Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 593
Filtrar
1.
Nucleic Acids Res ; 52(D1): D513-D521, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37962356

RESUMO

In this update paper, we present the latest developments in the OMA browser knowledgebase, which aims to provide high-quality orthology inferences and facilitate the study of gene families, genomes and their evolution. First, we discuss the addition of new species in the database, particularly an expanded representation of prokaryotic species. The OMA browser now offers Ancestral Genome pages and an Ancestral Gene Order viewer, allowing users to explore the evolutionary history and gene content of ancestral genomes. We also introduce a revamped Local Synteny Viewer to compare genomic neighborhoods across both extant and ancestral genomes. Hierarchical Orthologous Groups (HOGs) are now annotated with Gene Ontology annotations, and users can easily perform extant or ancestral GO enrichments. Finally, we recap new tools in the OMA Ecosystem, including OMAmer for proteome mapping, OMArk for proteome quality assessment, OMAMO for model organism selection and Read2Tree for phylogenetic species tree construction from reads. These new features provide exciting opportunities for orthology analysis and comparative genomics. OMA is accessible at https://omabrowser.org.


Assuntos
Bases de Dados Genéticas , Ecossistema , Genoma , Proteoma , Genoma/genética , Filogenia , Sintenia , Internet , Ordem dos Genes/genética
2.
Gene ; 808: 145974, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34592348

RESUMO

The mitochondrial genome (mitogenome) has been regarded as significant source of data to better understand the phylogenetic relationships within the Euphasmatodea, but no mitogenome in Aschiphasmatoidea has been sequenced to date. In this study, two mitogenomes of Orthomeria smaragdinum and Nanhuaphasma hamicercum of Aschiphasmatidae were sequenced and annotated for the first time. The same mitochondrial gene rearrangement structure was present in the two mitogenomes sequenced, showing as the translocation of tRNA-Arg and tRNA-Asn, which conformed to the tandem duplication-random loss and could be used as a possible synapomorphy for Aschiphasmatidae. The phylogenetic results based on the maximum likelihood (ML) and bayesian inference (BI) methods both showed that Aschiphasmatidae and Neophasmatodea in Euphasmatodea are sister taxa. Although the monophyly of Oriophasmata, Occidophasmata, Diapheromeridae, Phasmatidae, Lonchodidae and Bacilloidea has not been solved, the monophyly of Neophasmatodea and Phyllioidea was well supported.


Assuntos
Genoma Mitocondrial/genética , Mitocôndrias/genética , Nematoides/genética , Animais , Sequência de Bases/genética , Ordem dos Genes/genética , Rearranjo Gênico/genética , Genômica/métodos , Neópteros/genética , Filogenia
3.
Gene ; 813: 146102, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34933078

RESUMO

Here we report the first mitochondrial genomes (mitogenomes) of four species of gecarcinucid freshwater crabs (FWCs) in two genera, two from China (Somanniathelphusa hainanensis and S. yangshanensis), one from Laos (Esanthelphusa dugasti), and one from Myanmar (Esanthelphusa keyini). A novel gecarcinucid mitochondrial gene order (GMGO2) that was only found in E. dugasti that contains a total of 42 genes, including one pseudogene, two remolded tRNAs and two duplicated tRNAs. The GMGO2 of E. dugasti was compared with the brachyuran ground-pattern mitochondrial gene order (BMGO), revealing the rearrangements of the positions of 10 tRNAs, two PCGs, and one mNCR. The three other gecarcinucids in this study were all found to possess a previously reported gecarcinucid mitochondrial gene order (GMGO1). The phylogenetic tree reconstructed using the secondary structures of 22 tRNAs of the mitogenomes of 41 species of FWCs provides insights into the evolution of the mitogenome of E. dugasti (GMGO2) which includes remolded and duplicated tRNAs.


Assuntos
Braquiúros/genética , Animais , China , Evolução Molecular , Água Doce , Ordem dos Genes/genética , Rearranjo Gênico/genética , Genes Mitocondriais/genética , Genoma Mitocondrial , Laos , Mianmar , Filogenia , RNA Ribossômico/genética , RNA de Transferência/genética
4.
Genes (Basel) ; 12(12)2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34946823

RESUMO

Mayflies of the family Neoephemeridae are widespread in the Holarctic and Oriental regions, and its phylogenetic position is still unstable in the group Furcatergalia (mayflies with fringed gills). In the present study, we determined the complete mitogenomes of two species, namely Potamanthellus edmundsi and Pulchephemera projecta, of this family. The lengths of two mitogenomes were 15,274 bp and 16,031 bp with an A + T content of 73.38% and 73.07%, respectively. Two neoephemerid mitogenomes had a similar gene size, base composition, and codon usage of protein-coding genes (PCGs), and the sequenced gene arrangements were consistent with the putative ancestral insect mitogenomes as understood today. The most variable gene of Furcatergalia mitogenomes was ND2, while the most conserved gene was COI. Meanwhile, the analysis of selection pressures showed that ND6 and ATP8 exhibited a relaxed purifying selection, and COI was under the strongest purifying selection. Phylogenetic trees reconstructed based on two concatenated nucleotide datasets using both maximum likelihood (ML) and Bayesian inference (BI) estimations yielded robust identical topologies. These results corroborated the monophyly of seven studied families and supported the family Leptophlebiidae as being of the basal lineage of Furcatergalia. Additionally, the sister-group relationship of Caenidae and Neoephemeridae was well supported. Methodologically, our present study provides a general reference for future phylogenetic studies of Ephemeroptera at the mitogenome level.


Assuntos
Ephemeroptera/genética , Genoma Mitocondrial/genética , Animais , Composição de Bases/genética , Teorema de Bayes , Evolução Molecular , Ordem dos Genes/genética , Nucleotídeos/genética , Filogenia , RNA Ribossômico/genética
5.
Vet Parasitol ; 296: 109476, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34089993

RESUMO

Capillariid nematode is a group of endoparasites of vertebrates with a complex taxonomy, causing significant economic losses to poultry industry. The taxonomic status of the genus Eucoleus remained controversial for several decades. Mitochondrial (mt) DNA provides useful genetic markers for accurate identification of species, but complete mt genome sequences have been lacking for any Capillariid nematodes. In the present study, we decoded the complete mt genome of E. annulatus and examined its phylogenetic relationship with selected members of the class Enoplea nematodes. The circular mt genome of E. annulatus was 14,118 bp, encoded 37 genes with a single non-coding region and showed substantial gene rearrangements (especially tRNA genes) compared to other nematodes studied to date. The complete mt genome of E. annulatus showed a clear A + T bias in nucleotide composition. The number of A (5404) was approximately equal to T (5405) and the GC-skew was negative on average (-0.073). Phylogenetic analyses based on 18S rDNA placed Eucoleus spp. well apart from each other and supported the proposal that Eucoleus and Capillaria are two distinct genera. Similarly, Bayesian inference (BI) and Maximum likelihood (ML) phylogenies based on mtDNA sequences revealed that the family Capillariidae is more closely related to the family Trichuridae than to the family Trichinellidae. This is the first report of the complete mt genome of capillariid nematodes, and it will provide additional genetic markers for studying the molecular epidemiology, population genetics and systematics of capillariid nematodes and should have implications for the molecular diagnosis, prevention, and control of capillariosis in animals.


Assuntos
Ordem dos Genes , Genoma Mitocondrial , Nematoides , Filogenia , Animais , Teorema de Bayes , Ordem dos Genes/genética , Genoma Mitocondrial/genética , Nematoides/classificação , Nematoides/genética , Análise de Sequência de DNA/veterinária
6.
Gene ; 791: 145719, 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-33991648

RESUMO

The evolution of the Hexapoda mitochondrial genome has been the focus of several genetic and evolutionary studies over the last decades. However, they have concentrated on certain taxonomic orders of economic or health importance. The recent increase of mitochondrial genomes sequencing of diverse taxonomic orders generates an important opportunity to clarify the evolution of this group of organisms. However, there is no comparative study that investigates the evolution of the Hexapoda mitochondrial genome. In order to verify the level of rearrangement and the mitochondrial genome evolution, we performed a comparative genomic analysis of the Hexapoda mitochondrial genome available in the NCBI database. Using a combination of bioinformatics methods to carefully examine the mitochondrial gene rearrangements in 1198 Hexapoda species belonging to 32 taxonomic orders, we determined that there is a great variation in the rate of rearrangement by gene and by taxonomic order. A higher rate of genetic reassortment is observed in Phthiraptera, Thysanoptera, Protura, and Hymenoptera; compared to other taxonomic orders. Twenty-four events of convergence in the genetic order between different taxonomic orders were determined, most of them not previously reported; which proves the great evolutionary dynamics within Hexapoda.


Assuntos
Genes Mitocondriais/genética , Genoma Mitocondrial/genética , Insetos/genética , Animais , Bases de Dados Genéticas , Evolução Molecular , Ordem dos Genes/genética , Rearranjo Gênico/genética , Insetos/classificação , Mitocôndrias/classificação , Mitocôndrias/genética , Filogenia , Análise de Sequência de DNA/métodos
7.
Int J Biol Macromol ; 183: 1079-1086, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-33984380

RESUMO

Generally, a teleostean group possesses only one type or a set of similar mitochondrial gene arrangements. However, a new type of gene arrangement has been identified in the mitochondrial genomes (mitogenomes) of Moenkhausia. Here, three newly sequenced complete mitogenomes of tetras (Characidae: Moenkhausia) are presented (M. costae, M. pittieri, and M. sanctaefilomenae). The three mitogenomes had a classical circular structure, with total lengths ranging from 15,811 to 18,435 bp. Base composition analysis indicated that the sequences were biased toward adenine (A) and thymine (T), with A + T content of 54.63% in M. costae, 58.47% in M. pittieri, and 59.98% in M. sanctaefilomenae. The gene order and organization of M. sanctaefilomenae differed from those of typical teleostean mitogenomes. The genes tRNA-Ile, tRNA-Gln, and tRNA-Pro were translocated between tRNA-Trp and tRNA-Asn. One extra tRNA-Met and an extra CR were also discovered in the mitogenome. BI and ML analyses based on sequences of 38 different mitogenomes showed that M. costae and M. pittieri were classified together, and M. sanctaefilomenae was slightly further from other fish of the same genus. These results provide insight into the gene arrangement features of Characidae mitogenomes and lay the foundation for further phylogenetic studies on Characidae.


Assuntos
Characidae/genética , Genoma Mitocondrial/genética , Animais , Ordem dos Genes/genética , Rearranjo Gênico/genética , RNA de Transferência/genética
8.
Gene ; 789: 145667, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33882322

RESUMO

To date, a relatively complete classification of Sphingidae (Lepidoptera) has been generated, but the phylogeny of the family remains need to be fully resolved. Some phylogenetic relationships within Sphingidae still remains uncertain, especially the taxonomic status of the subfamily Langiinae and its sole included genus and species, Langia zenzeroides. To begin to address this problem, we generated nine new complete mitochondrial genomes, including that of Langia, and together with that of Theretra oldenlandiae from our previous study and 25 other Sphingidae mitogenomes downloaded from GenBank, analyzed the phylogenetic relationships of Sphingidae and investigated the mitogenomic differences among members of the Langiinae, Sphinginae, Smerinthinae and Macroglossinae. The mitogenomes of Sphingidae varied from 14995 bp to 15669 bp in length. The gene order of all newly sequenced mitogenomes was identical, containing 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes and the A + T-rich region. Nucleotide composition was A + T biased, and all the protein-coding genes exhibited a positive AT-skew, which was reflected in the nucleotide composition, codon, and amino acid usage. The A + T-rich region was comprised of nonrepetitive sequences, which contained regulatory elements related to the control of replication and transcription. We analyzed concatenated gene sequences, with third codon positions of protein coding genes and rRNAs excluded, using Maximum Likelihood and Bayesian Inference techniques. All four currently recognized subfamilies were recovered as monophyletic but in contrast to the most recent studies, our preferred tree placed Langiinae as the first subfamily to diverge within Sphingidae rather as sister to Smerinthinae + Sphinginae. Our results also support the removal of the genus Barbourion from the smerinthine tribe Ambulycini to an unresolved position in "Smerinthinae incertae sedis".


Assuntos
Lepidópteros/genética , Mitógenos/genética , Animais , Composição de Bases/genética , Teorema de Bayes , Ordem dos Genes/genética , Genoma Mitocondrial/genética , Filogenia , RNA Ribossômico/genética , RNA de Transferência/genética , Transcrição Gênica/genética
9.
PLoS One ; 16(4): e0241098, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33836001

RESUMO

Psittacula cyanocephala is an endemic parakeet from the Indian sub-continent that is widespread in the illegal bird trade. Previous studies on Psittacula parakeets have highlighted taxonomic ambiguities, warranting studies to resolve the issues. Since the mitochondrial genome provides useful information concerning the species evolution and phylogenetics, we sequenced the complete mitogenome of P. cyanocephala using NGS, validated 38.86% of the mitogenome using Sanger Sequencing and compared it with other available whole mitogenomes of Psittacula. The complete mitogenome of the species was 16814 bp in length with 54.08% AT composition. P. cyanocephala mitogenome comprises of 13 protein-coding genes, 2 rRNAs and 22 tRNAs. P. cyanocephala mitogenome organization was consistent with other Psittacula mitogenomes. Comparative codon usage analysis indicated the role of natural selection on Psittacula mitogenomes. Strong purifying selection pressure was observed maximum on nad1 and nad4l genes. The mitochondrial control region of all Psittacula species displayed the ancestral avian CR gene order. Phylogenetic analyses revealed the Psittacula genus as paraphyletic nature, containing at least 4 groups of species within the same genus, suggesting its taxonomic reconsideration. Our results provide useful information for developing forensic tests to control the illegal trade of the species and scientific basis for phylogenetic revision of the genus Psittacula.


Assuntos
Genoma Mitocondrial/genética , Mitocôndrias/genética , Mitógenos/genética , Psittacula/genética , Animais , Uso do Códon/genética , Ordem dos Genes/genética , Filogenia , RNA Ribossômico/genética , RNA de Transferência/genética , Seleção Genética/genética
10.
Sci Rep ; 11(1): 988, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441833

RESUMO

Ligusticum L., one of the largest members in Apiaceae, encompasses medicinally important plants, the taxonomic statuses of which have been proved to be difficult to resolve. In the current study, the complete chloroplast genomes of seven crucial plants of the best-known herbs in Ligusticum were presented. The seven genomes ranged from 148,275 to 148,564 bp in length with a highly conserved gene content, gene order and genomic arrangement. A shared dramatic decrease in genome size resulted from a lineage-specific inverted repeat (IR) contraction, which could potentially be a promising diagnostic character for taxonomic investigation of Ligusticum, was discovered, without affecting the synonymous rate. Although a higher variability was uncovered in hotspot divergence regions that were unevenly distributed across the chloroplast genome, a concatenated strategy for rapid species identification was proposed because separate fragments inadequately provided variation for fine resolution. Phylogenetic inference using plastid genome-scale data produced a concordant topology receiving a robust support value, which revealed that L. chuanxiong had a closer relationship with L. jeholense than L. sinense, and L. sinense cv. Fuxiong had a closer relationship to L. sinense than L. chuanxiong, for the first time. Our results not only furnish concrete evidence for clarifying Ligusticum taxonomy but also provide a solid foundation for further pharmaphylogenetic investigation.


Assuntos
Genomas de Plastídeos/genética , Ligusticum/genética , Cloroplastos/genética , Evolução Molecular , Ordem dos Genes/genética , Tamanho do Genoma/genética , Genoma de Cloroplastos/genética , Genômica/métodos , Sequências Repetidas Invertidas/genética , Filogenia
11.
Int J Biol Macromol ; 170: 717-727, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33412200

RESUMO

Brachyura is one of the most species rich and highly derived groups among extant crustaceans, with over 7250 known species. However, brachyuran phylogeny remains controversial and requires further study. Here, we combined 103 brachyuran mitogenomes from GenBank with 10 new mitogenomes to describe gene rearrangement patterns and explore the internal phylogenetic relationships of Brachyura. Most of the 10 novel mitogenomes had the typical 37 genes, except that of Longpotamon depressum, which lacked trnQ. We discovered 15 gene rearrangement patterns among Brachyura and preliminarily determined their rearrangement mechanisms with the help of CREx. We identified seven putative ancestral family gene orders among the 15 rearrangement patterns and expounded systematically upon the mechanisms of their rearrangement. In our phylogenetic analysis, Raninoida shared a sister relationship with an eubrachyuran clade ((Heterotremata [Potamoidea] + Thoracotremata) + Heterotremata) at maximum nodal support rather than Dromiacea, which did not support monophyly of Podotremata. In addition, Potamoidea (Parathelphusidae + Potamidae) retained a close relationship with Thoracotremata rather than their marine relatives in Heterotremata. Our study provides important information for the evolution of Brachyura by using the large taxon sampling currently available for systematic rearrangement and phylogenetic analyses.


Assuntos
Braquiúros/genética , Ordem dos Genes/genética , Rearranjo Gênico/genética , Genes Mitocondriais/genética , Mitocôndrias/genética , Animais , Genoma Mitocondrial/genética , Filogenia
12.
IEEE/ACM Trans Comput Biol Bioinform ; 18(6): 2177-2188, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-31095495

RESUMO

Gene order evolution of unichromosomal genomes, for example mitochondrial genomes, has been modelled mostly by four major types of genome rearrangements: inversions, transpositions, inverse transpositions, and tandem duplication random losses. Generalizing models that include all those rearrangements while admitting computational tractability are rare. In this paper, we study such a rearrangement model, namely the inverse tandem duplication random loss (iTDRL) model, where an iTDRL duplicates and inverts a continuous segment of a gene order followed by the random loss of one of the redundant copies of each gene. The iTDRL rearrangement has currently been proposed by several authors suggesting it to be a possible mechanisms of mitochondrial gene order evolution. We initiate the algorithmic study of this new model of genome rearrangement by proving that a shortest rearrangement scenario that transforms one given gene order into another given gene order can be obtained in quasilinear time. Furthermore, we show that the length of such a scenario, i.e., the minimum number of iTDRLs in the transformation, can be computed in linear time.


Assuntos
Duplicação Gênica/genética , Rearranjo Gênico/genética , Modelos Genéticos , Algoritmos , Evolução Molecular , Ordem dos Genes/genética , Genoma Mitocondrial/genética , Genômica
13.
Nucleic Acids Res ; 49(D1): D373-D379, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33174605

RESUMO

OMA is an established resource to elucidate evolutionary relationships among genes from currently 2326 genomes covering all domains of life. OMA provides pairwise and groupwise orthologs, functional annotations, local and global gene order conservation (synteny) information, among many other functions. This update paper describes the reorganisation of the database into gene-, group- and genome-centric pages. Other new and improved features are detailed, such as reporting of the evolutionarily best conserved isoforms of alternatively spliced genes, the inferred local order of ancestral genes, phylogenetic profiling, better cross-references, fast genome mapping, semantic data sharing via RDF, as well as a special coronavirus OMA with 119 viruses from the Nidovirales order, including SARS-CoV-2, the agent of the COVID-19 pandemic. We conclude with improvements to the documentation of the resource through primers, tutorials and short videos. OMA is accessible at https://omabrowser.org.


Assuntos
Algoritmos , Bases de Dados Genéticas , Ordem dos Genes/genética , Genoma/genética , Animais , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/virologia , Mapeamento Cromossômico , Evolução Molecular , Ontologia Genética , Humanos , Internet , Pandemias , Filogenia , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Especificidade da Espécie , Sintenia
14.
Sci Rep ; 10(1): 16500, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33020532

RESUMO

Taiwanofungus camphoratus is a highly valued medicinal mushroom that is endemic to Taiwan, China. In the present study, the mitogenome of T. camphoratus was assembled and compared with other published Polyporales mitogenomes. The T. camphoratus mitogenome was composed of circular DNA molecules, with a total size of 114,922 bp. Genome collinearity analysis revealed large-scale gene rearrangements between the mitogenomes of Polyporales, and T. camphoratus contained a unique gene order. The number and classes of introns were highly variable in 12 Polyporales species we examined, which proved that numerous intron loss or gain events occurred in the evolution of Polyporales. The Ka/Ks values for most core protein coding genes in Polyporales species were less than 1, indicating that these genes were subject to purifying selection. However, the rps3 gene was found under positive or relaxed selection between some Polyporales species. Phylogenetic analysis based on the combined mitochondrial gene set obtained a well-supported topology, and T. camphoratus was identified as a sister species to Laetiporus sulphureus. This study served as the first report on the mitogenome in the Taiwanofungus genus, which will provide a basis for understanding the phylogeny and evolution of this important fungus.


Assuntos
Rearranjo Gênico/genética , Genoma Mitocondrial/genética , Íntrons/genética , Polyporales/genética , Agaricales/genética , Evolução Molecular , Ordem dos Genes/genética , Genes Mitocondriais/genética , Filogenia , Taiwan
15.
Int J Biol Macromol ; 165(Pt B): 3106-3114, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33098898

RESUMO

The mayfly family Ephemerellidae (Insecta: Ephemeroptera) is distributed around the world and has very high species diversity. However, its evolution pattern of mitogenome and phylogenetic relationships within Ephemeroptera remain unclear. In this study, the complete mitochondrial genomes (mitogenomes) of Torleya mikhaili (15,042 bp) and Cincticostella fusca (15,135 bp) were firstly determined and analyzed. Two ephemerellid mitogenomes shared similar gene organization with 37 typical genes as well as a putative control region. Compared with other reported mitogenomes of mayflies, the unique gene order (I'-CR-Q-M) was found in these two mitogenomes. Although the observed rearrangement pattern is novel within ephemeropteran mitogenomes, it could be explained presumably by the mechanisms of tandem duplication-random loss and recombination. The phylogenetic analyses using both Bayesian inference (BI) and maximum likelihood (ML) methods based on four nucleotide datasets placed three ephemerellid species together. Furthermore, the phylogenetic relationships of the three genera were recovered as ((Ephemerella + Cincticostella) + Torleya).


Assuntos
DNA Mitocondrial/genética , Ephemeroptera/genética , Rearranjo Gênico/genética , Genoma Mitocondrial/genética , Animais , Teorema de Bayes , Ordem dos Genes/genética , Filogenia
16.
Biomed Res Int ; 2020: 3536761, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123569

RESUMO

Schisandra chinensis, which has a high development value, has long been used as medicine. Its mature fruits (called Wuweizi in Chinese) have long been used in the famous traditional Chinese medicine (TCM) recorded in the "Chinese Pharmacopoeia." Chloroplasts (CP) are the highly conserved primitive organelles in plants, which can serve as the foundation for plant classification and identification. This study introduced the structures of the CP genomes of three Schisandraceae species and analyzed their phylogenetic relationships. Comparative analyses on the three complete chloroplast genomes can provide us with useful knowledge to identify the three plants. In this study, approximately 5 g fresh leaves were harvested for chloroplast DNA isolation according to the improved extraction method. A total of three chloroplast DNAs were extracted. Afterwards, the chloroplast genomes were reconstructed using denovo combined with reference-guided assemblies. General characteristics of the chloroplast genome and genome comparison with three Schisandraceae species was analyzed by corresponding software. The total sizes of complete chloroplast genomes of S. chinensis, S. sphenanthera, and Kadsura coccinea were 146875 bp, 146842 bp, and 145399 bp, respectively. Altogether, 124 genes were annotated, including 82 protein-coding genes, 34 tRNAs, and 8 rRNAs of all 3 species. In SSR analysis, only S. chinensis was annotated to hexanucleotides. Moreover, comparative analysis of chloroplast Schisandraceae genome sequences revealed that the gene order and gene content were slightly different among Schisandraceae species. Finally, phylogenetic trees were reconstructed, based on the genome-wide SNPs of 38 species. The method can be used to identify and differentially analyze Schisandraceae plants and offer useful information for phylogenetics as well as further studies on traditional medicinal plants.


Assuntos
Cloroplastos/genética , Genoma de Cloroplastos/genética , Plantas Medicinais/genética , Schisandraceae/genética , DNA de Cloroplastos/genética , Ordem dos Genes/genética , Genômica/métodos , Filogenia , Polimorfismo de Nucleotídeo Único/genética
17.
Plant Cell Environ ; 43(11): 2699-2711, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32816352

RESUMO

Abscisic acid (ABA) signaling is a vital plant signaling pathway for plant responses to stress conditions. ABA treatment can alter global gene expression patterns and cause significant phenotypic changes. We investigated the responses to ABA treatment during flowering in Arabidopsis thaliana. Dipping the flowers of CARK3 T-DNA mutants in ABA solution, led to less reduction of pollen fertility than in the wild type plants (Col-0). We demonstrated that PMEIL, a gene located downstream of CARK3, directly affects pollen fertility. Due to the close arrangement of CARK3 and PMEIL, CARK3 expression represses transcription of PMEIL in an ABA-dependent manner through transcriptional interference. Our study uncovers a molecular mechanism underlying ABA-mediated pollen sterility and provides an example of how transcriptional interference caused by close arrangement of genes may mediate stress responses during plant reproduction.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Reguladores de Crescimento de Plantas/fisiologia , Infertilidade das Plantas/genética , Pólen/genética , Proteínas Serina-Treonina Quinases/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/fisiologia , Ordem dos Genes/genética , Ordem dos Genes/fisiologia , Germinação , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Infertilidade das Plantas/fisiologia , Pólen/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia
18.
FEBS Lett ; 594(11): 1661-1674, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32233038

RESUMO

A database of cyanobacterial linked genomes that can be accessed through an interactive platform (https://dfgm.ua.es/genetica/investigacion/cyanobacterial_genetics/Resources.html) was generated on the bases of conservation of gene neighborhood across 124 cyanobacterial species. It allows flexible generation of gene networks at different threshold values. The default cyanobacterial linked genome, whose global properties are analyzed here, connects most of the cyanobacterial core genes. The potential of the web tool is discussed in relation to other bioinformatics approaches based on guilty-by-association principles, with selected examples of networks illustrating its usefulness for genes found exclusively in cyanobacteria or in cyanobacteria and chloroplasts. We believe that this tool will provide useful predictions that are readily testable in Synechococcus elongatus PCC7942 and other model organisms performing oxygenic photosynthesis.


Assuntos
Genoma Bacteriano/genética , Genômica/métodos , Synechococcus/genética , Cloroplastos/metabolismo , Ordem dos Genes/genética , Genes Bacterianos/genética , Óperon/genética , Oxigênio/metabolismo , Fotossíntese , Software , Synechococcus/metabolismo , Sintenia
19.
PLoS Genet ; 16(3): e1008615, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32130223

RESUMO

The relative linear order of most genes on bacterial chromosomes is not conserved over evolutionary timescales. One explanation is that selection is weak, allowing recombination to randomize gene order by genetic drift. However, most chromosomal rearrangements are deleterious to fitness. In contrast, we propose the hypothesis that rearrangements in gene order are more likely the result of selection during niche adaptation (SNAP). Partial chromosomal duplications occur very frequently by recombination between direct repeat sequences. Duplicated regions may contain tens to hundreds of genes and segregate quickly unless maintained by selection. Bacteria exposed to non-lethal selections (for example, a requirement to grow on a poor nutrient) can adapt by maintaining a duplication that includes a gene that improves relative fitness. Further improvements in fitness result from the loss or inactivation of non-selected genes within each copy of the duplication. When genes that are essential in single copy are lost from different copies of the duplication, segregation is prevented even if the original selection is lifted. Functional gene loss continues until a new genetic equilibrium is reached. The outcome is a rearranged gene order. Mathematical modelling shows that this process of positive selection to adapt to a new niche can rapidly drive rearrangements in gene order to fixation. Signature features (duplication formation and divergence) of the SNAP model were identified in natural isolates from multiple species showing that the initial two steps in the SNAP process can occur with a remarkably high frequency. Further bioinformatic and experimental analyses are required to test if and to which extend the SNAP process acts on bacterial genomes.


Assuntos
Aclimatação/genética , Cromossomos Bacterianos/genética , Duplicação Gênica/genética , Rearranjo Gênico/genética , Seleção Genética/genética , Aberrações Cromossômicas , Evolução Molecular , Frequência do Gene/genética , Ordem dos Genes/genética , Genoma Bacteriano/genética , Modelos Teóricos , Filogenia
20.
Sci Rep ; 9(1): 19537, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31863070

RESUMO

Genes with similar roles in the cell cluster on chromosomes, thus benefiting from coordinated regulation. This allows gene function to be inferred by transferring annotations from genomic neighbors, following the guilt-by-association principle. We performed a systematic search for co-occurrence of >1000 gene functions in genomic neighborhoods across 1669 prokaryotic, 49 fungal and 80 metazoan genomes, revealing prevalent patterns that cannot be explained by clustering of functionally similar genes. It is a very common occurrence that pairs of dissimilar gene functions - corresponding to semantically distant Gene Ontology terms - are significantly co-located on chromosomes. These neighborhood associations are often as conserved across genomes as the known associations between similar functions, suggesting selective benefits from clustering of certain diverse functions, which may conceivably play complementary roles in the cell. We propose a simple encoding of chromosomal gene order, the neighborhood function profiles (NFP), which draws on diverse gene clustering patterns to predict gene function and phenotype. NFPs yield a 26-46% increase in predictive power over state-of-the-art approaches that propagate function across neighborhoods, thus providing hundreds of novel, high-confidence gene function inferences per genome. Furthermore, we demonstrate that copy number-neutral structural variation that shapes gene function distribution across chromosomes can predict phenotype of individuals from their genome sequence.


Assuntos
Família Multigênica/genética , Mapeamento Cromossômico , Ontologia Genética , Ordem dos Genes/genética , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...