Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 619
Filtrar
1.
Am J Physiol Renal Physiol ; 326(2): F257-F264, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38031731

RESUMO

Renal artery stenosis (RAS) is a major cause of ischemic kidney disease, which is largely mediated by inflammation. Mapping the immune cell composition in ischemic kidneys might provide useful insight into the disease pathogenesis and uncover therapeutic targets. We used mass cytometry (CyTOF) to explore the single-cell composition in a unique data set of human kidneys nephrectomized due to chronic occlusive vascular disease (RAS, n = 3), relatively healthy donor kidneys (n = 6), and unaffected sections of kidneys with renal cell carcinoma (RCC, n = 3). Renal fibrosis and certain macrophage populations were also evaluated in renal sections. Cytobank analysis showed in RAS kidneys decreased cell populations expressing epithelial markers (CD45-/CD13+) and increased CD45+ inflammatory cells, whereas scattered tubular-progenitor-like cells (CD45-/CD133+/CD24+) increased compared with kidney donors. Macrophages switched to proinflammatory phenotypes in RAS, and the numbers of IL-10-producing dendritic cells (DC) were also lower. Compared with kidney donors, RAS kidneys had decreased overall DC populations but increased plasmacytoid DC. Furthermore, senescent active T cells (CD45+/CD28+/CD57+), aged neutrophils (CD45+/CD15+/CD24+/CD11c+), and regulatory B cells (CD45+/CD14-/CD24+/CD44+) were increased in RAS. RCC kidneys showed a distribution of cell phenotypes comparable with RAS but less pronounced, accompanied by an increase in CD34+, CD370+, CD103+, and CD11c+/CD103+ cells. Histologically, RAS kidneys showed significantly increased fibrosis and decreased CD163+/CD141+ cells. The single-cell platform CyTOF enables the detection of significant changes in renal cells, especially in subsets of immune cells in ischemic human kidneys. Endogenous pro-repair cell types in RAS warrant future study for potential immune therapy.NEW & NOTEWORTHY The single-cell platform mass cytometry (CyTOF) enables detection of significant changes in one million of renal cells, especially in subsets of immune cells in ischemic human kidneys distal to renal artery stenosis (RAS). We found that pro-repair cell types such as scattered tubular-progenitor-like cells, aged neutrophils, and regulatory B cells show a compensatory increase in RAS. Immune cell phenotype changes may reflect ongoing inflammation and impaired immune defense capability in the kidneys.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Obstrução da Artéria Renal , Humanos , Idoso , Carcinoma de Células Renais/patologia , Obstrução da Artéria Renal/patologia , Artéria Renal , Rim/patologia , Isquemia/patologia , Fenótipo , Inflamação/patologia , Neoplasias Renais/patologia
2.
J Comput Assist Tomogr ; 47(5): 713-720, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37707400

RESUMO

OBJECTIVE: This study aimed to investigate the feasibility of diffusion-weighted imaging with ultrahigh b values ( ub DWI) for the evaluation of renal fibrosis (RF) induced by renal artery stenosis (RAS) in a rabbit model. METHODS: Thirty-two rabbits underwent left RAS operation, whereas 8 rabbits received sham surgery. All rabbits underwent ub DWI ( b = 0-4500 s/mm 2 ). The standard apparent diffusion coefficient (ADC st ), molecular diffusion coefficient ( D ), perfusion fraction ( f ), perfusion-related diffusion coefficient ( D *) and ultrahigh apparent diffusion coefficient (ADC uh ) were longitudinally assessed before operation and at weeks 2, 4, and 6 after operation. The degree of interstitial fibrosis and the expression of aquaporin (AQP) 1 and AQP2 were determined through pathological examination. RESULTS: In the stenotic kidney, the ADC st , D , f , and ADC uh values of the renal parenchyma significantly decreased compared with those at baseline (all P < 0.05), whereas the D * values significantly increased after RAS induction ( P < 0.05). The ADC st , D , D *, and f were weakly to moderately correlated with interstitial fibrosis as well as with the expression of AQP1 and AQP2. Furthermore, the ADC uh negatively correlated with interstitial fibrosis ( ρ = -0.782, P < 0.001) and positively correlated with AQP1 and AQP2 expression ( ρ = 0.794, P < 0.001, and ρ = 0.789, P < 0.001, respectively). CONCLUSIONS: Diffusion-weighted imaging with ultrahigh b values shows the potential for noninvasive assessment of the progression of RF in rabbits with unilateral RAS. The ADC uh derived from ub DWI could reflect the expression of AQPs in RF.


Assuntos
Obstrução da Artéria Renal , Animais , Coelhos , Obstrução da Artéria Renal/diagnóstico por imagem , Obstrução da Artéria Renal/patologia , Aquaporina 2 , Imagem de Difusão por Ressonância Magnética/métodos , Rim/diagnóstico por imagem , Rim/patologia , Fibrose
3.
Stem Cells ; 41(1): 50-63, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36250949

RESUMO

Atherosclerotic renal artery stenosis (ARAS) is associated with irreversible parenchymal renal disease and regenerative stem cell therapies may improve renal outcomes. Hypoxia preconditioning (HPC) may improve the regenerative functions of adipose tissue-derived mesenchymal stem cells (AMSC) by affecting DNA 5-hydroxymethylcytosine (5hmC) marks in angiogenic genes. Here, we investigated using a porcine ARAS model, whether growth of ARAS AMSCs in hypoxia (Hx) versus normoxia (Nx) would enhance renal tissue repair, and comprehensively analyze how HPC modifies DNA hydroxymethylation compared to untreated ARAS and healthy/normal pigs (n=5 each). ARAS pigs exhibited elevated serum cholesterol, serum creatinine and renal artery stenosis, with a concomitant decrease in renal blood flow (RBF) and increased blood pressure (BP) compared to healthy pigs. Renal artery injection of either autologous Nx or Hx AMSCs improved diastolic BP, reduced kidney tissue fibrosis, and inflammation (CD3+ T-cells) in ARAS pigs. In addition, renal medullary hypoxia significantly lowered with Nx but not Hx AMSC treatment. Mechanistically, levels of epigenetic 5hmC marks (which reflect gene activation) estimated using DNA immunoprecipitation technique were elevated in profibrotic and inflammatory genes in ARAS compared with normal AMSCs. HPC significantly reduced 5hmC levels in cholesterol biosynthesis and oxidative stress response pathways in ARAS AMSCs. Thus, autologous AMSCs improve key renovascular parameters and inflammation in ARAS pigs, with HPC mitigating pathological molecular effects on inflammatory and profibrotic genes which may play a role in augmenting regenerative capacity of AMSCs.


Assuntos
Células-Tronco Mesenquimais , Obstrução da Artéria Renal , Suínos , Animais , Obstrução da Artéria Renal/terapia , Obstrução da Artéria Renal/patologia , Hipóxia/metabolismo , Células-Tronco Mesenquimais/metabolismo , Colesterol/metabolismo , Inflamação/patologia , Tecido Adiposo/metabolismo
4.
Am J Physiol Renal Physiol ; 323(5): F527-F538, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36049063

RESUMO

Pericytes are considered reparative mesenchymal stem cell-like cells, but their ability to ameliorate chronic ischemic kidney injury is unknown. We hypothesized that pericytes would exhibit renoprotective effects in murine renal artery stenosis (RAS). Porcine kidney-derived pericytes (5 × 105) or vehicle were injected into the carotid artery 2 wk after the induction of unilateral RAS in mice. The stenotic kidney glomerular filtration rate and tissue oxygenation were measured 2 wk later using magnetic resonance imaging. We subsequently compared kidney oxidative stress, inflammation, apoptosis, fibrosis, and systemic levels of oxidative and inflammatory cytokines. Treatment of xenogeneic pericytes ameliorated the RAS-induced loss of perfusion, glomerular filtration rate, and atrophy in stenotic kidneys and restored cortical and medullary oxygenation but did not blunt hypertension. Ex vivo, pericytes injection partially mitigated RAS-induced renal inflammation, fibrosis, oxidative stress, apoptosis, and senescence. Furthermore, coculture with pericytes in vitro protected pig kidney-1 tubular cells from injury. In conclusion, exogenous delivery of renal pericytes protects the poststenotic mouse kidney from ischemic injury, underscoring the therapeutic potential role of pericytes in subjects with ischemic kidney disease.NEW & NOTEWORTHY Our study demonstrates a novel pericyte-based therapy for the injured kidney. The beneficial effect of pericyte delivery appears to be mediated by ameliorating oxidative stress, inflammation, cellular apoptosis, and senescence in the stenotic kidney and improved tissue hypoxia, vascular loss, fibrosis, and tubular atrophy. Our data may form the basis for pericyte-based therapy, and additional research studies are needed to gain further insight into their role in improving renal function.


Assuntos
Doença Enxerto-Hospedeiro , Obstrução da Artéria Renal , Suínos , Camundongos , Animais , Pericitos/patologia , Obstrução da Artéria Renal/patologia , Rim/patologia , Fibrose , Inflamação/patologia , Citocinas , Atrofia/patologia
5.
Int J Obes (Lond) ; 46(6): 1222-1233, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35256761

RESUMO

INTRODUCTION: Obesity is a health burden that impairs cellular processes. Mesenchymal stem/stromal cells (MSCs) are endowed with reparative properties and can ameliorate renal injury. Obesity impairs human MSC function in-vitro, but its effect on their in-vivo reparative potency remains unknown. SUBJECTS AND METHODS: Abdominal adipose tissue-derived MSC were harvested from patients without ('lean') or with obesity ('obese') (body mass index <30 or ≥30 kg/m2, respectively) during kidney donation or bariatric surgery, respectively. MSC (5 × 105/200 µL) or vehicle were then injected into 129S1 mice 2 weeks after renal artery stenosis (RAS) or sham surgery (n = 8/group). Two weeks later, mice underwent magnetic resonance imaging to assess renal perfusion and oxygenation in-vivo, and kidneys then harvested for ex-vivo studies. RESULTS: Similar numbers of lean and obese-MSCs engrafted in stenotic mouse kidneys. Vehicle-treated RAS mice had reduced stenotic-kidney cortical and medullary perfusion and oxygenation. Lean (but not obese) MSC normalized ischemic kidney cortical perfusion, whereas both effectively mitigated renal hypoxia. Serum creatinine and blood pressure were elevated in RAS mice and lowered only by lean-MSC. Both types of MSCs alleviated stenotic-kidney fibrosis, but lean-MSC more effectively than obese-MSC. MSC senescence-associated beta-gal activity, and gene expression of p16, p21, and vascular endothelial growth factor correlated with recipient kidney perfusion and tissue injury, linking MSC characteristics with their in-vivo reparative capacity. DISCUSSION: Human obesity impairs the reparative properties of adipose-tissue-derived MSCs, possibly by inducing cellular senescence. Dysfunction and senescence of the endogenous MSC repair system in patients with obesity may warrant targeting interventions to restore MSC vitality.


Assuntos
Células-Tronco Mesenquimais , Obstrução da Artéria Renal , Animais , Humanos , Rim/patologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Obesidade/metabolismo , Obstrução da Artéria Renal/metabolismo , Obstrução da Artéria Renal/patologia , Fator A de Crescimento do Endotélio Vascular
6.
Invest Radiol ; 57(5): 334-342, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34935650

RESUMO

OBJECTIVES: Quantitative magnetization transfer (qMT) is useful for measurement of murine renal fibrosis at high and ultrahigh field strengths. However, its utility at clinical field strengths and in human-like kidneys remains unknown. We tested the hypothesis that qMT would successfully detect fibrosis in swine kidneys with unilateral renal artery stenosis (RAS) at 3.0 T. METHODS: The qMT protocol is composed of MT scans with variable flip angles and offset frequencies, and of B0, B1, and T1 mapping. Pigs were scanned 10 weeks after RAS or control. A 2-pool model was used to fit the bound pool fraction f of the renal cortex (CO) and outer medulla (OM). Then qMT-derived f in 5 normal and 10 RAS pigs was compared with histological fibrosis determined using Masson's trichrome staining and to renal perfusion assessed with computed tomography. RESULTS: The qMT 2-pool model provided accurate fittings of data collected on swine kidneys. Stenotic kidneys showed significantly elevated f in both the CO (9.8% ± 2.7% vs 6.4% ± 0.9%, P = 0.002) and OM (7.6% ± 2.2% vs 4.7% ± 1.1%, P = 0.002), as compared with normal kidneys. Histology-measured renal fibrosis and qMT-derived f correlated directly in both the cortex (Pearson correlation coefficient r = 0.93, P < 0.001) and OM (r = 0.84, P = 0.002), and inversely with stenotic kidney perfusion (r = 0.85, P = 0.002). CONCLUSIONS: This study demonstrates the feasibility of qMT for measuring fibrosis in human-like swine kidneys, and the association between tissue macromolecule content and renal perfusion. Therefore, qMT may be useful as a tool for noninvasive assessment of renal fibrosis in subjects with RAS at clinical field strengths.


Assuntos
Imageamento por Ressonância Magnética , Obstrução da Artéria Renal , Animais , Fibrose , Humanos , Rim/diagnóstico por imagem , Rim/patologia , Imageamento por Ressonância Magnética/métodos , Camundongos , Obstrução da Artéria Renal/diagnóstico por imagem , Obstrução da Artéria Renal/patologia , Suínos
7.
CEN Case Rep ; 10(4): 506-509, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33826107

RESUMO

Moyamoya disease (MMD) has long been known to be associated with hypertension. While renal artery stenosis (RAS) is considered one of the causes of hypertension with MMD, most hypertension causes remain unexplained. A boy with MMD was diagnosed with renovascular hypertension (RVH) due to left-sided RAS by angiography. Although nephrectomy on the affected side for unilateral RVH was performed, hypertension poorly improved. Histopathological examination of the resected specimens revealed that the vascular lumen not only of the renal artery but also of peripheral vessels in the renal parenchyma was narrowed. He developed end-stage renal disease caused by multiple wasp stings and received a kidney transplant from a living donor with his remaining right kidney resected. His hypertension improved dramatically just after the operation. In histopathological findings, the narrowed vascular lumen was also observed in the resected right renal parenchyma similar to that in the left kidney. In our case, these pathological findings were the same as those of major vessels previously reported in MMD patients. Immunohistochemical staining with anti-renin antibody on bilateral intrinsic kidneys was strongly revealed in the Juxtaglomerular apparatus. He has been normotensive with the minimum amount of amlodipine since transplantation and resection of his intrinsic right kidney. This is the first report to show the possibility that peripheral arterial stenosis in the renal parenchyma due to MMD would result in refractory hypertension. If MMD patients have hypertension of unknown origin without significant RAS, it should be considered that the etiology may be peripheral arterial stenosis in the renal parenchyma.


Assuntos
Hipertensão Renovascular/etiologia , Doença de Moyamoya/complicações , Obstrução da Artéria Renal/complicações , Angiografia , Humanos , Lactente , Rim/patologia , Masculino , Doença de Moyamoya/diagnóstico por imagem , Artéria Renal/patologia , Obstrução da Artéria Renal/patologia
8.
Am J Physiol Renal Physiol ; 320(3): F454-F463, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33554782

RESUMO

Tumor necrosis factor (TNF)-α-induced gene/protein (TSG)-6 regulates the immunomodulatory properties of mesenchymal stem cells (MSCs), but its ability to protect the ischemic kidney is unknown. In a swine model of renal artery stenosis (RAS) and metabolic syndrome (MetS), we assessed the contribution of TSG-6 produced by MSCs to their immunomodulatory properties. Pigs were studied after 16 wk of diet-induced MetS and unilateral RAS and were either untreated or treated 4 wk earlier with intrarenal autologous adipose tissue-derived MSCs (n = 6 each). Lean, MetS, and RAS sham animals served as controls. We studied renal function in vivo (using computed tomography) and kidney histopathology and macrophage phenotype ex vivo. In vitro, TSG-6 levels were also measured in conditioned media of human MSCs incubated with TNF-α and levels of the tubular injury marker lactate dehydrogenase in conditioned media after coculturing macrophages with injured human kidney 2 (HK-2) cells with or without TSG-6. The effects of TSG-6 on macrophage phenotype (M1/M2), adhesion, and migration were also determined. MetS + RAS showed increased M1 macrophages and renal vein TNF-α levels. After MSC delivery, renal vein TSG-6 increased and TNF-α decreased, the M1-to-M2 ratio decreased, renal function improved, and fibrosis was alleviated. In vitro, TNF-α increased TSG-6 secretion by human MSCs. TSG-6 decreased lactate dehydrogenase release from injured HK-2 cells, increased expression of macrophage M2 markers, and reduced M1 macrophage adhesion and migration. Therefore, TSG-6 released from MSCs may decrease renal tubular cell injury, which is associated with regulating macrophage function and phenotype. These observations suggest that TSG-6 is endowed with renoprotective properties.NEW & NOTEWORTHY Tumor necrosis factor-α-induced gene/protein (TSG)-6 regulates the immunomodulatory properties of MSCs, but its ability to protect the ischemic kidney is unknown. In pigs with renal artery stenosis, we show that MSC delivery increased renal vein TSG-6, decreased kidney inflammatory macrophages, and improved renal function. In vitro, TSG-6 decreased inflammatory macrophages and tubular cell injury. Therefore, TSG-6 released from MSCs may decrease renal tubular cell injury, which is associated with regulating macrophage function and phenotype.


Assuntos
Células Epiteliais/citologia , Macrófagos/citologia , Células-Tronco Mesenquimais/citologia , Fenótipo , Obstrução da Artéria Renal/patologia , Animais , Técnicas de Cocultura , Citocinas/metabolismo , Humanos , Rim/metabolismo , Rim/patologia , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/metabolismo , Substâncias Protetoras/farmacologia , Obstrução da Artéria Renal/metabolismo , Suínos , Fator de Necrose Tumoral alfa/metabolismo
9.
Sci Rep ; 11(1): 3606, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574403

RESUMO

Cyr61 is a member of the CCN family of proteins that is expressed in atherosclerotic lesions and regulated by angiotensin II. It is unknown whether renal artery stenosis (RAS) increases Cyr61 expression. Male ApoE-/- mice were randomized to surgically induced RAS, RAS + treatment with either irbesartan, aliskiren or amlodipine or sham-surgery. RAS resulted in increased plasma angiotensin II levels, a mild, sustained increase in systolic blood pressure and increased aortic lipid deposition compared to sham-surgery. Surgically induced RAS led to the formation of atheroma in the infrarenal aorta and there was consistent and intense staining for Cyr61 within the atheroma. Treatment with irbesartan, aliskiren and amlodipine were associated with decreased aortic lipid deposition and decreased staining for Cyr61 in aortic atheroma. Serum levels of Cyr61 were not increased in mice or humans with RAS. In summary, Cyr61 expression in aortic atheroma but not serum is increased by RAS in ApoE-/- mice and is reduced by agents that lower blood pressure.


Assuntos
Apolipoproteínas E/genética , Proteína Rica em Cisteína 61/genética , Obstrução da Artéria Renal/genética , Artéria Renal/cirurgia , Amidas/farmacologia , Anlodipino/farmacologia , Angiotensina II/genética , Animais , Anti-Hipertensivos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Fumaratos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/genética , Hipertensão/patologia , Irbesartana/farmacologia , Camundongos , Camundongos Knockout , Artéria Renal/efeitos dos fármacos , Artéria Renal/patologia , Obstrução da Artéria Renal/tratamento farmacológico , Obstrução da Artéria Renal/patologia , Obstrução da Artéria Renal/cirurgia
10.
Hypertension ; 77(2): 507-518, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33390051

RESUMO

Scattered tubular-like cells (STCs), dedifferentiated renal tubular epithelial cells, contribute to renal self-healing, but severe injury might blunt their effectiveness. We hypothesized that ischemic renovascular disease (RVD) induces senescence in STC and impairs their reparative potency. CD24+/CD133+ STCs were isolated from swine kidneys after 16 weeks of RVD or healthy controls. To test their reparative capabilities in injured kidneys, control or RVD-STC (5×105) were prelabeled and injected into the aorta of 2 kidneys, 1-clip (2k,1c) mice 2 weeks after surgery. Murine renal function and oxygenation were studied in vivo 2 weeks after injection using micro-magnetic resonance imaging, and fibrosis, tubulointerstitial injury, capillary density, and expression of profibrotic and inflammatory genes ex vivo. STC isolated from swine RVD kidneys showed increased gene expression of senescence and senescence-associated secretory phenotype markers and positive SA-ß-gal staining. Delivery of normal pig STCs in 2k,1c mice improved murine renal perfusion, blood flow, and glomerular filtration rate, and downregulated profibrotic and inflammatory gene expression. These renoprotective effects were blunted using STC harvested from RVD kidneys, which also failed to attenuate hypoxia, fibrosis, tubular injury, and capillary loss in injured mouse 2k,1c kidneys. Hence, RVD may induce senescence in endogenous STC and impair their reparative capacity. These observations implicate cellular senescence in the pathophysiology of ischemic kidney disease and support senolytic therapy to permit self-healing of senescent kidneys.


Assuntos
Senescência Celular/fisiologia , Rim/patologia , Obstrução da Artéria Renal/patologia , Insuficiência Renal/patologia , Animais , Células Cultivadas , Feminino , Fibrose/metabolismo , Fibrose/patologia , Rim/metabolismo , Camundongos , Obstrução da Artéria Renal/metabolismo , Insuficiência Renal/metabolismo , Suínos
11.
J Cell Physiol ; 236(2): 1332-1344, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32657444

RESUMO

Cell stress may give rise to insuperable growth arrest, which is defined as cellular senescence. Stenotic kidney (STK) ischemia and injury induced by renal artery stenosis (RAS) may be associated with cellular senescence. Mesenchymal stem cells (MSCs) decrease some forms of STK injury, but their ability to reverse senescence in RAS remains unknown. We hypothesized that RAS evokes STK senescence, which would be ameliorated by MSCs. Mice were studied after 4 weeks of RAS, RAS treated with adipose tissue-derived MSCs 2 weeks earlier, or sham. STK senescence-associated ß-galactosidase (SA-ß-Gal) activity was measured. Protein and gene expression was used to assess senescence and the senescence-associated secretory phenotype (SASP), and staining for renal fibrosis, inflammation, and capillary density. In addition, senescence was assessed as p16+ and p21+ urinary exosomes in patients with renovascular hypertension (RVH) without or 3 months after autologous adipose tissue-derived MSC delivery, and in healthy volunteers (HV). In RAS mice, STK SA-ß-Gal activity increased, and senescence and SASP marker expression was markedly elevated. MSCs improved renal function, fibrosis, inflammation, and capillary density, and attenuated SA-ß-Gal activity, but most senescence and SASP levels remained unchanged. Congruently, in human RVH, p21+ urinary exosomes were elevated compared to HV, and only slightly improved by MSC, whereas p16+ exosomes remained unchanged. Therefore, RAS triggers renal senescence in both mice and human subjects. MSCs decrease renal injury, but only partly mitigate renal senescence. These observations support exploration of targeted senolytic therapy in RAS.


Assuntos
Senescência Celular/genética , Transplante de Células-Tronco Mesenquimais , Obstrução da Artéria Renal/terapia , beta-Galactosidase/genética , Tecido Adiposo/citologia , Animais , Modelos Animais de Doenças , Exossomos/genética , Humanos , Inflamação/genética , Inflamação/patologia , Inflamação/terapia , Rim/metabolismo , Rim/patologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Obstrução da Artéria Renal/genética , Obstrução da Artéria Renal/patologia
13.
Sci Rep ; 10(1): 16300, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004888

RESUMO

Tissue fibrosis is an important index of renal disease progression. Diffusion-weighted magnetic resonance imaging's (DWI-MRI) apparent diffusion coefficient (ADC) reveals water diffusion is unobstructed by microstructural alterations like fibrosis. We hypothesized that ADC may indicate renal injury and response to therapy in patients with renovascular disease (RVD). RVD patients were treated with medical therapy (MT) and percutaneous transluminal renal angioplasty (MT + PTRA) (n = 11, 3 bilaterally, n = 14 kidneys) or MT (n = 9). ADC and renal hypoxia (R2*) by blood-oxygen-level-dependent MRI were studied before (n = 27) and 3 months after (n = 20) treatment. Twelve patients underwent renal biopsies. Baseline ADC values were correlated with changes in eGFR, serum creatinine (SCr), systolic blood pressure (SBP), renal hypoxia, and renal vein levels of pro-inflammatory marker tumor necrosis-factor (TNF)-α. Renal oxygenation, eGFR, and SCr improved after MT + PTRA. ADC inversely correlated with the histological degree of renal fibrosis, but remained unchanged after MT or MT + PTRA. Basal ADC values correlated modestly with change in SBP, but not in renal hypoxia, TNF-α levels, or renal function. Lower ADC potentially reflects renal injury in RVD patients, but does not change in response to medical or interventional therapy over 3 months. Future studies need to pinpoint indices of kidney recovery potential.


Assuntos
Rim/patologia , Obstrução da Artéria Renal/patologia , Idoso , Angioplastia , Biópsia , Imagem de Difusão por Ressonância Magnética , Feminino , Fibrose , Humanos , Rim/diagnóstico por imagem , Masculino , Obstrução da Artéria Renal/diagnóstico por imagem , Obstrução da Artéria Renal/terapia , Resultado do Tratamento
14.
Biomed Res Int ; 2020: 7145728, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32964041

RESUMO

OBJECTIVE: This study is aimed at exploring the accuracy of contrast-enhanced ultrasound (CEUS) in grading renal artery stenosis. METHODS: 122 renal arteries with suspected renal artery stenosis were selected. DSA, DUS, and CEUS were performed for all patients with suspected renal artery stenosis in the research. DSA was selected as the gold standard. The sensitivity, specificity, accuracy, positive predictive value (PPV), and negative predictive value (NPV) of CEUS or Doppler ultrasound (DUS) in the diagnosis of renal artery stenosis were analyzed. The consistency between CEUS and digital subtraction angiography (DSA) was compared. The accuracy of DUS or CEUS in grading renal artery stenosis was assessed by the area under the receiver operating characteristic (ROC) curves and compared between groups. RESULTS: The sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of CEUS in the diagnosis of renal artery stenosis were 88.9%, 87.8%, 88.5%, 93.5%, and 80.0%, respectively. There was no significant difference in grading renal artery stenosis between CEUS and DSA (X 2 = 0.643, P = 0.424). 77 of the 122 renal arteries were diagnosed with the stenosis rate more than 30% by CEUS. Compared with the results of DSA, the kappa value of CEUS was 0.749 (P < 0.05). CONCLUSION: CEUS is accurate in grading renal artery stenosis, and it may represent the method of choice in diagnosing renal artery stenosis.


Assuntos
Constrição Patológica/diagnóstico , Constrição Patológica/patologia , Obstrução da Artéria Renal/diagnóstico , Obstrução da Artéria Renal/patologia , Artéria Renal/patologia , Ultrassonografia Doppler/métodos , Ultrassonografia/métodos , Angiografia Digital/métodos , Meios de Contraste/química , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Curva ROC , Estudos Retrospectivos , Sensibilidade e Especificidade
15.
J Cell Physiol ; 235(12): 9806-9818, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32430932

RESUMO

Effective therapeutic strategies are needed to preserve renal function in patients with atherosclerotic renal artery stenosis (ARAS). Low-energy shockwave therapy (SW) and adipose tissue-derived mesenchymal stem/stromal cells (MSCs) both stimulate angiogenesis repair of stenotic kidney injury. This study tested the hypothesis that intrarenal delivery of adipose tissue-derived MSCs would enhance the capability of SW to preserve stenotic kidney function and structure. Twenty-two pigs were studied after 16 weeks of ARAS, ARAS treated with a SW regimen (bi-weekly for 3 weeks) with or without subsequent intrarenal delivery of adipose tissue-derived MSCs and controls. Four weeks after treatment, single-kidney renal blood flow (RBF) before and after infusion of acetylcholine, glomerular filtration rate (GFR), and oxygenation were assessed in vivo and the renal microcirculation, fibrosis, and oxidative stress ex vivo. Mean arterial pressure remained higher in ARAS, ARAS + SW, and ARAS + SW + MSC compared with normal. Both SW and SW + MSC similarly elevated the decreased stenotic kidney GFR and RBF observed in ARAS to normal levels. Yet, SW + MSC significantly improved RBF response to acetylcholine in ARAS, and attenuated capillary loss and oxidative stress more than SW alone. Density of larger microvessels was similarly increased by both interventions. Therefore, although significant changes in functional outcomes were not observed in a short period of time, adjunct MSCs enhanced pro-angiogenic effect of SW to improve renal microvascular outcomes, suggesting this as an effective stratege for long-term management of renovascular disease.


Assuntos
Aterosclerose/terapia , Tratamento por Ondas de Choque Extracorpóreas , Rim/efeitos da radiação , Obstrução da Artéria Renal/terapia , Animais , Aterosclerose/etiologia , Aterosclerose/patologia , Fibrose/patologia , Fibrose/terapia , Taxa de Filtração Glomerular/efeitos da radiação , Humanos , Rim/patologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/efeitos da radiação , Microcirculação/efeitos da radiação , Microvasos/patologia , Microvasos/efeitos da radiação , Estresse Oxidativo/efeitos da radiação , Obstrução da Artéria Renal/complicações , Obstrução da Artéria Renal/patologia , Circulação Renal/efeitos da radiação , Suínos
16.
Chin Med J (Engl) ; 133(8): 975-981, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32187045

RESUMO

BACKGROUND: Takayasu arteritis-induced renal arteritis (TARA), commonly seen in Takayasu arteritis (TA), has become one of the main causes of poor prognosis and early mortality in patients with TA. TARA progressing into Takayasu arteritis-induced renal artery stenosis (TARAS), could lead to severe complications including malignant hypertension, cardiac-cerebral vascular disease, and ischemic nephropathy. Since there existed no guidelines on treatments, this study aimed to review the comprehensive treatments for TARA. METHODS: We searched systematically in databases including PubMed, Ovid-Medline, EMBASE, Web of Science, China National Knowledge Infrastructure, Wanfang, and SinoMed, from inception to May 2018. Literature selection, data extraction, and statistical analysis were performed. RESULTS: Eighty-two literatures were recruited focusing on medical treatments (n = 34) and surgical treatments (n = 48). We found that combined medical treatments of glucocorticoids and conventional synthetic disease-modifying anti-rheumatic drugs could reach high rates of remission in patients with TARA, and biological disease-modifying anti-rheumatic drugs were preferred for refractory patients. After remission induction, surgical treatment could help reconstruct renal artery and recover renal function partly. Percutaneous transluminal angioplasty was the first choice for patients with TARAS, while open surgery showed a good long-term survival. CONCLUSIONS: Patients with TARA should benefit both from medical treatments and from surgical treatments comprehensively and sequentially. Multidisciplinary team coordination is recommended especially in patients with severe complications.


Assuntos
Obstrução da Artéria Renal/tratamento farmacológico , Obstrução da Artéria Renal/cirurgia , Arterite de Takayasu/tratamento farmacológico , Arterite de Takayasu/cirurgia , Angioplastia , Antirreumáticos/uso terapêutico , Glucocorticoides/uso terapêutico , Humanos , Artéria Renal/efeitos dos fármacos , Artéria Renal/cirurgia , Obstrução da Artéria Renal/patologia , Arterite de Takayasu/patologia
17.
Am J Hypertens ; 33(8): 765-774, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32179886

RESUMO

BACKGROUND: Mitochondria modulate endothelial cell (EC) function, but may be damaged during renal disease. We hypothesized that the ischemic and metabolic constituents of swine renovascular disease (RVD) induce mitochondrial damage and impair the function of renal artery ECs. METHODS: Pigs were studied after 16 weeks of metabolic syndrome (MetS), renal artery stenosis (RAS), or MetS + RAS, and Lean pigs served as control (n = 6 each). Mitochondrial morphology, homeostasis, and function were measured in isolated primary stenotic-kidney artery ECs. EC functions were assessed in vitro, whereas vasoreactivity of renal artery segments was characterized in organ baths. RESULTS: Lean + RAS and MetS + RAS ECs showed increased mitochondrial area and decreased matrix density. Mitochondrial biogenesis was impaired in MetS and MetS + RAS compared with their respective controls. Mitochondrial membrane potential similarly decreased in MetS, Lean + RAS, and MetS + RAS groups, whereas production of reactive oxygen species increased in MetS vs. Lean, but further increased in both RAS groups. EC tube formation was impaired in MetS, RAS, and MetS + RAS vs. Lean, but EC proliferation and endothelial-dependent relaxation of renal artery segments were blunted in MetS vs. Lean, but further attenuated in Lean + RAS and MetS + RAS. CONCLUSIONS: MetS and RAS damage mitochondria in pig renal artery ECs, which may impair EC function. Coexisting MetS and RAS did not aggravate EC mitochondrial damage in the short time of our in vivo studies, suggesting that mitochondrial injury is associated with impaired renal artery EC function.


Assuntos
Células Endoteliais/metabolismo , Endotélio Vascular/fisiopatologia , Hipertensão Renovascular/metabolismo , Mitocôndrias/metabolismo , Artéria Renal/metabolismo , Vasodilatação/fisiologia , Animais , Modelos Animais de Doenças , Células Endoteliais/patologia , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Feminino , Hipertensão Renovascular/patologia , Hipertensão Renovascular/fisiopatologia , Potencial da Membrana Mitocondrial/fisiologia , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , Mitocôndrias/patologia , Óxido Nítrico Sintase Tipo III/metabolismo , Distribuição Aleatória , Espécies Reativas de Oxigênio/metabolismo , Artéria Renal/patologia , Artéria Renal/fisiopatologia , Obstrução da Artéria Renal/metabolismo , Obstrução da Artéria Renal/patologia , Sus scrofa , Suínos , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
J Am Heart Assoc ; 9(7): e014072, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32200719

RESUMO

Background Renal artery stenosis is a common cause of renal ischemia, contributing to the development of chronic kidney disease. To investigate the role of local CD40 expression in renal artery stenosis, Goldblatt 2-kidney 1-clip surgery was performed on hypertensive Dahl salt-sensitive rats (S rats) and genetically modified S rats in which CD40 function is abolished (Cd40mutant). Methods and Results Four weeks following the 2-kidney 1-clip procedure, Cd40mutant rats demonstrated significantly reduced blood pressure and renal fibrosis in the ischemic kidneys compared with S rat controls. Similarly, disruption of Cd40 resulted in reduced 24-hour urinary protein excretion in Cd40mutant rats versus S rat controls (46.2±1.9 versus 118.4±5.3 mg/24 h; P<0.01), as well as protection from oxidative stress, as indicated by increased paraoxonase activity in Cd40mutant rats versus S rat controls (P<0.01). Ischemic kidneys from Cd40mutant rats demonstrated a significant decrease in gene expression of the profibrotic mediator, plasminogen activator inhibitor-1 (P<0.05), and the proinflammatory mediators, C-C motif chemokine ligand 19 (P<0.01), C-X-C Motif Chemokine Ligand 9 (P<0.01), and interleukin-6 receptor (P<0.001), compared with S rat ischemic kidneys, as assessed by quantitative PCR assay. Reciprocal renal transplantation documented that CD40 exclusively expressed in the kidney contributes to ischemia-induced renal fibrosis. Furthermore, human CD40-knockout proximal tubule epithelial cells suggested that suppression of CD40 signaling significantly inhibited expression of proinflammatory and -fibrotic genes. Conclusions Taken together, our data suggest that activation of CD40 induces a significant proinflammatory and -fibrotic response and represents an attractive therapeutic target for treatment of ischemic renal disease.


Assuntos
Antígenos CD40/metabolismo , Isquemia/metabolismo , Rim/irrigação sanguínea , Rim/metabolismo , Mutação , Obstrução da Artéria Renal/metabolismo , Animais , Pressão Sanguínea , Antígenos CD40/genética , Linhagem Celular , Modelos Animais de Doenças , Fibrose , Taxa de Filtração Glomerular , Humanos , Mediadores da Inflamação/metabolismo , Isquemia/genética , Isquemia/patologia , Isquemia/fisiopatologia , Rim/patologia , Rim/fisiopatologia , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Masculino , Estresse Oxidativo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Ratos Endogâmicos Dahl , Obstrução da Artéria Renal/genética , Obstrução da Artéria Renal/patologia , Obstrução da Artéria Renal/fisiopatologia , Transdução de Sinais
20.
Radiology ; 294(2): 455-463, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31821120

RESUMO

Background Management of abdominal branches associated with Stanford type B aortic dissection is controversial without definite criteria for therapy after thoracic endovascular aortic repair (TEVAR). This is in part due to lack of data on natural history related to branch vessels and their relationship with the dissection flap, true lumen, and false lumen. Purpose To investigate the natural history of abdominal branches after TEVAR for type B aortic dissection and the relationship between renal artery anatomy and renal volume as a surrogate measure of perfusion. Materials and Methods This study included patients who underwent TEVAR for complicated type B dissection from January 2012 to March 2017 at 20 centers. Abdominal aortic branches were classified with following features: patency, branch vessel origin, and presence of extension of the aortic dissection into a branch (pattern 1, supplied by the true lumen without branch dissection; pattern 2, supplied by the true lumen with branch dissection, etc). The branch artery patterns before TEVAR were compared with those of the last follow-up CT (mean interval, 19.7 months) for spontaneous healing. Patients with one kidney supplied by pattern 1 and the other kidney by a different pattern were identified, and kidney volumes over the course were compared by using a simple linear regression model. Results Two hundred nine patients (mean age ± standard deviation, 66 years ± 13; 165 men and 44 women; median follow-up, 18 months) were included. Four hundred fifty-nine abdominal branches at the last follow-up were evaluable. Spontaneous healing of the dissected branch occurred in 63% (64 of 102) of pattern 2 branches. Regarding the other patterns, 6.5% (six of 93) of branches achieved spontaneous healing. In 79 patients, renal volumes decreased in kidneys with pattern 2 branches with more than 50% stenosis and branches supplied by the aortic false lumen (patterns 3 and 4) compared with contralateral kidneys supplied by pattern 1 (pattern 2 vs pattern 1: -16% ± 16 vs 0.10% ± 11, P = .002; patterns 3 and 4 vs pattern 1: -13% ± 14 vs 8.5% ± 14, P = .004). Conclusion Spontaneous healing occurs more frequently in dissected branches arising from the true lumen than in other branch patterns. Renal artery branches supplied by the aortic false lumen or a persistently dissected artery with greater than 50% stenosis are associated with significantly greater kidney volume loss. © RSNA, 2019 Online supplemental material is available for this article.


Assuntos
Aorta Torácica/cirurgia , Aneurisma Aórtico/cirurgia , Dissecção Aórtica/cirurgia , Procedimentos Endovasculares/métodos , Obstrução da Artéria Renal/complicações , Obstrução da Artéria Renal/diagnóstico por imagem , Idoso , Dissecção Aórtica/complicações , Aneurisma Aórtico/complicações , Feminino , Humanos , Japão , Rim/diagnóstico por imagem , Rim/patologia , Masculino , Artéria Renal/diagnóstico por imagem , Artéria Renal/patologia , Obstrução da Artéria Renal/patologia , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...