Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.169
Filtrar
1.
Chembiochem ; 25(3): e202300645, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37984902

RESUMO

Various artificial oligodeoxynucleotides (ODNs) that contribute to gene regulation have been developed and their diversity and multifunctionality have been demonstrated. However, few artificial ODNs are actively transported to the cell nucleus, despite the fact that gene regulation also takes place in both the cell nucleus and the cytoplasm. In this study, to prepare ODNs with the ability to accumulate in the cell nucleus, we introduced Hoechst molecules into ODNs that act as carriers of functional molecules to the cell nucleus (Hoe-ODNs). We synthesized Hoe-ODNs and confirmed that they bound strongly to DNA duplexes. When single-stranded Hoe-ODNs or double-stranded ODNs consisting of Hoe-ODNs and its complementary strand were administered into living cells, both ODNs were efficiently accumulated in the cell nucleus. In addition, antisense ODNs, which were tethered with Hoechst unit, were delivered into the cell nucleus and efficiently suppressed the expression of their target RNA. Thus, we constructed a delivery system that enables the transport of ODNs into cell nucleus.


Assuntos
Oligodesoxirribonucleotídeos , Oligonucleotídeos Antissenso , Oligonucleotídeos Antissenso/metabolismo , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/metabolismo , DNA/genética , DNA/metabolismo , Núcleo Celular/metabolismo
2.
Int J Mol Sci ; 24(19)2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37834438

RESUMO

Lumican is an extracellular matrix proteoglycan known to regulate toll-like receptor (TLR) signaling in innate immune cells. In experimental settings, lumican suppresses TLR9 signaling by binding to and sequestering its synthetic ligand, CpG-DNA, in non-signal permissive endosomes. However, the molecular details of lumican interactions with CpG-DNA are obscure. Here, the 3-D structure of the 22 base-long CpG-DNA (CpG ODN_2395) bound to lumican or TLR9 were modeled using homology modeling and docking methods. Some of the TLR9-CpG ODN_2395 features predicted by our model are consistent with the previously reported TLR9-CpG DNA crystal structure, substantiating our current analysis. Our modeling indicated a smaller buried surface area for lumican-CpG ODN_2395 (1803 Å2) compared to that of TLR9-CpG ODN_2395 (2094 Å2), implying a potentially lower binding strength for lumican and CpG-DNA than TLR9 and CpG-DNA. The docking analysis identified 32 amino acids in lumican LRR1-11 interacting with CpG ODN_2395, primarily through hydrogen bonding, salt-bridges, and hydrophobic interactions. Our study provides molecular insights into lumican and CpG-DNA interactions that may lead to molecular targets for modulating TLR9-mediated inflammation and autoimmunity.


Assuntos
Transdução de Sinais , Receptor Toll-Like 9 , Receptor Toll-Like 9/genética , Leucina , Lumicana , Oligodesoxirribonucleotídeos/genética , DNA
3.
Methods Mol Biol ; 2709: 105-115, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37572275

RESUMO

In the field of nucleic acid nanotechnology and therapeutics, there is an imperative need to improve the oligodeoxynucleotides' (ODNs) properties by either chemical modification of the oligonucleotides' structure or to covalently link them to a reporter or therapeutic moieties that possess biologically relevant properties. The chemical conjugation can thus significantly improve the intrinsic properties not only of ODNs but also reporter/therapeutic molecules. Bioconjugation of nucleic acids to small molecules also serves as a nano-delivery facility to transport various functionalities to specific targets. Herein, we describe a generalized methodology that deploys azide-alkyne cycloaddition, a click reaction to conjugate a cyanine-3 alkyne moiety to an azide-functionalized ODN 12-mer, as well as 3-azido 7-hydroxycoumarin to an alkyne functionalized ODN 12-mer.


Assuntos
Azidas , Ácidos Nucleicos , Azidas/química , Oligodesoxirribonucleotídeos/genética , Química Click/métodos , Oligonucleotídeos/química , Alcinos/química , Reação de Cicloadição
4.
Small ; 19(48): e2303454, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37559164

RESUMO

Framework nucleic acids (FNAs) of various morphologies, designed using the precise and programmable Watson-Crick base pairing, serve as carriers for biomolecule delivery in biology and biomedicine. However, the impact of their shape, size, concentration, and the spatial presentation of cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs) on immune activation remains incompletely understood. In this study, representative FNAs with varying morphologies are synthesized to explore their immunological responses. Low concentrations (50 nM) of all FNAs elicited no immunostimulation, while high concentrations of elongated DNA nanostrings and tetrahedrons triggered strong activation due to their larger size and increased cellular uptake, indicating that the innate immune responses of FNAs depend on both dose and morphology. Notably, CpG ODNs' immune response can be programmed by FNAs through regulating the spatial distance, with optimal spacing of 7-8 nm eliciting the highest immunostimulation. These findings demonstrate FNAs' potential as a designable tool to study nucleic acid morphology's impact on biological responses and provide a strategy for future CpG-mediated immune activation carrier design.


Assuntos
Ácidos Nucleicos , Imunidade Inata , DNA , Oligodesoxirribonucleotídeos/genética , Adjuvantes Imunológicos
5.
Nature ; 619(7970): 555-562, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37380776

RESUMO

Whole-genome synthesis provides a powerful approach for understanding and expanding organism function1-3. To build large genomes rapidly, scalably and in parallel, we need (1) methods for assembling megabases of DNA from shorter precursors and (2) strategies for rapidly and scalably replacing the genomic DNA of organisms with synthetic DNA. Here we develop bacterial artificial chromosome (BAC) stepwise insertion synthesis (BASIS)-a method for megabase-scale assembly of DNA in Escherichia coli episomes. We used BASIS to assemble 1.1 Mb of human DNA containing numerous exons, introns, repetitive sequences, G-quadruplexes, and long and short interspersed nuclear elements (LINEs and SINEs). BASIS provides a powerful platform for building synthetic genomes for diverse organisms. We also developed continuous genome synthesis (CGS)-a method for continuously replacing sequential 100 kb stretches of the E. coli genome with synthetic DNA; CGS minimizes crossovers1,4 between the synthetic DNA and the genome such that the output for each 100 kb replacement provides, without sequencing, the input for the next 100 kb replacement. Using CGS, we synthesized a 0.5 Mb section of the E. coli genome-a key intermediate in its total synthesis1-from five episomes in 10 days. By parallelizing CGS and combining it with rapid oligonucleotide synthesis and episome assembly5,6, along with rapid methods for compiling a single genome from strains bearing distinct synthetic genome sections1,7,8, we anticipate that it will be possible to synthesize entire E. coli genomes from functional designs in less than 2 months.


Assuntos
Cromossomos Artificiais Bacterianos , DNA , Escherichia coli , Genoma Bacteriano , Biologia Sintética , Humanos , DNA/genética , DNA/metabolismo , Escherichia coli/genética , Genoma Bacteriano/genética , Plasmídeos/genética , Sequências Repetitivas de Ácido Nucleico/genética , Biologia Sintética/métodos , Cromossomos Artificiais Bacterianos/genética , Éxons , Íntrons , Quadruplex G , Elementos Nucleotídeos Longos e Dispersos/genética , Elementos Nucleotídeos Curtos e Dispersos/genética , Oligodesoxirribonucleotídeos/biossíntese , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/metabolismo , Fatores de Tempo
7.
Int J Mol Med ; 51(5)2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37026512

RESUMO

Atherosclerosis is a progressive chronic inflammatory condition that is the cause of most cardiovascular and cerebrovascular diseases. The transcription factor nuclear factor­κB (NF­κB) regulates a number of genes involved in the inflammatory responses of cells that are critical to atherogenesis, and signal transducer and activator of transcription (STAT)3 is a key transcription factor in immunity and inflammation. Decoy oligodeoxynucleotides (ODNs) bind to sequence­specific transcription factors and limit gene expression by interfering with transcription in vitro and in vivo. The present study aimed to investigate the beneficial functions of STAT3/NF­κB decoy ODNs in liposaccharide (LPS)­induced atherosclerosis in mice. Atherosclerotic injuries of mice were induced via intraperitoneal injection of LPS and the mice were fed an atherogenic diet. Ring­type STAT3/NF­κB decoy ODNs were designed and administered via an injection into the tail vein of the mice. To investigate the effect of STAT3/NF­κB decoy ODNs, electrophoretic mobility shift assay, western blot analysis, histological analysis with hematoxylin and eosin staining, Verhoeff­Van Gieson and Masson's trichrome staining were performed. The results revealed that STAT3/NF­κB decoy ODNs were able to suppress the development of atherosclerosis by attenuating morphological changes and inflammation in atherosclerotic mice aortae, and by reducing pro­inflammatory cytokine secretion through inhibition of the STAT3/NF­κB pathway. In conclusion, the present study provided novel insights into the antiatherogenic molecular mechanism of STAT3/NF­κB decoy ODNs, which may serve as an additional therapeutic intervention to combat atherosclerosis.


Assuntos
Aterosclerose , NF-kappa B , Animais , Camundongos , NF-kappa B/metabolismo , Lipopolissacarídeos , Transdução de Sinais , Oligodesoxirribonucleotídeos/farmacologia , Oligodesoxirribonucleotídeos/uso terapêutico , Oligodesoxirribonucleotídeos/genética , Inflamação/patologia , Fatores de Transcrição , Aterosclerose/tratamento farmacológico , Aterosclerose/genética
8.
Methods Mol Biol ; 2637: 99-109, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36773141

RESUMO

Knock-in mice are useful for evaluating endogenous gene expressions and functions in vivo. Instead of the conventional gene-targeting method using embryonic stem cells, an exogenous DNA sequence can be inserted into the target locus in the zygote using genome-editing technology. In this chapter, I describe the generation of epitope-tagged mice using engineered endonuclease and single-strand oligodeoxynucleotide through the mouse zygote as an example of how to generate a knock-in mouse by genome editing.


Assuntos
Edição de Genes , Marcação de Genes , Camundongos , Animais , Edição de Genes/métodos , Marcação de Genes/métodos , Células-Tronco Embrionárias , Oligodesoxirribonucleotídeos/genética , Sistemas CRISPR-Cas/genética , Técnicas de Introdução de Genes , Zigoto/metabolismo
9.
Biomolecules ; 12(12)2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36551286

RESUMO

Acne vulgaris has a pathogenesis that involves increased sebum production and perifollicular inflammation. Sterol regulatory element-binding protein-1 (SREBP-1) and peroxisome proliferator activated receptor-γ (PPAR-γ) are transcription factors that regulate numerous genes involved in lipid biosynthesis. To improve a new therapeutic approach, we designed the SREBP/PPAR decoy oligodeoxynucleotide (ODN), a synthetic short DNA containing complementary sequences for the SREBP and PPAR transcription factors. We aim to investigate the beneficial functions and the molecular mechanisms of the synthetic SREBP/PPAR decoy ODN in lipogenic models. C. acnes was intradermally injected with a 1.0 × 107 colony forming unit/20 µL. The synthetic SREBP/PPAR decoy ODN or scrambled decoy ODN (10 µg) was transferred via the mouse tail vein injection. SZ95 cells were transfected with 2 µg of synthetic ODNs. After transfection, the SZ95 cells were cultured in serum-free medium containing 20 ng/µL of insulin-like growth factor-1 (IGF)-1 for 24 h. To investigate the expression of gene and signaling pathways, we performed Western blotting. The distribution of the chimeric decoy ODN was confirmed by EMSA. Lipid levels were assessed by Nile red and Oil Red O staining. The cytokine levels were measured by ELISA kit. This study showed that C. acnes-injected mice and IGF-1-stimulated SZ95 cells exhibited increased expression of SREBP-1 and PPAR-γ compared to the normal controls. In contrast, the administration of the SREBP/PPAR chimeric decoy ODN significantly suppressed the upregulation of lipogenic genes. Furthermore, the SREBP/PPAR decoy ODN decreased the plasma cytokines and cytokine levels of total protein. These results suggested that the SREBP/PPAR decoy ODN exerts its anti-lipogenic effects by regulating lipid metabolism and by inhibiting lipogenesis through the inactivation of the SREBP and PPAR pathways. Therefore, the synthetic SREBP/PPAR ODN demonstrates substantial therapeutic feasibility for the treatment of acne vulgaris.


Assuntos
Acne Vulgar , Lipogênese , Animais , Camundongos , Lipogênese/genética , Oligodesoxirribonucleotídeos/genética , PPAR gama/genética , PPAR gama/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Acne Vulgar/genética , Citocinas/metabolismo , Lipídeos
10.
Methods Mol Biol ; 2521: 207-230, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733000

RESUMO

As a method of gene therapy, application of decoy oligodeoxynucleotides (ODNs) could interfere at the pretranscription level, by blocking the transcription factors, and inhibiting their attachment to the corresponding sequences in genomic DNA. Some of the transcription factors including MYC, OCT4, SOX2, STAT3, and NANOG are associated with the stemness properties of cancer cells, and suppressing them could interfere with cellular differentiation, which synergizes the efficiency of other anticancer therapies. The use of decoy ODNs has shown to be an effective measure against various malignancies, and it has shown to have a synergic effect when it is used along with the other cancer therapy methods. Emergence of modern nanocarriers has shown to further improve the outcome of using decoy ODNs against some cancers, and it has the potential of being used for clinical applications. In this chapter, it was aimed to provide a glance of this method for cancer therapy.


Assuntos
Neoplasias , Oligodesoxirribonucleotídeos , Regulação da Expressão Gênica , Humanos , Neoplasias/genética , Neoplasias/terapia , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/farmacologia , Oligodesoxirribonucleotídeos/uso terapêutico , Regiões Promotoras Genéticas
11.
Scand J Immunol ; 96(5)2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37406035

RESUMO

CpG Oligodeoxynucleotides (ODNs) are established TLR9 ligands; however, their functional responses in CD4+ T cells are believed to be independent of TLR9 and MyD88. We studied ligand-receptor interactions of ODN 2216 and TLR9 in human CD4+ T cells and assessed their consequences in terms of TLR9 signalling and cell phenotype. We demonstrated that the uptake of ODN 2216, a synthetic TLR9 agonist, is controlled by TLR9 signalling molecules and results in an increase in the expression of TLR9 signalling molecules, regulated via a feedback mechanism. Next, the uptake of ODN 2216 resulted in TLR9 signalling dependent but MyD88 independent increase in expression of TGF-ß. Finally, ODN 2216 treated CD4+ T cells showed an anti-inflammatory phenotype that was similar to Th3 type of regulatory T cells. These Th3-like cells were able to suppress the proliferation of untreated CD4+ T cells. Collectively, our results demonstrate a direct and interdependent relationship between ODN 2216 uptake and TLR9 signalling in CD4+ T cells. Our findings thus pave the way for future research to explore direct modulation of adaptive immune cells, using innate immune ligands, to subvert exaggerated inflammatory responses.


Assuntos
Fator 88 de Diferenciação Mieloide , Receptor Toll-Like 9 , Humanos , Receptor Toll-Like 9/genética , Ligantes , Fator 88 de Diferenciação Mieloide/metabolismo , Linfócitos T CD4-Positivos , Transdução de Sinais , Oligodesoxirribonucleotídeos/farmacologia , Oligodesoxirribonucleotídeos/genética
12.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34884745

RESUMO

Aptamers offer a great opportunity to develop innovative drug delivery systems that can deliver cargos specifically into targeted cells. In this study, a chimera consisting of two aptamers was developed to deliver doxorubicin into cancer cells and release the drug in cytoplasm in response to adenosine-5'-triphosphate (ATP) binding. The chimera was composed of the AS1411 anti-nucleolin aptamer for cancer cell targeting and the ATP aptamer for loading and triggering the release of doxorubicin in cells. The chimera was first produced by hybridizing the ATP aptamer with its complementary DNA sequence, which is linked with the AS1411 aptamer via a poly-thymine linker. Doxorubicin was then loaded inside the hybridized DNA region of the chimera. Our results show that the AS1411-ATP aptamer chimera was able to release loaded doxorubicin in cells in response to ATP. In addition, selective uptake of the chimera into cancer cells was demonstrated using flow cytometry. Furthermore, confocal laser scanning microscopy showed the successful delivery of the doxorubicin loaded in chimeras to the nuclei of targeted cells. Moreover, the doxorubicin-loaded chimeras effectively inhibited the growth of cancer cell lines and reduced the cytotoxic effect on the normal cells. Overall, the results of this study show that the AS1411-ATP aptamer chimera could be used as an innovative approach for the selective delivery of doxorubicin to cancer cells, which may improve the therapeutic potency and decrease the off-target cytotoxicity of doxorubicin.


Assuntos
Aptâmeros de Nucleotídeos , Doxorrubicina , Sistemas de Liberação de Medicamentos , Neoplasias , Humanos , Trifosfato de Adenosina/metabolismo , Aptâmeros de Nucleotídeos/administração & dosagem , Aptâmeros de Nucleotídeos/sangue , Aptâmeros de Nucleotídeos/genética , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Desenho de Fármacos , Estabilidade de Medicamentos , Técnicas In Vitro , Células MCF-7 , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Oligodesoxirribonucleotídeos/administração & dosagem , Oligodesoxirribonucleotídeos/sangue , Oligodesoxirribonucleotídeos/genética , Fosfoproteínas/antagonistas & inibidores , Proteínas de Ligação a RNA/antagonistas & inibidores , Nucleolina
13.
Nat Commun ; 12(1): 6751, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34799578

RESUMO

Single-stranded oligodeoxynucleotides (ssODNs) are widely used as DNA repair templates in CRISPR/Cas precision genome editing. However, the underlying mechanisms of single-strand templated DNA repair (SSTR) are inadequately understood, constraining rational improvements to precision editing. Here we study SSTR at CRISPR/Cas12a-induced DNA double-strand breaks (DSBs) in the eukaryotic model green microalga Chlamydomonas reinhardtii. We demonstrate that ssODNs physically incorporate into the genome during SSTR at Cas12a-induced DSBs. This process is genetically independent of the Rad51-dependent homologous recombination and Fanconi anemia pathways, is strongly antagonized by non-homologous end-joining, and is mediated almost entirely by the alternative end-joining enzyme polymerase θ. These findings suggest differences in SSTR between C. reinhardtii and animals. Our work illustrates the promising potentially of C. reinhardtii as a model organism for studying nuclear DNA repair.


Assuntos
Chlamydomonas reinhardtii/genética , Reparo do DNA por Junção de Extremidades , DNA de Plantas/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Quebras de DNA de Cadeia Dupla , DNA de Plantas/genética , DNA de Cadeia Simples/genética , DNA Polimerase Dirigida por DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Edição de Genes/métodos , Instabilidade Genômica , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo , DNA Polimerase teta
14.
Mikrochim Acta ; 188(11): 398, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34716815

RESUMO

A simple carbon nanodot-based electrogenerated chemiluminescence biosensor is described for sensitive and selective detection of microRNA-21 (miRNA-21), a biomarker of several pathologies including cardiovascular diseases (CVDs). The photoluminescent carbon nanodots (CNDs) were obtained using a new synthesis method, simply by treating tiger nut milk in a microwave reactor. The synthesis is environmentally friendly, simple, and efficient. The optical properties and morphological characteristics of the CNDs were exhaustively investigated, confirming that they have oxygen and nitrogen functional groups on their surfaces and exhibit excitation-dependent fluorescence emission, as well as photostability. They act as co-reactant agents in the anodic electrochemiluminescence (ECL) of [Ru(bpy)3]2+, producing different signals for the probe (single-stranded DNA) and the hybridized target (double-stranded DNA). These results paved the way for the development of a sensitive ECL biosensor for the detection of miRNA-21. This was developed by immobilization of a thiolated oligonucleotide, fully complementary to the miRNA-21 sequence, on the disposable gold electrode. The target miRNA-21 was hybridized with the probe on the electrode surface, and the hybridization was detected by the enhancement of the [Ru(bpy)3]2+/DNA ECL signal using CNDs. The biosensor shows a linear response to miRNA-21 concentration up to 100.0 pM with a detection limit of 0.721 fM. The method does not require complex labeling steps, and has a rapid response. It was successfully used to detect miRNA-21 directly in serum samples from heart failure patients without previous RNA extraction neither amplification process.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Substâncias Luminescentes/química , Medições Luminescentes/métodos , MicroRNAs/sangue , Pontos Quânticos/química , Técnicas Biossensoriais/instrumentação , Carbono/química , Complexos de Coordenação/química , Técnicas Eletroquímicas/instrumentação , Eletrodos , Ouro/química , Insuficiência Cardíaca/sangue , Humanos , Ácidos Nucleicos Imobilizados/genética , Limite de Detecção , Medições Luminescentes/instrumentação , Masculino , MicroRNAs/genética , Hibridização de Ácido Nucleico , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/genética , Compostos de Rutênio/química
15.
J Biosci Bioeng ; 132(6): 552-559, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34518106

RESUMO

Various diseases, including cancer, are caused by genetic mutations. A 5'-tailed duplex (TD) DNA, consisting of a long single-stranded (ss) editor DNA and a short (∼35-base) ss assistant oligodeoxyribonucleotide, can introduce a base-substitution in living cells and thus correct mutated genes. Previously, several hundred-base DNAs were employed as the editor DNAs. In this study, 5'-TDs were prepared from various editor DNAs with different lengths and examined for their gene correction abilities, using plasmid DNA bearing a mutated copepod green fluorescent protein (copGFP) gene, in human cells. High-throughput analysis was performed by the reactivated fluorescence of the wild-type protein encoded by the corrected gene as the indicator. The analysis revealed that 5'-TDs with ∼100-base ss editor DNAs enabled gene editing at least as efficiently as those with longer editor DNAs. Moreover, the antisense strand was more effective as the editor than the sense strand, in contrast to the 5'-TDs with longer editor strands. These results indicated that the 5'-TD fragments with shorter editor strands than those used in previous studies are useful nucleic acids for gene correction.


Assuntos
DNA de Cadeia Simples , Oligodesoxirribonucleotídeos , Sequência de Bases , DNA/genética , Humanos , Oligodesoxirribonucleotídeos/genética , Plasmídeos
16.
Int J Mol Sci ; 22(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34575949

RESUMO

Small interfering RNA (siRNA) is the most important tool for the manipulation of mRNA expression and needs protection from intracellular nucleases when delivered into the cell. In this work, we examined the effects of siRNA modification with the phosphoryl guanidine (PG) group, which, as shown earlier, makes oligodeoxynucleotides resistant to snake venom phosphodiesterase. We obtained a set of siRNAs containing combined modifications PG/2'-O-methyl (2'-OMe) or PG/2'-fluoro (2'-F); biophysical and biochemical properties were characterized for each duplex. We used the UV-melting approach to estimate the thermostability of the duplexes and RNAse A degradation assays to determine their stability. The ability to induce silencing was tested in cultured cells stably expressing green fluorescent protein. The introduction of the PG group as a rule decreased the thermodynamic stability of siRNA. At the same time, the siRNAs carrying PG groups showed increased resistance to RNase A. A gene silencing experiment indicated that the PG-modified siRNA retained its activity if the modifications were introduced into the passenger strand.


Assuntos
Oligodesoxirribonucleotídeos/genética , RNA de Cadeia Dupla/antagonistas & inibidores , RNA Interferente Pequeno/genética , Ribonucleases/genética , Guanidina/química , Humanos , Oligodesoxirribonucleotídeos/antagonistas & inibidores , Oligodesoxirribonucleotídeos/farmacologia , Interferência de RNA , RNA de Cadeia Dupla/química , RNA Interferente Pequeno/química , RNA Interferente Pequeno/farmacologia , Ribonuclease Pancreático/química , Ribonuclease Pancreático/genética , Ribonucleases/química , Termodinâmica
17.
Nucleic Acids Res ; 49(17): 10150-10165, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34469538

RESUMO

I-motif or C4 is a four-stranded DNA structure with a protonated cytosine:cytosine base pair (C+:C) found in cytosine-rich sequences. We have found that oligodeoxynucleotides containing adenine and cytosine repeats form a stable secondary structure at a physiological pH with magnesium ion, which is similar to i-motif structure, and have named this structure 'adenine:cytosine-motif (AC-motif)'. AC-motif contains C+:C base pairs intercalated with putative A+:C base pairs between protonated adenine and cytosine. By investigation of the AC-motif present in the CDKL3 promoter (AC-motifCDKL3), one of AC-motifs found in the genome, we confirmed that AC-motifCDKL3 has a key role in regulating CDKL3 gene expression in response to magnesium. This is further supported by confirming that genome-edited mutant cell lines, lacking the AC-motif formation, lost this regulation effect. Our results verify that adenine-cytosine repeats commonly present in the genome can form a stable non-canonical secondary structure with a non-Watson-Crick base pair and have regulatory roles in cells, which expand non-canonical DNA repertoires.


Assuntos
DNA/química , Regulação da Expressão Gênica/genética , Motivos de Nucleotídeos/genética , Regiões Promotoras Genéticas/genética , Proteínas Serina-Treonina Quinases/genética , Adenina/química , Pareamento de Bases/genética , Sequência de Bases/genética , Citosina/química , Quadruplex G , Edição de Genes , Humanos , Magnésio/química , Conformação de Ácido Nucleico , Oligodesoxirribonucleotídeos/genética
18.
ACS Synth Biol ; 10(8): 1808-1820, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34374529

RESUMO

We present Triplex-seq, a deep-sequencing method that systematically maps the interaction space between an oligo library of ssDNA triplex-forming oligos (TFOs) and a particular dsDNA triplex target site (TTS). We demonstrate the method using a randomized oligo library comprising 67 million variants, with five TTSs that differ in guanine (G) content, at two different buffer conditions, denoted pH 5 and pH 7. Our results show that G-rich triplexes form at both pH 5 and pH 7, with the pH 5 set being more stable, indicating that there is a subset of TFOs that form triplexes only at pH 5. In addition, using information analysis, we identify triplex-forming motifs (TFMs), which correspond to minimal functional TFO sequences. We demonstrate, in single-variant verification experiments, that TFOs with these TFMs indeed form a triplex with G-rich TTSs, and that a single mutation in the TFM motif can alleviate binding. Our results show that deep-sequencing platforms can substantially expand our understanding of triplex binding rules and aid in refining the DNA triplex code.


Assuntos
DNA/química , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Oligodesoxirribonucleotídeos/química , DNA/genética , Concentração de Íons de Hidrogênio , Oligodesoxirribonucleotídeos/genética
19.
Curr Opin Allergy Clin Immunol ; 21(6): 569-575, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34387280

RESUMO

PURPOSE OF REVIEW: Molecular forms of allergen-specific immunotherapy (AIT) are continuously emerging to improve the efficacy of the treatment, to shorten the duration of protocols and to prevent any side effects. The present review covers the recent progress in the development of AIT based on nucleic acid encoding allergens or CpG oligodeoxynucleotides (CpG-ODN). RECENT FINDINGS: Therapeutic vaccinations with plasmid deoxyribonucleic acid (DNA) encoding major shrimp Met e 1 or insect For t 2 allergen were effective for the treatment of food or insect bite allergy in respective animal models. DNA expressing hypoallergenic shrimp tropomyosin activated Foxp3+ T regulatory (Treg) cells whereas DNA encoding For t 2 down-regulated the expression of pruritus-inducing IL-31. Co-administrations of major cat allergen Fel d 1 with high doses of CpG-ODN reduced Th2 airway inflammation through tolerance induction mediated by GATA3+ Foxp3hi Treg cells as well as early anti-inflammatory TNF/TNFR2 signaling cascade. Non-canonical CpG-ODN derived from Cryptococcus neoformans as well as methylated CpG sites present in the genomic DNA from Bifidobacterium infantis mediated Th1 or Treg cell differentiation respectively. SUMMARY: Recent studies on plasmid DNA encoding allergens evidenced their therapeutic potential for the treatment of food allergy and atopic dermatitis. Unmethylated or methylated CpG-ODNs were shown to activate dose-dependent Treg/Th1 responses. Large clinical trials need to be conducted to confirm these promising preclinical data. Moreover, tremendous success of messenger ribonucleic acid (mRNA) vaccines against severe acute respiratory syndrome coronavirus 2 must encourage as well the re-exploration of mRNA vaccine platform for innovative AIT.


Assuntos
Dessensibilização Imunológica/métodos , Hipersensibilidade Imediata/terapia , Oligodesoxirribonucleotídeos/administração & dosagem , Vacinas de DNA/administração & dosagem , Vacinas Sintéticas/administração & dosagem , Alérgenos/administração & dosagem , Alérgenos/genética , Alérgenos/imunologia , Animais , Ensaios Clínicos como Assunto , Dessensibilização Imunológica/tendências , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Hipersensibilidade Imediata/imunologia , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/imunologia , Plasmídeos/administração & dosagem , Plasmídeos/genética , Plasmídeos/imunologia , Resultado do Tratamento , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas de mRNA
20.
Cells ; 10(7)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209946

RESUMO

Synonymous codon pair deoptimization is an efficient strategy for virus attenuation; however, the underlying mechanism remains controversial. Here, we optimized and deoptimized the codon pair bias (CPB) of the human immunodeficiency virus type 1 (HIV-1) envelope (env) gene to investigate the influence of env synonymous CPB recoding on virus replication capacity, as well as the potential mechanism. We found that env CPB deoptimization did not always generate attenuation, whereas CPB optimization attenuated virus replication in MT-4 cells. Furthermore, virus attenuation correlated with reduced Env protein production but not with decreased viral RNA synthesis. Remarkably, in our model, increasing the number of CpG dinucleotides in the 5' end of env did not reduce the replication capacity of HIV-1. These results indicate that factors other than CPB or CpG content may have impacted the viral fitness of the synonymously recoded study variants. Our findings provide evidence that CPB recoding-associated attenuation can affect translation efficiency. Moreover, we demonstrated that an increased number of CpGs in the 5' end of HIV-1 env is not always associated with reduced virus replication capacity.


Assuntos
Códon/genética , Genes env , HIV-1/genética , HIV-1/fisiologia , Replicação Viral/genética , Linhagem Celular , Regulação Viral da Expressão Gênica , Humanos , Cinética , Mutação/genética , Oligodesoxirribonucleotídeos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...