Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
ACS Synth Biol ; 10(7): 1625-1632, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34110794

RESUMO

Efficient ways to produce single-stranded DNA are of great interest for diverse applications in molecular biology and nanotechnology. In the present study, we selected T7 RNA polymerase mutants with reduced substrate specificity to employ an in vitro transcription reaction for the synthesis of chimeric DNA oligonucleotides, either individually or in pools. We performed in vitro evolution based on fluorescence-activated droplet sorting and identified mutations V783M, V783L, V689Q, and G555L as novel variants leading to relaxed substrate discrimination. Transcribed chimeric oligonucleotides were tested in PCR, and the quality of amplification products as well as fidelity of oligonucleotide synthesis were assessed by NGS. We concluded that enzymatically produced chimeric DNA transcripts contain significantly fewer deletions and insertions compared to chemically synthesized counterparts and can successfully serve as PCR primers, making the evolved enzymes superior for simple and cheap one-pot synthesis of multiple chimeric DNA oligonucleotides in parallel using a plethora of premixed templates.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Nucleotídeos de Desoxiadenina/genética , Nucleotídeos de Desoxicitosina/genética , Nucleotídeos de Desoxiguanina/genética , Desoxirribonucleotídeos/genética , Flúor/química , Biologia Sintética/métodos , Nucleotídeos de Timina/genética , Transcrição Gênica , Proteínas Virais/metabolismo , Nucleotídeos de Desoxiguanina/química , Especificidade por Substrato
2.
Cell Mol Life Sci ; 77(8): 1645-1660, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31377845

RESUMO

To maintain dNTP pool homeostasis and preserve genetic integrity of nuclear and mitochondrial genomes, the synthesis and degradation of DNA precursors must be precisely regulated. Human all-alpha dCTP pyrophosphatase 1 (DCTPP1) is a dNTP pyrophosphatase with high affinity for dCTP and 5'-modified dCTP derivatives, but its contribution to overall nucleotide metabolism is controversial. Here, we identify a central role for DCTPP1 in the homeostasis of dCTP, dTTP and dUTP. Nucleotide pools and the dUTP/dTTP ratio are severely altered in DCTPP1-deficient cells, which exhibit an accumulation of uracil in genomic DNA, the activation of the DNA damage response and both a mitochondrial and nuclear hypermutator phenotype. Notably, DNA damage can be reverted by incubation with thymidine, dUTPase overexpression or uracil-DNA glycosylase suppression. Moreover, DCTPP1-deficient cells are highly sensitive to down-regulation of nucleoside salvage. Our data indicate that DCTPP1 is crucially involved in the provision of dCMP for thymidylate biosynthesis, introducing a new player in the regulation of pyrimidine dNTP levels and the maintenance of genomic integrity.


Assuntos
Nucleotídeos de Desoxicitosina/metabolismo , Nucleotídeos de Desoxiuracil/metabolismo , Pirofosfatases/metabolismo , Nucleotídeos de Timina/metabolismo , Linhagem Celular , Proliferação de Células , Dano ao DNA , Nucleotídeos de Desoxicitosina/genética , Nucleotídeos de Desoxiuracil/genética , Técnicas de Inativação de Genes , Instabilidade Genômica , Humanos , Células MCF-7 , Mutação , Pirofosfatases/genética , Nucleotídeos de Timina/genética
3.
ACS Synth Biol ; 7(6): 1565-1572, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29746092

RESUMO

We report the design and elaboration of a selection protocol for importing a canonical substrate of DNA polymerase, thymidine triphosphate (dTTP) in Escherichia coli. Bacterial strains whose growth depend on dTTP uptake, through the action of an algal plastid transporter expressed from a synthetic gene inserted in the chromosome, were constructed and shown to withstand the simultaneous loss of thymidylate synthase and thymidine kinase. Such thyA tdk dual deletant strains provide an experimental model of tight nutritional containment for preventing dissemination of microbial GMOs. Our strains transported the four canonical dNTPs, in the following order of preference: dCTP > dATP ≥ dGTP > dTTP. Prolonged cultivation under limitation of exogenous dTTP led to the enhancement of dNTP transport by adaptive evolution. We investigated the uptake of dCTP analogues with altered sugar or nucleobase moieties, which were found to cause a loss of cell viability and an increase of mutant frequency, respectively. E. coli strains equipped with nucleoside triphosphate transporters should be instrumental for evolving organisms whose DNA genome is morphed chemically by fully substituting its canonical nucleotide components.


Assuntos
Evolução Molecular Direcionada/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Nucleotídeos de Timina/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Decitabina/química , Decitabina/metabolismo , Nucleotídeos de Desoxicitosina/genética , Nucleotídeos de Desoxicitosina/metabolismo , Nucleotídeos de Desoxiguanina/genética , Nucleotídeos de Desoxiguanina/metabolismo , Desoxirribonucleotídeos/química , Desoxirribonucleotídeos/metabolismo , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Microalgas/genética , Microrganismos Geneticamente Modificados , Taxa de Mutação , Peptídeo Hidrolases/genética , Timidina Quinase/genética , Timidilato Sintase/genética , Nucleotídeos de Timina/genética
4.
Cell Res ; 28(2): 187-203, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29327725

RESUMO

Neural progenitor cells undergo somatic retrotransposition events, mainly involving L1 elements, which can be potentially deleterious. Here, we analyze the whole genomes of 20 brain samples and 80 non-brain samples, and characterized the retrotransposition landscape of patients affected by a variety of neurodevelopmental disorders including Rett syndrome, tuberous sclerosis, ataxia-telangiectasia and autism. We report that the number of retrotranspositions in brain tissues is higher than that observed in non-brain samples and even higher in pathologic vs normal brains. The majority of somatic brain retrotransposons integrate into pre-existing repetitive elements, preferentially A/T rich L1 sequences, resulting in nested insertions. Our findings document the fingerprints of encoded endonuclease independent mechanisms in the majority of L1 brain insertion events. The insertions are "non-classical" in that they are truncated at both ends, integrate in the same orientation as the host element, and their target sequences are enriched with a CCATT motif in contrast to the classical endonuclease motif of most other retrotranspositions. We show that L1Hs elements integrate preferentially into genes associated with neural functions and diseases. We propose that pre-existing retrotransposons act as "lightning rods" for novel insertions, which may give fine modulation of gene expression while safeguarding from deleterious events. Overwhelmingly uncontrolled retrotransposition may breach this safeguard mechanism and increase the risk of harmful mutagenesis in neurodevelopmental disorders.


Assuntos
Encéfalo/fisiopatologia , Elementos Nucleotídeos Longos e Dispersos/genética , Transtornos do Neurodesenvolvimento/genética , Nucleotídeos de Adenina/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Dano ao DNA , Bases de Dados Genéticas , Endonucleases/genética , Éxons , Regulação da Expressão Gênica , Genes/genética , Genômica/métodos , Humanos , MicroRNAs/genética , Mutação , Neurônios/metabolismo , Estatísticas não Paramétricas , Nucleotídeos de Timina/genética , Sequenciamento Completo do Genoma
5.
PLoS Genet ; 12(1): e1005779, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26760297

RESUMO

MPV17 is a mitochondrial inner membrane protein whose dysfunction causes mitochondrial DNA abnormalities and disease by an unknown mechanism. Perturbations of deoxynucleoside triphosphate (dNTP) pools are a recognized cause of mitochondrial genomic instability; therefore, we determined DNA copy number and dNTP levels in mitochondria of two models of MPV17 deficiency. In Mpv17 ablated mice, liver mitochondria showed substantial decreases in the levels of dGTP and dTTP and severe mitochondrial DNA depletion, whereas the dNTP pool was not significantly altered in kidney and brain mitochondria that had near normal levels of DNA. The shortage of mitochondrial dNTPs in Mpv17-/- liver slows the DNA replication in the organelle, as evidenced by the elevated level of replication intermediates. Quiescent fibroblasts of MPV17-mutant patients recapitulate key features of the primary affected tissue of the Mpv17-/- mice, displaying virtual absence of the protein, decreased dNTP levels and mitochondrial DNA depletion. Notably, the mitochondrial DNA loss in the patients' quiescent fibroblasts was prevented and rescued by deoxynucleoside supplementation. Thus, our study establishes dNTP insufficiency in the mitochondria as the cause of mitochondrial DNA depletion in MPV17 deficiency, and identifies deoxynucleoside supplementation as a potential therapeutic strategy for MPV17-related disease. Moreover, changes in the expression of factors involved in mitochondrial deoxynucleotide homeostasis indicate a remodeling of nucleotide metabolism in MPV17 disease models, which suggests mitochondria lacking functional MPV17 have a restricted purine mitochondrial salvage pathway.


Assuntos
Replicação do DNA/genética , DNA Mitocondrial/genética , Proteínas de Membrana/genética , Mitocôndrias Hepáticas/genética , Animais , Nucleotídeos de Desoxiguanina/genética , Feminino , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Humanos , Proteínas de Membrana/deficiência , Camundongos , Mitocôndrias Hepáticas/metabolismo , Transdução de Sinais , Nucleotídeos de Timina/genética
6.
Assay Drug Dev Technol ; 13(10): 628-37, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26690766

RESUMO

The Plasmodium falciparum telomerase reverse transcriptase (PfTERT) is a ribonucleoprotein that assists the maintenance of the telomeric ends of chromosomes by reverse transcription of its own RNA subunit. It represents an attractive therapeutic target for eradication of the plasmodial parasite at the asexual liver stage. Automated modeling using MUSTER and knowledge-based techniques were used to obtain a three-dimensional model of the active site of reverse transcriptase domain of PfTERT, which is responsible for catalyzing the addition of incoming dNTPs to the growing DNA strand in presence of divalent magnesium ions. Further, the ternary complex of the active site of PfTERT bound to a DNA-RNA duplex was also modeled using Haddock server and represents the functional form of the enzyme. Initially, established nucleoside analog inhibitors of PfTERT, AZTTP, and ddGTP were docked in the modeled binding site of the PfTERT ternary complex using AutoDock v4.2. Subsequently, docking studies were carried out with 14 approved nucleoside analog inhibitors. Docking studies predicted that floxuridine, gemcitabine, stavudine, and vidarabine have high affinity for the PfTERT ternary complex. Further analysis on the basis of known side effects led us to propose repositioning of vidarabine as a suitable drug candidate for inhibition of PfTERT.


Assuntos
Antimaláricos/farmacologia , Reposicionamento de Medicamentos/métodos , Nucleosídeos/farmacologia , Plasmodium falciparum/enzimologia , DNA Polimerase Dirigida por RNA/metabolismo , Inibidores da Transcriptase Reversa/farmacologia , Telomerase/antagonistas & inibidores , Sequência de Aminoácidos , Antimetabólitos/farmacologia , Nucleotídeos de Desoxiguanina/antagonistas & inibidores , Nucleotídeos de Desoxiguanina/genética , Didesoxinucleotídeos/antagonistas & inibidores , Didesoxinucleotídeos/genética , Humanos , Magnésio/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Estrutura Terciária de Proteína , DNA Polimerase Dirigida por RNA/genética , Telomerase/genética , Nucleotídeos de Timina/antagonistas & inibidores , Nucleotídeos de Timina/genética , Vidarabina/farmacologia , Zidovudina/análogos & derivados , Zidovudina/antagonistas & inibidores
7.
Mol Microbiol ; 97(1): 33-46, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25825127

RESUMO

Listeria monocytogenes is a bacterial pathogen classified into distinct serovars (SVs) based on somatic and flagellar antigens. To correlate phenotype with genetic variation, we analyzed the wall teichoic acid (WTA) glycosylation genes of SV 1/2, 3 and 7 strains, which differ in decoration of the ribitol-phosphate backbone with N-acetylglucosamine (GlcNAc) and/or rhamnose. Inactivation of lmo1080 or the dTDP-l-rhamnose biosynthesis genes rmlACBD (lmo1081-1084) resulted in loss of rhamnose, whereas disruption of lmo1079 led to GlcNAc deficiency. We found that all SV 3 and 7 strains actually originate from a SV 1/2 background, as a result of small mutations in WTA rhamnosylation and/or GlcNAcylation genes. Genetic complementation of different SV 3 and 7 isolates using intact alleles fully restored a characteristic SV 1/2 WTA carbohydrate pattern, including antisera reactions and phage adsorption. Intriguingly, phage-resistant L. monocytogenes EGDe (SV 1/2a) isolates featured the same glycosylation gene mutations and were serotyped as SV 3 or 7 respectively. Again, genetic complementation restored both carbohydrate antigens and phage susceptibility. Taken together, our data demonstrate that L. monocytogenes SV 3 and 7 originate from point mutations in glycosylation genes, and we show that phage predation represents a major driving force for serovar diversification and evolution of L. monocytogenes.


Assuntos
Bacteriófagos/fisiologia , Parede Celular/química , Listeria monocytogenes/classificação , Listeria monocytogenes/virologia , Ácidos Teicoicos/genética , Acetilglucosamina/metabolismo , Bacteriófagos/genética , Parede Celular/genética , Parede Celular/metabolismo , Teste de Complementação Genética , Variação Genética , Glicosilação , Listeria monocytogenes/genética , Dados de Sequência Molecular , Açúcares de Nucleosídeo Difosfato/genética , Fenótipo , Mutação Puntual , Ramnose/metabolismo , Sorogrupo , Sorotipagem , Ácidos Teicoicos/metabolismo , Nucleotídeos de Timina/genética
8.
Biochemistry ; 54(10): 1859-62, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25741586

RESUMO

8-OxodGuo and Fapy·dG induced 10-22% mutations, predominantly G → T transversions, in human embryonic kidney 293T cells in four TG*N sequence contexts, where N = C, G, A, or T. siRNA knockdown of pol λ resulted in 34 and 55% increases in the level of mutations in the progeny from the 8-oxodGuo construct in the TG*T and TG*G sequences, respectively, suggesting that pol λ is involved in error-free bypass of 8-oxodGuo. For Fapy·dG, in contrast, the level of G → T mutations was reduced by 27 and 46% in the TG*T and TG*G sequences, respectively, suggesting that pol λ is responsible for a significant fraction of Fapy·dG-induced G → T mutations.


Assuntos
DNA Polimerase beta/química , DNA/química , Guanosina Trifosfato/análogos & derivados , Mutação Puntual , Nucleotídeos de Timina/química , Catálise , DNA/biossíntese , DNA/genética , DNA Polimerase beta/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/genética , Guanosina Trifosfato/metabolismo , Humanos , Nucleotídeos de Timina/genética , Nucleotídeos de Timina/metabolismo
9.
J Nutr Biochem ; 25(3): 329-36, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24456734

RESUMO

Aberrant DNA methylation contributes to the abnormality of hepatic gene expression, one of the main factors in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Betaine is a methyl donor and has been considered to be a lipotropic agent. However, whether betaine supplementation improves NAFLD via its effect on the DNA methylation of specific genes and the genome has not been explored. Male C57BL/6 mice were fed either a control diet or high-fat diet (HFD) supplemented with 0%, 1% and 2% betaine in water (wt/vol) for 12 weeks. Betaine supplementation ameliorated HFD-induced hepatic steatosis in a dose-dependent manner. HFD up-regulated FAS and ACOX messenger RNA (mRNA) expression and down-regulated PPARα, ApoB and MTTP mRNA expression; however, these alterations were reversed by betaine supplementation, except ApoB. MTTP mRNA expression was negatively correlated with the DNA methylation of its CpG sites at -184, -156, -63 and -60. Methylation of these CpG sites was lower in both the 1% and 2% betaine-supplemented groups than in the HFD group (averages; 25.55% and 14.33% vs. 30.13%). In addition, both 1% and 2% betaine supplementation significantly restored the methylation capacity [S-adenosylmethionine (SAM) concentration and SAM/S-adenosylhomocysteine ratios] and genomic methylation level, which had been decreased by HFD (0.37% and 0.47% vs. 0.25%). These results suggest that the regulation of aberrant DNA methylation by betaine might be a possible mechanism of the improvements in NAFLD upon betaine supplementation.


Assuntos
Betaína/farmacologia , Metilação de DNA , Dieta Hiperlipídica , Fígado Gorduroso/prevenção & controle , Regiões Promotoras Genéticas , Nucleotídeos de Timina/genética , Animais , Betaína/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL
10.
PLoS Genet ; 7(3): e1002035, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21483760

RESUMO

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a severe human disease caused by mutations in TYMP, the gene encoding thymidine phosphorylase (TP). It belongs to a broader group of disorders characterized by a pronounced reduction in mitochondrial DNA (mtDNA) copy number in one or more tissues. In most cases, these disorders are caused by mutations in genes involved in deoxyribonucleoside triphosphate (dNTP) metabolism. It is generally accepted that imbalances in mitochondrial dNTP pools resulting from these mutations interfere with mtDNA replication. Nonetheless, the precise mechanistic details of this effect, in particular, how an excess of a given dNTP (e.g., imbalanced dTTP excess observed in TP deficiency) might lead to mtDNA depletion, remain largely unclear. Using an in organello replication experimental model with isolated murine liver mitochondria, we observed that overloads of dATP, dGTP, or dCTP did not reduce the mtDNA replication rate. In contrast, an excess of dTTP decreased mtDNA synthesis, but this effect was due to secondary dCTP depletion rather than to the dTTP excess in itself. This was confirmed in human cultured cells, demonstrating that our conclusions do not depend on the experimental model. Our results demonstrate that the mtDNA replication rate is unaffected by an excess of any of the 4 separate dNTPs and is limited by the availability of the dNTP present at the lowest concentration. Therefore, the availability of dNTP is the key factor that leads to mtDNA depletion rather than dNTP imbalances. These results provide the first test of the mechanism that accounts for mtDNA depletion in MNGIE and provide evidence that limited dNTP availability is the common cause of mtDNA depletion due to impaired anabolic or catabolic dNTP pathways. Thus, therapy approaches focusing on restoring the deficient substrates should be explored.


Assuntos
Replicação do DNA , DNA Mitocondrial/genética , Nucleotídeos de Desoxicitosina/metabolismo , Encefalomiopatias Mitocondriais/genética , Nucleotídeos de Timina/metabolismo , Animais , Técnicas de Cultura de Células , Nucleotídeos de Desoxicitosina/genética , Fibroblastos/citologia , Humanos , Camundongos , Mitocôndrias Hepáticas/metabolismo , Encefalomiopatias Mitocondriais/metabolismo , Nucleotídeos de Timina/genética
11.
J Biol Chem ; 286(23): 20490-9, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21515672

RESUMO

The helicase and primase activities of the hexameric ring-shaped T7 gp4 protein reside in two separate domains connected by a linker region. This linker region is part of the subunit interface between monomers, and point mutations in this region have deleterious effects on the helicase functions. One such linker region mutant, A257T, is analogous to the A359T mutant of the homologous human mitochondrial DNA helicase Twinkle, which is linked to diseases such as progressive external opthalmoplegia. Electron microscopy studies show that A257T gp4 is normal in forming rings with dTTP, but the rings do not assemble efficiently on the DNA. Therefore, A257T, unlike the WT gp4, does not preassemble on the unwinding DNA substrate with dTTP without Mg(II), and its DNA unwinding activity in ensemble assays is slow and limited by the DNA loading rate. Single molecule assays measured a 45 times slower rate of A257T loading on DNA compared with WT gp4. Interestingly, once loaded, A257T has almost WT-like translocation and DNA unwinding activities. Strikingly, A257T preassembles stably on the DNA in the presence of T7 DNA polymerase, which restores the ensemble unwinding activity of A257T to ∼75% of WT, and the rescue does not require DNA synthesis. The DNA loading rate of A257T, however, remains slow even in the presence of the polymerase, which explains why A257T does not support T7 phage growth. Similar types of defects in the related human mitochondrial DNA helicase may be responsible for inefficient DNA replication leading to the disease states.


Assuntos
Bacteriófago T7/enzimologia , DNA Primase/metabolismo , Replicação do DNA/fisiologia , DNA Viral/biossíntese , DNA Polimerase Dirigida por DNA/metabolismo , Substituição de Aminoácidos , Bacteriófago T7/genética , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Primase/genética , DNA Viral/genética , DNA Polimerase Dirigida por DNA/genética , Humanos , Proteínas Mitocondriais , Mutação de Sentido Incorreto , Oftalmoplegia Externa Progressiva Crônica/enzimologia , Oftalmoplegia Externa Progressiva Crônica/genética , Homologia de Sequência de Aminoácidos , Nucleotídeos de Timina/genética , Nucleotídeos de Timina/metabolismo
12.
J Biol Chem ; 285(41): 31462-71, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-20688917

RESUMO

The translocation of DNA helicases on single-stranded DNA and the unwinding of double-stranded DNA are fueled by the hydrolysis of nucleoside triphosphates (NTP). Although most helicases use ATP in these processes, the DNA helicase encoded by gene 4 of bacteriophage T7 uses dTTP most efficiently. To identify the structural requirements of the NTP, we determined the efficiency of DNA unwinding by T7 helicase using a variety of NTPs and their analogs. The 5-methyl group of thymine was critical for the efficient unwinding of DNA, although the presence of a 3'-ribosyl hydroxyl group partially overcame this requirement. The NTP-binding pocket of the protein was examined by randomly substituting amino acids for several amino acid residues (Thr-320, Arg-504, Tyr-535, and Leu-542) that the crystal structure suggests interact with the nucleotide. Although positions 320 and 542 required aliphatic residues of the appropriate size, an aromatic side chain was necessary at position 535 to stabilize NTP for efficient unwinding. A basic side chain of residue 504 was essential to interact with the 4-carbonyl of the thymine base of dTTP. Replacement of this residue with a small aliphatic residue allowed the accommodation of other NTPs, resulting in the preferential use of dATP and the use of dCTP, a nucleotide not normally used. Results from this study suggest that the NTP must be stabilized by specific interactions within the NTP-binding site of the protein to achieve efficient hydrolysis. These interactions dictate NTP specificity.


Assuntos
Bacteriófago T7/enzimologia , DNA Helicases/química , DNA Primase/química , Nucleotídeos de Timina/química , Substituição de Aminoácidos , Bacteriófago T7/genética , Sítios de Ligação , DNA Helicases/genética , DNA Primase/genética , Relação Estrutura-Atividade , Especificidade por Substrato , Nucleotídeos de Timina/genética
13.
J Biol Chem ; 285(35): 27327-27335, 2010 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-20554529

RESUMO

Cellular supply of dNTPs is essential in the DNA replication and repair processes. Here we investigated the regulation of thymidine kinase 1 (TK1) in response to DNA damage and found that genotoxic insults in tumor cells cause up-regulation and nuclear localization of TK1. During recovery from DNA damage, TK1 accumulates in p53-null cells due to a lack of mitotic proteolysis as these cells are arrested in the G(2) phase by checkpoint activation. We show that in p53-proficient cells, p21 expression in response to DNA damage prohibits G(1)/S progression, resulting in a smaller G(2) fraction and less TK1 accumulation. Thus, the p53 status of tumor cells affects the level of TK1 after DNA damage through differential cell cycle control. Furthermore, it was shown that in HCT-116 p53(-/-) cells, TK1 is dispensable for cell proliferation but crucial for dTTP supply during recovery from DNA damage, leading to better survival. Depletion of TK1 decreases the efficiency of DNA repair during recovery from DNA damage and generates more cell death. Altogether, our data suggest that more dTTP synthesis via TK1 take place after genotoxic insults in tumor cells, improving DNA repair during G(2) arrest.


Assuntos
Dano ao DNA , Interfase , Neoplasias/enzimologia , Timidina Quinase/metabolismo , Nucleotídeos de Timina/metabolismo , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Reparo do DNA/genética , Replicação do DNA/genética , Humanos , Neoplasias/genética , Timidina Quinase/genética , Nucleotídeos de Timina/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
14.
Biotechnol Bioeng ; 107(1): 154-62, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20506539

RESUMO

The main functions of glycosylation are stabilization, detoxification and solubilization of substrates and products. To produce glycosylated products, Escherichia coli was engineered by overexpression of TDP-L-rhamnose and TDP-6-deoxy-D-allose biosynthetic gene clusters, and flavonoids were glycosylated by the overexpression of the glycosyltransferase gene from Arabidopsis thaliana. For the glycosylation, these flavonoids (quercetin and kaempferol) were exogenously fed to the host in a biotransformation system. The products were isolated, analyzed and confirmed by HPLC, LC/MS, and ESI-MS/MS analyses. Several conditions (arabinose, IPTG concentration, OD(600), substrate concentration, incubation time) were optimized to increase the production level. We successfully isolated approximately 24 mg/L 3-O-rhamnosyl quercetin and 12.9 mg/L 3-O-rhamnosyl kaempferol upon feeding of 0.2 mM of the respective flavonoids and were also able to isolate 3-O-allosyl quercetin. Thus, this study reveals a method that might be useful for the biosynthesis of rhamnosyl and allosyl flavonoids and for the glycosylation of related compounds.


Assuntos
Escherichia coli/fisiologia , Flavonoides/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Açúcares de Nucleosídeo Difosfato/metabolismo , Engenharia de Proteínas/métodos , Ramnose/análogos & derivados , Rutina/metabolismo , Nucleotídeos de Timina/metabolismo , Açúcares de Nucleosídeo Difosfato/genética , Ramnose/genética , Ramnose/metabolismo , Nucleotídeos de Timina/genética
15.
J Card Fail ; 16(4): 314-9, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20350698

RESUMO

BACKGROUND: Alterations of endothelial nitric oxide synthase (eNOS) enzyme activity via eNOS gene polymorphisms have been associated with significant cardiovascular morbidity and mortality. Both the thymidine to cytosine transition mutation (T(-786)-->C) in the promoter region and the missense mutation in the exon 7 coding region of the eNOS gene (G(894)-->T) have been associated with several cardiovascular disease states. We hypothesized that heart transplant recipients who carried at least 1 allele of either of the polymorphisms would have reduced myocardial tissue expression of eNOS measured in the explanted heart. METHODS AND RESULTS: Genomic DNA was isolated from myocardial tissue samples obtained from 43 explanted human hearts using standard methods. Regions of the eNOS gene were amplified from genomic DNA with a polymerase chain reaction using specific primers. Protein expression of eNOS was measured by Western blot analysis. There was a statistically significant decrease in mean eNOS expression in samples containing at least one allele for the T(-786)-->C promoter polymorphism (P=.04) compared with patients homozygous for the T allele. There was no change in eNOS expression associated with the G(894)-->T exonic polymorphisms. CONCLUSIONS: Our data show in failing human myocardium that the T(-786)-->C promoter polymorphism is associated with reduced eNOS expression, whereas the G(894)-->T polymorphism of exon 7 is not associated with change in either eNOS mRNA or protein expression. Reduced eNOS expression associated with the promoter polymorphism may contribute to the vascular, contractile, and autonomic responses to ventricular failure.


Assuntos
Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/genética , Miocárdio/enzimologia , Miocárdio/patologia , Óxido Nítrico Sintase Tipo III/genética , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , Adulto , Nucleotídeos de Citosina/genética , Regulação para Baixo/genética , Feminino , Regulação da Expressão Gênica , Insuficiência Cardíaca/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/biossíntese , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/biossíntese , Nucleotídeos de Timina/genética
16.
Alcohol Clin Exp Res ; 33(1): 102-7, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18945219

RESUMO

BACKGROUND: A single nucleotide polymorphism (SNP) C677T in the methylenetetrahydrofolate reductase (MTHFR) gene has been identified. The TT or CT genotypes show a marked reduction of the enzyme activity; this causes higher homocysteine levels and alterations of folate metabolism. Folate metabolism is essential for DNA synthesis and methylation, crucial steps in carcinogenesis. In this paper, we investigated whether the MTHFR C677T SNP could influence the occurrence of hepatocellular carcinoma (HCC) in a cohort of patients transplanted for end stage liver disease of different etiologies. METHODS: Two hundred and twelve consecutive patients who underwent liver transplantation for end stage liver disease due to hepatitis B or C, alcoholic liver disease, and other causes were studied. Two hundred and thirty-six blood donors served as controls. Focal hepatic lesions were searched in the sectioned explanted livers. The presence of the MTHFR C677T SNP was determined via polymerase chain reaction amplification. RESULTS: Among the 65 patients with HCC, 22 had the CC genotype, 30 the CT, and 13 the TT genotype. Only in patients with alcoholic liver disease was a significant association detected between the TT genotype and the presence of liver cancer (6/17 vs. 5/46, p < 0.05). At stepwise logistic regression analysis the independent selected predictors of HCC were found: age at transplantation >55 years (p < 0.001) and the association among male gender, alcoholic liver disease, and MTHFR TT genotype (p = 0.002). CONCLUSIONS: The present study suggests that male TT carriers with alcoholic cirrhosis bear an increased risk of developing HCC.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Carcinoma Hepatocelular/genética , Cirrose Hepática Alcoólica/genética , Neoplasias Hepáticas/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Polimorfismo de Nucleotídeo Único/genética , Caracteres Sexuais , Adolescente , Adulto , Idoso , Consumo de Bebidas Alcoólicas/efeitos adversos , Carcinoma Hepatocelular/etiologia , Feminino , Triagem de Portadores Genéticos , Humanos , Cirrose Hepática Alcoólica/complicações , Neoplasias Hepáticas/etiologia , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Nucleotídeos de Timina/genética , Adulto Jovem
17.
J Immunol ; 180(12): 8204-10, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18523286

RESUMO

The alpha-chain is a specific component of FcepsilonRI, which is essential for the cell surface expression of FcepsilonRI and the binding of IgE. Recently, two single nucleotide polymorphisms (SNPs) in the alpha-chain promoter, -315C>T and -66T>C, have been shown by statistic studies to associate with allergic diseases. The effect of -66 SNP on GATA-1-mediated promoter activity has been already indicated. In the present study, to investigate roles of the -315 SNP on the alpha-chain promoter functions, the transcription activity was evaluated by reporter assay. The alpha-chain promoter carrying -315T (minor allele) possessed significantly higher transcriptional activity than that of -315C (major allele). EMSA indicated that the transcription factor Sp1, but not Myc-associated zinc finger protein (MAZ), was bound to the -315C allele probe and that a transcription factor belonging to a high mobility group-family bound to the -315T allele probe. The chromatin immunoprecipitation assay suggested that high mobility group 1, 2, and Sp1 bound around -315 of FcepsilonRIalpha genomic DNA in vivo in the human basophil cell line KU812 with -315C/T and in human peripheral blood basophils with -315C/C, respectively. When cell surface expression level of FcepsilonRI on basophils was analyzed by flow cytometry, basophils from individuals carrying -315T allele expressed significantly higher amount of FcepsilonRI compared with those of -315C/C. The findings demonstrate that a -315 SNP significantly affects human FcepsilonRI alpha-chain promoter activity and expression level of FcepsilonRI on basophils by binding different transcription factors to the SNP site.


Assuntos
Proteínas de Grupo de Alta Mobilidade/metabolismo , Polimorfismo de Nucleotídeo Único/imunologia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Receptores de IgE/genética , Receptores de IgE/metabolismo , Fator de Transcrição Sp1/metabolismo , Alelos , Animais , Basófilos/imunologia , Basófilos/metabolismo , Linhagem Celular Tumoral , Membrana Celular/genética , Membrana Celular/imunologia , Membrana Celular/metabolismo , Nucleotídeos de Citosina/genética , Nucleotídeos de Citosina/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/genética , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/imunologia , Ligação Proteica/genética , Ligação Proteica/imunologia , Subunidades Proteicas/biossíntese , Ratos , Receptores de IgE/biossíntese , Fator de Transcrição Sp1/genética , Nucleotídeos de Timina/genética , Nucleotídeos de Timina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Hum Genet ; 123(5): 477-84, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18414898

RESUMO

Susceptibility to infectious diseases is influenced by genetic background and efficient cellular immune activation is responsible for protection. In tuberculosis (TB), interferon-gamma (IFNgamma) is crucial to control intracellular growth of Mycobacterium tuberculosis while interleukin-10 (IL-10) has an antagonistic role. Tumor necrosis factor (TNF) is a central mediator of granuloma formation and control of bacilli spread synergizing with IFNgamma to hamper M. tuberculosis infection. Single nucleotide polymorphisms (SNPs) located at these genes could influence cytokine levels and regulate resistance and susceptibility to TB. The aim of this study was to determine the association of the interferon-gamma gene (IFNG) +874T/A, interleukin-10 gene (IL10) -1082G/A and tumor necrosis factor gene (TNF) -308G/A SNPs with TB in several populations using meta-analysis. We searched for association studies correlating these polymorphisms and TB using pre-established keywords in Medline. Meta-analysis was conducted with random effects models to account for heterogeneity between studies. Eleven studies were included in the IFNG +874T/A meta-analysis, while eight were used for the IL10 -1082G/A, and 10 were employed for TNF -308G/A. Data were analyzed in respect to associations between alleles, genotypes and minor allele carriers. Statistically significant results were found only for IFNG. The +874T allele of IFNG showed a protective significant association (OR = 0.75; 95% CI, 0.634-0.887; P = 0.0008). Though not significant, IL10 presented a trend towards protection when only studies with pulmonary TB patients were considered. This data reinforces the critical importance of IFNG +874T/A as a genetic marker for TB resistance and this information can be used for better design of a TB vaccine.


Assuntos
Predisposição Genética para Doença , Interferon gama/genética , Interleucina-10/genética , Polimorfismo de Nucleotídeo Único , Tuberculose Pulmonar/genética , Fator de Necrose Tumoral alfa/genética , Nucleotídeos de Adenina/genética , Marcadores Genéticos , Nucleotídeos de Guanina/genética , Humanos , Modelos Genéticos , Nucleotídeos de Timina/genética , Tuberculose Pulmonar/imunologia
19.
Biochemistry ; 46(32): 9292-300, 2007 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-17658896

RESUMO

Misaligned structures can occur in primer-templates during DNA replication, which can be bypassed and extended by low-fidelity polymerases and ultimately lead to mutations. In this study, we have investigated how the nucleotide downstream of a thymine template affects the primer-template structures upon misincorporation of dNTPs. The base pair structures at the replicating sites of a set of primer-template models containing either a G or an A downstream of the thymine template have been determined using NMR spectroscopy. Incorporation of dCTP and dTTP opposite 5'-GT and 5'-AT templates, respectively, can result in misaligned structures with a T-bulge. Depending on the downstream sequence, subsequent extension of the primers may stabilize the misaligned structures or cause the formation of mismatched structures. These results provide alternative pathways for base substitution and deletion errors during DNA replication by low-fidelity polymerases.


Assuntos
Primers do DNA/química , Replicação do DNA/genética , Modelos Genéticos , Mutagênese , Nucleotídeos de Timina/química , Pareamento Incorreto de Bases/genética , Sequência de Bases , Primers do DNA/genética , Nucleotídeos de Desoxicitosina/biossíntese , Nucleotídeos de Desoxicitosina/química , Repetições de Dinucleotídeos/genética , Modelos Químicos , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Moldes Genéticos , Nucleotídeos de Timina/biossíntese , Nucleotídeos de Timina/genética
20.
Mol Immunol ; 44(10): 2659-66, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17240451

RESUMO

The basis for mutations at A:T base pairs in immunoglobulin hypermutation and defining how AID interacts with the DNA of the immunoglobulin locus are major aspects of the immunoglobulin mutator mechanism where questions remain unanswered. Here, we examined the pattern of mutations generated in mice deficient in various DNA repair proteins implicated in A:T mutation and found a previously unappreciated bias at G:C base pairs in spectra from mice simultaneously deficient in DNA mismatch repair and uracil DNA glycosylase. This suggests a strand-biased DNA transaction for AID delivery which is then masked by the mechanism that introduces A:T mutations. Additionally, we asked if any of the known components of the A:T mutation machinery underscore the basis for the paucity of A:T mutations in the Burkitt lymphoma cell lines, Ramos and BL2. Ramos and BL2 cells were proficient in MSH2/MSH6-mediated mismatch repair, and express high levels of wild-type, full-length DNA polymerase eta. In addition, Ramos cells have high levels of uracil DNA glycosylase protein and are proficient in base excision repair. These results suggest that Burkitt lymphoma cell lines may be deficient in an unidentified factor that recruits the machinery necessary for A:T mutation or that AID-mediated cytosine deamination in these cells may be processed by conventional base excision repair truncating somatic hypermutation at the G:C phase. Either scenario suggests that cytosine deamination by AID is not enough to trigger A:T mutation, and that additional unidentified factors are required for full spectrum hypermutation in vivo.


Assuntos
Linfoma de Burkitt/genética , Reparo de Erro de Pareamento de DNA , Enzimas Reparadoras do DNA/genética , Nucleotídeos/genética , Hipermutação Somática de Imunoglobulina/genética , Trifosfato de Adenosina/genética , Animais , Linhagem Celular Tumoral , Citidina Desaminase/metabolismo , Citidina Trifosfato/genética , Guanosina Trifosfato/genética , Humanos , Camundongos , Mutação , Nucleotídeos de Timina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...