUMO

Influenza A viruses leading to infectious respiratory diseases cause seasonal epidemics and sometimes periodic global pandemics. Viral polymerase is an attractive target in inhibiting viral replication, and 4'-ethynyladenosine, which has been reported as a highly potent anti-human immunodeficiency virus (HIV) nucleoside derivative, can work as an anti-influenza agent. Herein, we designed and synthesized a 4'-ethynyl-2'-deoxyadenosine 5'-monophosphate analog called EdAP (5). EdAP exhibited potent inhibition against influenza virus multiplication in Madin-Darby canine kidney (MDCK) cells transfected with human α2-6-sialyltransferase (SIAT1) cDNA and did not show any toxicity toward the cells. Surprisingly, this DNA-type nucleic acid analog (5) inhibited the multiplication of influenza A virus, although influenza virus is an RNA virus that does not generate DNA.


Assuntos
Antivirais/farmacologia , Nucleotídeos de Desoxiadenina/farmacologia , Desoxiadenosinas/síntese química , Influenza Humana/tratamento farmacológico , Animais , Antivirais/síntese química , Antivirais/química , Nucleotídeos de Desoxiadenina/síntese química , Nucleotídeos de Desoxiadenina/química , Desoxiadenosinas/química , Desoxiadenosinas/farmacologia , Cães , Células HEK293 , Humanos , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/patogenicidade , Influenza Humana/virologia , Células Madin Darby de Rim Canino , Replicação Viral/efeitos dos fármacos
14.
Biosens Bioelectron ; 134: 76-82, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30954929

RESUMO

An electrochemical genosensor for the detection and quantification of Karlodinium armiger is presented. The genosensor exploits tailed primers and ferrocene labelled dATP analogue to produce PCR products that can be directly hybridised on a gold electrode array and quantitatively measured using square wave voltammetry. Tailed primers consist of a sequence specific for the target, followed by a carbon spacer and a sequence specifically designed not to bind to genomic DNA, resulting in a duplex flanked by single stranded binding primers. The incorporation of the 7-(ferrocenylethynyl)-7-deaza-2'-deoxyadenosine triphosphate was optimised in terms of a compromise between maximum PCR efficiency and the limit of detection and sensitivity attainable using electrochemical detection via hybridisation of the tailed, ferrocene labelled PCR product. A limit of detection of 277aM with a linear range from 315aM to 10 fM starting DNA concentration and a sensitivity of 122 nA decade-1 was achieved. The system was successfully applied to the detection of genomic DNA in real seawater samples.


Assuntos
Técnicas Biossensoriais/instrumentação , DNA/análise , Nucleotídeos de Desoxiadenina/química , Técnicas Eletroquímicas/instrumentação , Compostos Ferrosos/química , Metalocenos/química , Reação em Cadeia da Polimerase/instrumentação , Desenho de Equipamento , Limite de Detecção , Microeletrodos , Oxirredução , Água do Mar/análise
15.
Chemistry ; 24(56): 14938-14941, 2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30074286

RESUMO

A series of 2-alkylamino-2'-deoxyadenosine triphosphates (dATP) was prepared and found to be substrates for the Therminator DNA polymerase, which incorporated only one modified nucleotide into the primer. Using a template encoding for two consecutive adenines, conditions were found for incorporation of either one or two modified nucleotides. In all cases, addition of a mixture of natural dNTPs led to primer extension resulting in site-specific single modification of DNA in the minor groove. The allylamino-substituted DNA was used for the thiol-ene addition, whereas the propargylamino-DNA for the CuAAC click reaction was used to label the DNA with a fluorescent dye in the minor groove. The approach was used to construct FRET probes for detection of oligonucleotides.


Assuntos
Compostos Alílicos/química , DNA/química , Nucleotídeos de Desoxiadenina/química , Corantes Fluorescentes/química , Pargilina/análogos & derivados , Propilaminas/química , Transferência Ressonante de Energia de Fluorescência/métodos , Conformação de Ácido Nucleico , Oligonucleotídeos/análise , Pargilina/química
16.
Proc Natl Acad Sci U S A ; 115(20): E4594-E4603, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29712847

RESUMO

The high fidelity of DNA replication and repair is attributable, in part, to the allosteric regulation of ribonucleotide reductases (RNRs) that maintains proper deoxynucleotide pool sizes and ratios in vivo. In class Ia RNRs, ATP (stimulatory) and dATP (inhibitory) regulate activity by binding to the ATP-cone domain at the N terminus of the large α subunit and altering the enzyme's quaternary structure. Class Ib RNRs, in contrast, have a partial cone domain and have generally been found to be insensitive to dATP inhibition. An exception is the Bacillus subtilis Ib RNR, which we recently reported to be inhibited by physiological concentrations of dATP. Here, we demonstrate that the α subunit of this RNR contains tightly bound deoxyadenosine 5'-monophosphate (dAMP) in its N-terminal domain and that dATP inhibition of CDP reduction is enhanced by its presence. X-ray crystallography reveals a previously unobserved (noncanonical) α2 dimer with its entire interface composed of the partial N-terminal cone domains, each binding a dAMP molecule. Using small-angle X-ray scattering (SAXS), we show that this noncanonical α2 dimer is the predominant form of the dAMP-bound α in solution and further show that addition of dATP leads to the formation of larger oligomers. Based on this information, we propose a model to describe the mechanism by which the noncanonical α2 inhibits the activity of the B. subtilis Ib RNR in a dATP- and dAMP-dependent manner.


Assuntos
Bacillus subtilis/enzimologia , Nucleotídeos de Desoxiadenina/metabolismo , Ribonucleotídeo Redutases/química , Ribonucleotídeo Redutases/metabolismo , Regulação Alostérica , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Nucleotídeos de Desoxiadenina/química , Ligantes , Ligação Proteica , Conformação Proteica , Ribonucleotídeo Redutases/genética , Espalhamento a Baixo Ângulo , Especificidade por Substrato
17.
Structure ; 26(1): 40-50.e2, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29225080

RESUMO

Synthesis and scission of phosphodiester bonds in DNA and RNA regulate vital processes within the cell. Enzymes that catalyze these reactions operate mostly via the recognized two-metal-ion mechanism. Our analysis reveals that basic amino acids and monovalent cations occupy structurally conserved positions nearby the active site of many two-metal-ion enzymes for which high-resolution (<3 Å) structures are known, including DNA and RNA polymerases, nucleases such as Cas9, and splicing ribozymes. Integrating multiple-sequence and structural alignments with molecular dynamics simulations, electrostatic potential maps, and mutational data, we found that these elements always interact with the substrates, suggesting that they may play an active role for catalysis, in addition to their electrostatic contribution. We discuss possible mechanistic implications of this expanded two-metal-ion architecture, including inferences on medium-resolution cryoelectron microscopy structures. Ultimately, our analysis may inspire future experiments and strategies for enzyme engineering or drug design to modulate nucleic acid processing.


Assuntos
Proteínas de Bactérias/química , DNA Polimerase Dirigida por DNA/química , DNA/química , Endonucleases/química , Metais/química , RNA Catalítico/química , RNA/química , Spliceossomos/química , Sequência de Aminoácidos , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Domínio Catalítico , Microscopia Crioeletrônica , DNA/genética , DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Nucleotídeos de Desoxiadenina/química , Nucleotídeos de Desoxiadenina/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Humanos , Cinética , Metais/metabolismo , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , RNA/genética , RNA/metabolismo , RNA Catalítico/genética , RNA Catalítico/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Spliceossomos/metabolismo , Eletricidade Estática , Especificidade por Substrato , Termodinâmica
18.
Sci Rep ; 7(1): 4756, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28684739

RESUMO

DNA polymerase (pol) processivity, i.e., the bases a polymerase extends before falling off the DNA, and activity are important for copying difficult DNA sequences, including simple repeats. Y-family pols would be appealing for copying difficult DNA and incorporating non-natural dNTPs, due to their low fidelity and loose active site, but are limited by poor processivity and activity. In this study, the binding between Dbh and DNA was investigated to better understand how to rationally design enhanced processivity in a Y-family pol. Guided by structural simulation, a fused pol Sdbh with non-specific dsDNA binding protein Sso7d in the N-terminus was designed. This modification increased in vitro processivity 4-fold as compared to the wild-type Dbh. Additionally, bioinformatics was used to identify amino acid mutations that would increase stabilization of Dbh bound to DNA. The variant SdbhM76I further improved the processivity of Dbh by 10 fold. The variant SdbhKSKIP241-245RVRKS showed higher activity than Dbh on the incorporation of dCTP (correct) and dATP (incorrect) opposite the G (normal) or 8-oxoG(damaged) template base. These results demonstrate the capability to rationally design increases in pol processivity and catalytic efficiency through computational DNA binding predictions and the addition of non-specific DNA binding domains.


Assuntos
Proteínas Arqueais/química , DNA Arqueal/química , Proteínas de Ligação a DNA/química , DNA Polimerase Dirigida por DNA/química , Nucleotídeos de Desoxiadenina/química , Nucleotídeos de Desoxicitosina/química , Sulfolobus solfataricus/química , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , DNA Arqueal/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Nucleotídeos de Desoxiadenina/metabolismo , Nucleotídeos de Desoxicitosina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Guanosina/análogos & derivados , Guanosina/química , Guanosina/metabolismo , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Engenharia de Proteínas , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Sulfolobus solfataricus/enzimologia , Sulfolobus solfataricus/genética
19.
J Biomater Appl ; 32(1): 114-125, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28566001

RESUMO

The encapsulation mechanism of DNA in sol-gel derived silica has been explored in order to elucidate the effect of DNA conformation on encapsulation and to identify the nature of chemical/physical interaction of DNA with silica during and after sol-gel transition. In this respect, double stranded DNA and dAMP (2'-deoxyadenosine 5'-monophosphate) were encapsulated in silica using an alkoxide-based sol-gel route. Biomolecule-encapsulating gels have been characterized using UV-Vis, 29Si NMR, FTIR spectroscopy and gas adsorption (BET) to investigate chemical interactions of biomolecules with the porous silica network and to examine the extent of sol-gel reactions upon encapsulation. Ethidium bromide intercalation and leach out tests showed that helix conformation of DNA was preserved after encapsulation. For both biomolecules, high water-to-alkoxide ratio promoted water-producing condensation and prevented alcoholic denaturation. NMR and FTIR analyses confirmed high hydraulic reactivity (water adsorption) for more silanol groups-containing DNA and dAMP encapsulated gels than plain silica gel. No chemical binding/interaction occurred between biomolecules and silica network. DNA and dAMP encapsulated silica gelled faster than plain silica due to basic nature of DNA or dAMP containing buffer solutions. DNA was not released from silica gels to aqueous environment up to 9 days. The chemical association between DNA/dAMP and silica host was through phosphate groups and molecular water attached to silanols, acting as a barrier around biomolecules. The helix morphology was found not to be essential for such interaction. BET analyses showed that interconnected, inkbottle-shaped mesoporous silica network was condensed around DNA and dAMP molecules.


Assuntos
DNA/administração & dosagem , Nucleotídeos de Desoxiadenina/administração & dosagem , Sílica Gel/química , Dióxido de Silício/química , DNA/química , Nucleotídeos de Desoxiadenina/química , Portadores de Fármacos/química , Conformação de Ácido Nucleico , Transição de Fase , Porosidade , Silanos/análise
20.
J Mol Model ; 23(4): 149, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28365823

RESUMO

ß-Cyclodextrin (ß-CD), which resides in the α-hemolysin (αHL) protein pore, can act as a molecular adapter in single-molecule exonuclease DNA sequencing approaches, where the different nucleotide binding behavior of ß-CD is crucial for base discrimination. In the present contribution, the inclusion modes of ß-CD towards four 2'-deoxyribonucleoside 5'-monophosphates (dNMPs) were investigated using quantum mechanics (QM) calculations. The calculated binding energy suggests that the binding affinity of dAMP to ß-CD are highest among all the dNMPs in solution, in agreement with experimental results. Geometry analysis shows that ß-CD in the dAMP complex undergoes a small conformational change, and weak interaction analysis indicates that there are small steric repulsion regions in ß-CD. These results suggest that ß-CD has lower geometric deformation energy in complexation with dAMP. Furthermore, topological analysis and weak interaction analysis suggest that the number and strength of intermolecular hydrogen bonds and van der Waals interactions are critical to dAMP binding, and they both make favorable contributions to the lower interaction energy. This work reveals the reason why ß-CD prefers to bind dAMP rather than other dNMPs, while opening exciting perspectives for the design of novel ß-CD-based molecular adapters in the single-molecule exonuclease method of sequencing DNA. Graphical Abstract The binding affinity of ß-cyclodextrin towards four 2'-deoxyribonucleoside 5'-monophosphates was investigated using quantum mechanics calculations.


Assuntos
Nucleotídeos de Desoxiadenina/química , Modelos Moleculares , beta-Ciclodextrinas/química , Simulação por Computador , Interações Hidrofóbicas e Hidrofílicas , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...