RESUMO
The objective was to isolate lactic acid bacteria (LAB) from southern Brazil's wines and investigate their potential as starter cultures for malolactic fermentation (MLF) in Merlot (ME) and Cabernet Sauvignon (CS) wines through the fermentative capacity. The LAB were isolated from CS, ME, and Pinot Noir (PN) wines in the 2016 and 2017 harvests and evaluated for morphological (color and shape of the colonies), genetic, fermentative (increase in pH, acidity reduction, preservation of anthocyanins, decarboxylation of L-malic acid, yield of L-lactic acid, and content of reduced sugars), and sensory characteristics. Four strains were identified as Oenococcus oeni [CS(16)3B1, ME(16)1A1, ME(17)26, and PN(17)65], one as Lactiplantibacillus plantarum [PN(17)75], and one as Paucilactobacillus suebicus [CS(17)5]. Isolates were evaluated in the MLF and compared to a commercial strain (O. oeni), as well as a control (without inoculation and spontaneous MLF), and standard (without MLF). CS(16)3B1 and ME(17)26 isolates finished the MLF for CS and ME wines, respectively, after 35 days, similar to the commercial strain, and CS(17)5 and ME(16)1A1 isolates ended the MLF in 45 days. In the sensory analysis, ME wines with isolated strains received better scores for flavor and overall quality than the control. Compared to the commercial strain, CS(16)3B1 isolate obtained the highest scores for buttery flavor and taste persistence. CS(17)5 isolate received the higher scores for a fruity flavor and overall quality and the lowest for a buttery flavor. The native LAB displayed MLF potential, regardless of the year and grape species from which they were isolated.
Assuntos
Lactobacillales , Oenococcus , Vinho , Vinho/microbiologia , Brasil , Lactobacillales/genética , Fermentação , Antocianinas , Oenococcus/genética , MalatosRESUMO
In the present study, we evaluated the transcriptional response of four stress-related genes in three Oenococcus oeni strains after acclimation at two different temperatures. Gene expression was analyzed at time zero and after 48 h acclimation at 18 and 21 °C. After the acclimation period cells were inoculated into sterile Pinot noir wine and MLF was followed for 25 days to investigate if different acclimation temperatures could influence cell survival and MLF performance. L-malic acid consumption, population survival, and transcriptional behavior were different upon the acclimation temperature. rmlB and hsp20 genes presented a considerable increase in their expression level when strains were acclimated at 18 °C particularly in the psychrotrophic strains UNQOe19 and UNQOe4 isolated from Patagonian Pinot noir wine in comparison with the control strain (ATCC 27310). The increase in rmlB and hsp20 expression could account for the better survival of these strains in Pinot noir in comparison with the control strain. In addition, Patagonian populations acclimated at 18 °C were able to consume a higher percentage of L-malic acid in comparison with cells acclimated at 21 °C. Our results suggest that gene expression analysis of cells acclimated at sub-optimal temperatures could benefit the selection of psychrotrophic strains aimed as starter cultures.
Assuntos
Adaptação Biológica , Temperatura Baixa , Perfilação da Expressão Gênica , Oenococcus/genética , Oenococcus/efeitos da radiação , Estresse Fisiológico , Vinho/microbiologia , Argentina , Chile , Proteínas de Choque Térmico HSP20/genética , Hidroliases/genética , Malatos/metabolismo , Viabilidade Microbiana/efeitos da radiaçãoRESUMO
Among the lactic acid bacteria (LAB) present in the oenological microbial ecosystem, Oenococcus oeni, an acidophilic lactic acid bacterium, is essential during winemaking. It outclasses all other bacterial species during malolactic fermentation (MLF). Oenological performances, such as malic acid degradation rate and sensorial impact, vary significantly according to the strain. The genetic diversity of the O. oeni species was evaluated using a multilocus sequence typing (MLST) scheme. Seven housekeeping genes were sequenced for a collection of 258 strains that had been isolated all over the world (particularly Burgundy, Champagne, and Aquitaine, France, Chile, South Africa, and Italy) and in several wine types (red wines, white wines, and champagne) and cider. The allelic diversity was high, with an average of 20.7 alleles per locus, many of them being rare alleles. The collection comprised 127 sequence types, suggesting an important genotypic diversity. The neighbor-joining phylogenetic tree constructed from the concatenated sequence of the seven housekeeping genes showed two major phylogenetic groups, named A and B. One unique strain isolated from cider composed a third group, rooting the phylogenetic tree. However, all other strains isolated from cider were in group B. Eight phylogenetic subgroups were statistically differentiated and could be delineated by the analysis of only 32 mutations instead of the 600 mutations observed in the concatenated sequence of the seven housekeeping genes. Interestingly, in group A, several phylogenetic subgroups were composed mostly of strains coming from a precise geographic origin. Three subgroups were identified, composed of strains from Chile, South Africa, and eastern France.