Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 14(8)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36006190

RESUMO

Snake venom is an adaptive ecological trait that has evolved primarily as a form of prey subjugation. Thus, the selection pressure for toxin diversification is exerted by the prey's physiological targets, with this pressure being particularly acute for specialist feeders, such as the King Cobra species, all of which are snake-prey specialists. However, while extensive research has been undertaken to elucidate key amino acids that guide toxin structure-activity relationships, reciprocal investigations into the specific sites guiding prey-lineage selective effects have been lacking. This has largely been due to the lack of assay systems amenable to systematic amino acid replacements of targeted proteins in the prey's physiological pathways. To fill this knowledge gap, we used a recently described approach based upon mimotope peptides corresponding to the orthosteric site of nicotinic acetylcholine receptor alpha-1 subunits, a major binding site for snake venom neurotoxins that cause flaccid paralysis. We investigated the venoms of four different types of King Cobra (Cambodian, Javan, Malaysian, and Thai). This approach allowed for the determination of the key amino acid positions in King Cobra snake prey that are selectively bound by the toxins, whereby replacing these amino acids in the snake-prey orthosteric site with those from lizards or rats resulted in a significantly lower level of binding by the venoms, while conversely replacing the lizard or rat amino acids with those from the snake at that position increased the binding. By doing such, we identified three negatively charged amino acids in the snake orthosteric site that are strongly bound by the positively charged neurotoxic three-finger toxins found in King Cobra venom. This study, thus, sheds light on the selection pressures exerted by a specialist prey item for the evolution of lineage-selective toxins.


Assuntos
Colubridae , Lagartos , Receptores Nicotínicos , Toxinas Biológicas , Aminoácidos/metabolismo , Animais , Colubridae/metabolismo , Venenos Elapídicos/metabolismo , Venenos Elapídicos/toxicidade , Elapidae/metabolismo , Lagartos/metabolismo , Ophiophagus hannah/metabolismo , Ratos , Receptores Nicotínicos/metabolismo , Venenos de Serpentes/química , Toxinas Biológicas/metabolismo
2.
Protein J ; 38(5): 565-575, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31278531

RESUMO

The biochemical properties and biological activities of the venom from three individual Ophiophagus hannah (King cobra) specimens was compared. The toxicity against mice, the cytotoxicity against five cell lines, and the antioxidant activity were measured. The KV2 venom showed a higher cytotoxicity than the KV6 and the non-cytotoxic KV9 venoms. Comparative analysis of the O. hannah venom proteins was performed after 2-dimensional (2-D) denaturing gel electrophoresis and reverse phase high performance liquid chromatography (RP-HPLC). 2-D analysis by isoelectric focusing (IEF) Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) resolution of the venoms revealed significant differences between all three venoms, with most spots being unique to that venom. Only 2 out of the 13-16 distinct spots were common to all three venoms, and four spots were common to KV6 and KV9. KV2 had the highest proportion of low molecular mass spots, and KV6 and KV9 appeared more related to each other than to KV9. From peptide mass mapping by matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and MASCOT-based amino acid sequence database searching, the two venom proteins that were common to all three specimens are likely to be ophanin and acidic phospholipase A2 (PLA2), whilst the proteins unique to the cytotoxic KV2 venom, included three other PLA2 proteins. The RP-HPLC pattern of KV2 was different from the other two venoms with a higher protein concentration eluting in the 31-41% (v/v) acetonitrile (ACN) fraction than for the other two venoms.


Assuntos
Venenos Elapídicos/química , Venenos Elapídicos/farmacologia , Ophiophagus hannah , Proteínas de Répteis/química , Proteínas de Répteis/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Venenos Elapídicos/metabolismo , Eletroforese em Gel de Poliacrilamida , Humanos , Ophiophagus hannah/metabolismo , Proteínas de Répteis/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
3.
Protein Sci ; 28(5): 952-963, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30891862

RESUMO

ß-Cardiotoxin is a novel member of the snake venom three-finger toxin (3FTX) family. This is the first exogenous protein to antagonize ß-adrenergic receptors and thereby causing reduction in heart rates (bradycardia) when administered into animals, unlike the conventional cardiotoxins as reported earlier. 3FTXs are stable all ß-sheet peptides with 60-80 amino acid residues. Here, we describe the three-dimensional crystal structure of ß-cardiotoxin together with the identification of a molten globule intermediate in the unfolding pathway of this protein. In spite of the overall structural similarity of this protein with conventional cardiotoxins, there are notable differences observed at the loop region and in the charge distribution on the surface, which are known to be critical for cytolytic activity of cardiotoxins. The molten globule intermediate state present in the thermal unfolding pathway of ß-cardiotoxin was however not observed during the chemical denaturation of the protein. Interestingly, circular dichroism (CD) and NMR studies revealed the presence of α-helical secondary structure in the molten globule intermediate. These results point to substantial conformational plasticity of ß-cardiotoxin, which might aid the protein in responding to the sometimes conflicting demands of structure, stability, and function during its biological lifetime.


Assuntos
Cardiotoxinas/química , Ophiophagus hannah/metabolismo , Venenos de Serpentes/metabolismo , Animais , Dicroísmo Circular , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Desnaturação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Venenos de Serpentes/química
4.
Stem Cell Res Ther ; 8(1): 5, 2017 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28114965

RESUMO

BACKGROUND: Mesenchymal stromal cells (MSCs) and Ophiophagus hannah L-amino acid oxidase (Oh-LAAO) have been reported to exhibit antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA). Published data have indicated that synergistic antibacterial effects could be achieved by co-administration of two or more antimicrobial agents. However, this hypothesis has not been proven in a cell- and protein-based combination. In this study, we investigate if co-administration of adipose-derived MSCs and Oh-LAAO into a mouse model of MRSA-infected wounds would be able to result in a synergistic antibacterial effect. METHODS: MSCs and Oh-LAAO were isolated and characterized by standard methodologies. The effects of the experimental therapies were evaluated in C57/BL6 mice. The animal study groups consisted of full-thickness uninfected and MRSA-infected wound models which received Oh-LAAO, MSCs, or both. Oh-LAAO was administered directly on the wound while MSCs were delivered via intradermal injections. The animals were housed individually with wound measurements taken on days 0, 3, and 7. Histological analyses and bacterial enumeration were performed on wound biopsies to determine the efficacy of each treatment. RESULTS: Immunophenotyping and differentiation assays conducted on isolated MSCs indicated expression of standard cell surface markers and plasticity which corresponds to published data. Characterization of Oh-LAAO by proteomics, enzymatic, and antibacterial assays confirmed the identity, purity, and functionality of the enzyme prior to use in our subsequent studies. Individual treatments with MSCs and Oh-LAAO in the infected model resulted in reduction of MRSA load by one order of magnitude to the approximate range of 6 log10 colony-forming units (CFU) compared to untreated controls (7.3 log10 CFU). Similar wound healing and improvements in histological parameters were observed between the two groups. Co-administration of MSCs and Oh-LAAO reduced bacterial burden by approximately two orders of magnitude to 5.1 log10 CFU. Wound closure measurements and histology analysis of biopsies obtained from the combinational therapy group indicated significant enhancement in the wound healing process compared to all other groups. CONCLUSIONS: We demonstrated that co-administration of MSCs and Oh-LAAO into a mouse model of MRSA-infected wounds exhibited a synergistic antibacterial effect which significantly reduced the bacterial count and accelerated the wound healing process.


Assuntos
L-Aminoácido Oxidase/farmacologia , Transplante de Células-Tronco Mesenquimais , Ophiophagus hannah/metabolismo , Dermatopatias/terapia , Infecções Estafilocócicas/terapia , Tecido Adiposo/citologia , Animais , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Imunofenotipagem , L-Aminoácido Oxidase/isolamento & purificação , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Dermatopatias/microbiologia , Dermatopatias/patologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...