RESUMO
The gene ODC1, which codes for the ornithine decarboxylase enzyme, was isolated from the entomopathogenic fungus, Metarhizium anisopliae. The deduced amino acid sequence predicted a protein of 447 amino acids with a molecular weight of 49.3 kDa that contained the canonical motifs of ornithine decarboxylases. The ODC1 cDNA sequence was expressed in Escherichia coli cells; radiometric enzyme assays showed that the purified recombinant protein had ornithine decarboxylase activity. The optimum pH of the purified Odc1 protein was 8.0-8.5, and the optimum reaction temperature was 37°C. The apparent K(m) for ornithine at a pyridoxal phosphate concentration of 20mM was 22 µM. The competitive inhibitor of ODC activity, 1,4-diamino-2-butanone (DAB), at 0.25 mM inhibited 95% of ODC activity. The ODC1 mRNA showed an increase at the beginning of appressorium formation in vitro. During the M. anisopliae invasion process into Plutella xylostella larvae, the ODC1 mRNA showed a discrete increase within the germinating spore and during appressorium formation. The second expression peak was higher and prolonged during the invasion and death of the insect. The ODC1 gene complements the polyamine auxotrophy of Yarrowia lipolytica odc null mutant.
Assuntos
Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Expressão Gênica , Metarhizium/enzimologia , Mariposas/microbiologia , Ornitina Descarboxilase/química , Ornitina Descarboxilase/isolamento & purificação , Sequência de Aminoácidos , Animais , Sequência de Bases , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Cinética , Metarhizium/química , Metarhizium/genética , Dados de Sequência Molecular , Ornitina Descarboxilase/genética , Ornitina Descarboxilase/metabolismoRESUMO
Ornithine decarboxylase, a rate-limiting enzyme in polyamine biosynthesis in eukaryotes, was stabilized and purified from trophozoites of the parasite protozoan E. histolytica. Analytical electrophoresis revealed the presence in the purified preparations of a major polypeptide of 45 kDa and barely detectable amounts of two other proteins of 70 and 120 kDa. Both the 45 and 70 kDa polypeptides were recognized by a mouse anti-ODC monoclonal antibody. The major polypeptide exhibited amino terminal sequence homology in the range of 40-73% with ODCs from other organisms. The immunoreactive polypeptide of 70 kDa was not identified. The molecular masses of 216 and 45 kDa determined for the native enzyme by gel filtration and for the major polypeptide by SDS-PAGE, respectively, suggest that the amoeba ODC is a homopentamer. Dialysis against hydroxylamine rendered the enzyme activity fully dependent on pyridoxal 5'-phosphate (PLP). As expected for an oligomeric enzyme, ODC activity exhibited sigmoidal kinetics when it was measured as a function of increasing concentrations of L-ornithine and PLP yielding S(0.5) values of 0.45 and 0.18 mM, respectively. Purified ODC was inhibited by 1,3-diaminopropane and 2,4-diamino-2-butanone but was largely insensitive to inhibition by alpha-difluoromethylornithine (DFMO), indicating that the enzyme may not be a suitable target for this anti-parasitic drug. Other features of the amoeba ODC were common with the enzyme from prokaryotes and eucaryotes.