Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Mol Immunol ; 170: 131-143, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663254

RESUMO

Mammalian reovirus (MRV) is a non-enveloped, gene segmented double-stranded RNA (dsRNA) virus. It is an important zoonotic pathogen that infects many mammals and vertebrates that act as natural hosts and causes respiratory and digestive tract diseases. Studies have reported that RIG-I and MDA5 in the innate immune cytoplasmic RNA-sensing RIG-like receptor (RLR) signaling pathway can recognize dsRNA from MRV and promote antiviral type I interferon (IFN) responses. However, the mechanism by which many MRV-encoded proteins evade the host innate immune response remains unclear. Here, we show that exogenous µ1 protein promoted the proliferation of MRV in vitro, while knockdown of MRV µ1 protein expression by shRNA could impair MRV proliferation. Specifically, µ1 protein inhibited MRV or poly(I:C)-induced IFN-ß expression, and attenuated RIG-I/MDA5-mediated signaling axis transduction during MRV infection. Importantly, we found that µ1 protein significantly decreased IFN-ß mRNA expression induced by MDA5, RIG-I, MAVS, TBK1, IRF3(5D), and degraded the protein expression of exogenous MDA5, RIG-I, MAVS, TBK1 and IRF3 via the proteasomal and lysosomal pathways. Additionally, we show that µ1 protein can physically interact with MDA5, RIG-I, MAVS, TBK1, and IRF3 and attenuate the RIG-I/MDA5-mediated signaling cascades by blocking the phosphorylation and nuclear translocation of IRF3. In conclusion, our findings reveal that MRV outer capsid protein µ1 is a key factor in antagonizing RLRs signaling cascades and provide new strategies for effective prevention and treatment of MRV infection.


Assuntos
Proteína DEAD-box 58 , Fator Regulador 3 de Interferon , Helicase IFIH1 Induzida por Interferon , Orthoreovirus de Mamíferos , Receptores Imunológicos , Transdução de Sinais , Helicase IFIH1 Induzida por Interferon/metabolismo , Helicase IFIH1 Induzida por Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Proteína DEAD-box 58/metabolismo , Transdução de Sinais/imunologia , Humanos , Fosforilação , Orthoreovirus de Mamíferos/imunologia , Orthoreovirus de Mamíferos/fisiologia , Células HEK293 , Interferon beta/metabolismo , Interferon beta/imunologia , Animais , Núcleo Celular/metabolismo , Infecções por Reoviridae/imunologia , Proteínas Virais/metabolismo , Transporte Ativo do Núcleo Celular , Imunidade Inata/imunologia , Proteínas Serina-Treonina Quinases
2.
Nat Commun ; 14(1): 2615, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147336

RESUMO

Mammalian orthoreovirus (reovirus) infects most mammals and is associated with celiac disease in humans. In mice, reovirus infects the intestine and disseminates systemically to cause serotype-specific patterns of disease in the brain. To identify receptors conferring reovirus serotype-dependent neuropathogenesis, we conducted a genome-wide CRISPRa screen and identified paired immunoglobulin-like receptor B (PirB) as a receptor candidate. Ectopic expression of PirB allowed reovirus binding and infection. PirB extracelluar D3D4 region is required for reovirus attachment and infectivity. Reovirus binds to PirB with nM affinity as determined by single molecule force spectroscopy. Efficient reovirus endocytosis requires PirB signaling motifs. In inoculated mice, PirB is required for maximal replication in the brain and full neuropathogenicity of neurotropic serotype 3 (T3) reovirus. In primary cortical neurons, PirB expression contributes to T3 reovirus infectivity. Thus, PirB is an entry receptor for reovirus and contributes to T3 reovirus replication and pathogenesis in the murine brain.


Assuntos
Orthoreovirus de Mamíferos , Receptores Imunológicos , Receptores Virais , Infecções por Reoviridae , Animais , Humanos , Camundongos , Anticorpos Antivirais , Orthoreovirus de Mamíferos/fisiologia , Receptores Imunológicos/metabolismo , Infecções por Reoviridae/metabolismo , Receptores Virais/metabolismo
3.
J Virol ; 97(5): e0058523, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37167564

RESUMO

Structural metastability of viral capsids is pivotal for viruses to survive in harsh environments and to undergo timely conformational changes required for cell entry. Mammalian orthoreovirus (reovirus) is a model to study capsid metastability. Following initial disassembly of the reovirus particle mediated by proteases, a metastable intermediate called the infectious subvirion particle (ISVP) is generated. Using a σ1 monoreassortant virus, we recently showed that σ1 properties affect its encapsidation on particles and the metastability of ISVPs. How metastability is impacted by σ1 and whether the lower encapsidation level of σ1 is connected to this property is unknown. To define a correlation between encapsidation of σ1 and ISVP stability, we generated mutant viruses with single amino acid polymorphisms in σ1 or those that contain chimeric σ1 molecules composed of σ1 portions from type 1 and type 3 reovirus strains. We found that under most conditions where σ1 encapsidation on the particle was lower, ISVPs displayed lower stability. Characterization of mutant viruses selected for enhanced stability via a forward genetic approach also revealed that in some cases, σ1 properties influence stability without influencing σ1 encapsidation. These data indicate that σ1 can also influence ISVP stability independent of its level of incorporation. Together, our work reveals an underappreciated effect of the σ1 attachment protein on the properties of the reovirus capsid. IMPORTANCE Reovirus particles are comprised of eight proteins. Among them, the reovirus σ1 protein functions engages cellular receptors. σ1 also influences the stability of an entry intermediate called ISVP. Here, we sought to define the basis of the link between σ1 properties and stability of ISVPs. Using variety of mutant strains, we determined that when virus preparations contain particles with a high amount of encapsidated σ1, ISVP stability is higher. Additionally, we identified portions of σ1 that impact its encapsidation and consequently the stability of ISVPs. We also determined that in some cases, σ1 properties alter stability of ISVPs without affecting encapsidation. This work highlights that proteins of these complex particles are arranged in an intricate, interconnected manner such that changing the properties of these proteins has a profound impact on the remainder of the particle.


Assuntos
Orthoreovirus Mamífero 3 , Orthoreovirus de Mamíferos , Internalização do Vírus , Capsídeo/metabolismo , Linhagem Celular , Orthoreovirus de Mamíferos/fisiologia , Orthoreovirus Mamífero 3/fisiologia
4.
Virology ; 558: 38-48, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33721728

RESUMO

Mammalian orthoreovirus (MRV) is a safe and effective cancer killing virus that has completed Phase I-III clinical trials against numerous cancer types. While many patients experience benefit from MRV therapy, pre-defined set points necessary for FDA approval have not been reached. Therefore, additional research into MRV biology and the effect of viral therapy on different tumor genetic subtypes and microenvironments is necessary to identify tumors most amenable to MRV virotherapy. In this work we analyzed the stage of viral infection necessary to inhibit HIF-1α, an aggressive cancer activator induced by hypoxia. We demonstrated that two viral capsid proteins were not necessary and that a step parallel with virus core movement across the endosomal membrane was required for this inhibition. Altogether, this work clarifies the mechanisms of MRV-induced HIF-1α inhibition and provides biological relevance for using MRV to inhibit the devastating effects of tumor hypoxia.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Terapia Viral Oncolítica , Orthoreovirus de Mamíferos/fisiologia , Neoplasias da Próstata , Microambiente Tumoral/fisiologia , Linhagem Celular Tumoral , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/análise , Masculino , Hipóxia Tumoral
5.
Viruses ; 13(2)2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670092

RESUMO

De novo viral protein synthesis following entry into host cells is essential for viral replication. As a consequence, viruses have evolved mechanisms to engage the host translational machinery while at the same time avoiding or counteracting host defenses that act to repress translation. Mammalian orthoreoviruses are dsRNA-containing viruses whose mRNAs were used as models for early investigations into the mechanisms that underpin the recognition and engagement of eukaryotic mRNAs by host cell ribosomes. However, there remain many unanswered questions and paradoxes regarding translation of reoviral mRNAs in the context of infection. This review summarizes the current state of knowledge about reovirus translation, identifies key unanswered questions, and proposes possible pathways toward a better understanding of reovirus translation.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Orthoreovirus de Mamíferos/genética , Orthoreovirus de Mamíferos/fisiologia , Biossíntese de Proteínas/genética , Replicação Viral/fisiologia , Animais , Humanos , RNA Viral/genética , Infecções por Reoviridae/patologia , Ribossomos/metabolismo , Proteínas Virais/genética
6.
Viruses ; 13(2)2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525628

RESUMO

Cells are continually exposed to stressful events, which are overcome by the activation of a number of genetic pathways. The integrated stress response (ISR) is a large component of the overall cellular response to stress, which ultimately functions through the phosphorylation of the alpha subunit of eukaryotic initiation factor-2 (eIF2α) to inhibit the energy-taxing process of translation. This response is instrumental in the inhibition of viral infection and contributes to evolution in viruses. Mammalian orthoreovirus (MRV), an oncolytic virus that has shown promise in over 30 phase I-III clinical trials, has been shown to induce multiple arms within the ISR pathway, but it successfully evades, modulates, or subverts each cellular attempt to inhibit viral translation. MRV has not yet received Food and Drug Administration (FDA) approval for general use in the clinic; therefore, researchers continue to study virus interactions with host cells to identify circumstances where MRV effectiveness in tumor killing can be improved. In this review, we will discuss the ISR, MRV modulation of the ISR, and discuss ways in which MRV interaction with the ISR may increase the effectiveness of cancer therapeutics whose modes of action are altered by the ISR.


Assuntos
Vírus Oncolíticos/fisiologia , Orthoreovirus de Mamíferos/fisiologia , Infecções por Reoviridae/virologia , Estresse Fisiológico , Fator de Iniciação 2 em Eucariotos/metabolismo , Humanos , Terapia Viral Oncolítica , Fosforilação , Biossíntese de Proteínas , Capuzes de RNA/metabolismo , Infecções por Reoviridae/metabolismo
7.
Viruses ; 13(2)2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494426

RESUMO

Mammalian orthoreovirus (reovirus), a dsRNA virus with a multilayered capsid, serves as a model system for studying the entry of similar viruses. The outermost layer of this capsid undergoes processing to generate a metastable intermediate. The metastable particle undergoes further remodeling to generate an entry-capable form that delivers the genome-containing inner capsid, or core, into the cytoplasm. In this review, we highlight capsid proteins and the intricacies of their interactions that control the stability of the capsid and consequently impact capsid structural changes that are prerequisites for entry. We also discuss a novel proviral role of host membranes in promoting capsid conformational transitions. Current knowledge gaps in the field that are ripe for future investigation are also outlined.


Assuntos
Proteínas do Capsídeo/metabolismo , Orthoreovirus de Mamíferos/fisiologia , Proteólise , Infecções por Reoviridae/virologia , Vírion/fisiologia , Internalização do Vírus , Animais , Proteínas do Capsídeo/genética , Linhagem Celular , Camundongos , Orthoreovirus de Mamíferos/genética , Domínios Proteicos , Infecções por Reoviridae/genética , Vírion/genética
8.
Dev Comp Immunol ; 116: 103909, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33129882

RESUMO

Mre11A is considered as a cytosolic DNA receptor in mammals. However, it is rarely known about Mre11A in other vertebrates. Recently, a mammalian ortholog of Mre11A has been identified in grass carp (Ctenopharyngodon idellus) in our lab. Phylogenetic-tree analysis provided evidence for a close genetic relationship between C.idellus Mre11A and Carassius auratus Mre11A. The tissue expression profile of CiMre11A was detected, with a relatively higher level of expression in kidney, intestines, liver and spleen than that in other tissues after grass carp reovirus (GCRV) infection. Similarly, CiMre11A was also up-regulated in CIK cells after treatment with GCRV. Q-PCR and dual-luciferase assays indicated that the transcription levels of IFN1 and ISG15 were inhibited by CiMre11A knockdown, but were gradually augmented after CIK cells were transfected with increasing amounts of CiMre11A. Subcellular localization assays showed that a part of CiMre11A was translocated from the nucleus to the cytoplasm. Co-immunoprecipitation and co-localization assays demonstrated that CiMre11A interacts with CiSTING in response to GCRV infection. In CIK cells, the expressions of both IFN1 and ISG15 were acutely up-regulated by CiMre11A overexpression, as well as by co-overexpression of CiMre11A and CiSTING. CiMre11A and CiSTING induced the phosphorylation and cytoplasmic-to-nuclear translocation of IRF7 in CIK cells. The multiplication of GCRV in CIK cells was inhibited by the overexpression of CiMre11A and CiSTING.


Assuntos
Carpas/imunologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/imunologia , Interferon Tipo I/imunologia , Proteína Homóloga a MRE11/imunologia , Sequência de Aminoácidos , Animais , Carpas/genética , Carpas/virologia , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Resistência à Doença/genética , Resistência à Doença/imunologia , Doenças dos Peixes/genética , Doenças dos Peixes/virologia , Proteínas de Peixes/classificação , Proteínas de Peixes/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/imunologia , Interações Hospedeiro-Patógeno/imunologia , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Proteína Homóloga a MRE11/classificação , Proteína Homóloga a MRE11/genética , Orthoreovirus de Mamíferos/imunologia , Orthoreovirus de Mamíferos/fisiologia , Filogenia , Ligação Proteica , Homologia de Sequência de Aminoácidos , Ubiquitinas/genética , Ubiquitinas/imunologia , Ubiquitinas/metabolismo
9.
J Virol ; 95(4)2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33208448

RESUMO

Mammalian orthoreovirus (reovirus) spreads from the site of infection to every organ system in the body via the blood. However, mechanisms that underlie reovirus hematogenous spread remain undefined. Nonstructural protein σ1s is a critical determinant of reovirus bloodstream dissemination that is required for efficient viral replication in many types of cultured cells. Here, we used the specificity of the σ1s protein for promoting hematogenous spread as a platform to uncover a role for lymphatic type 1 interferon (IFN-1) responses in limiting reovirus systemic dissemination. We found that replication of a σ1s-deficient reovirus was restored to wild-type levels in cells with defective interferon-α receptor (IFNAR1) signaling. Reovirus spreads systemically following oral inoculation of neonatal mice, whereas the σ1s-null virus remains localized to the intestine. We found that σ1s enables reovirus spread in the presence of a functional IFN-1 response, as the σ1s-deficient reovirus disseminated comparably to wild-type virus in IFNAR1-/- mice. Lymphatics are hypothesized to mediate reovirus spread from the intestine to the bloodstream. IFNAR1 deletion from cells expressing lymphatic vessel endothelium receptor 1 (LYVE-1), a marker for lymphatic endothelial cells, enabled the σ1s-deficient reovirus to disseminate systemically. Together, our findings indicate that IFN-1 responses in lymphatics limit reovirus dissemination. Our data further suggest that the lymphatics are an important conduit for reovirus hematogenous spread.IMPORTANCE Type 1 interferons (IFN-1) are critical host responses to viral infection. However, the contribution of IFN-1 responses to control of viruses in specific cell and tissue types is not fully defined. Here, we identify IFN-1 responses in lymphatics as important for limiting reovirus dissemination. We found that nonstructural protein σ1s enhances reovirus resistance to IFN-1 responses, as a reovirus mutant lacking σ1s was more sensitive to IFN-1 than wild-type virus. In neonatal mice, σ1s is required for reovirus systemic spread. We used tissue-specific IFNAR1 deletion in combination with the IFN-1-sensitive σ1s-null reovirus as a tool to test how IFN-1 responses in lymphatics affect reovirus systemic spread. Deletion of IFNAR1 in lymphatic cells using Cre-lox technology enabled dissemination of the IFN-1-sensitive σ1s-deficient reovirus. Together, our results indicate that IFN-1 responses in lymphatics are critical for controlling reovirus systemic spread.


Assuntos
Células Endoteliais/imunologia , Interferon Tipo I/imunologia , Orthoreovirus de Mamíferos/fisiologia , Receptor de Interferon alfa e beta/imunologia , Infecções por Reoviridae , Proteínas não Estruturais Virais/imunologia , Animais , Animais Recém-Nascidos , Células Endoteliais/citologia , Fibroblastos , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/virologia
10.
PLoS Pathog ; 16(9): e1008803, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32956403

RESUMO

The Dearing isolate of Mammalian orthoreovirus (T3D) is a prominent model of virus-host relationships and a candidate oncolytic virotherapy. Closely related laboratory strains of T3D, originating from the same ancestral T3D isolate, were recently found to exhibit significantly different oncolytic properties. Specifically, the T3DPL strain had faster replication kinetics in a panel of cancer cells and improved tumor regression in an in vivo melanoma model, relative to T3DTD. In this study, we discover that T3DPL and T3DTD also differentially activate host signalling pathways and downstream gene transcription. At equivalent infectious dose, T3DTD induces higher IRF3 phosphorylation and expression of type I IFNs and IFN-stimulated genes (ISGs) than T3DPL. Using mono-reassortants with intermediate replication kinetics and pharmacological inhibitors of reovirus replication, IFN responses were found to inversely correlate with kinetics of virus replication. In other words, slow-replicating T3D strains induce more IFN signalling than fast-replicating T3D strains. Paradoxically, during co-infections by T3DPL and T3DTD, there was still high IRF3 phosphorylation indicating a phenodominant effect by the slow-replicating T3DTD. Using silencing and knock-out of RIG-I to impede IFN, we found that IFN induction does not affect the first round of reovirus replication but does prevent cell-cell spread in a paracrine fashion. Accordingly, during co-infections, T3DPL continues to replicate robustly despite activation of IFN by T3DTD. Using gene expression analysis, we discovered that reovirus can also induce a subset of genes in a RIG-I and IFN-independent manner; these genes were induced more by T3DPL than T3DTD. Polymorphisms in reovirus σ3 viral protein were found to control activation of RIG-I/ IFN-independent genes. Altogether, the study reveals that single amino acid polymorphisms in reovirus genomes can have large impact on host gene expression, by both changing replication kinetics and by modifying viral protein activity, such that two closely related T3D strains can induce opposite cytokine landscapes.


Assuntos
Proteínas do Capsídeo/metabolismo , Interferons/metabolismo , Polimorfismo Genético , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptores do Ácido Retinoico/metabolismo , Infecções por Reoviridae/virologia , Replicação Viral , Proteínas do Capsídeo/genética , Citocinas , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Orthoreovirus de Mamíferos/fisiologia , RNA de Cadeia Dupla/genética , RNA Viral/genética , RNA Viral/metabolismo , Proteínas de Ligação a RNA/genética , Receptores do Ácido Retinoico/genética , Infecções por Reoviridae/genética , Infecções por Reoviridae/metabolismo , Transdução de Sinais
11.
J Virol ; 92(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29769334

RESUMO

Viral nonstructural proteins, which are not packaged into virions, are essential for the replication of most viruses. Reovirus, a nonenveloped, double-stranded RNA (dsRNA) virus, encodes three nonstructural proteins that are required for viral replication and dissemination in the host. The reovirus nonstructural protein σNS is a single-stranded RNA (ssRNA)-binding protein that must be expressed in infected cells for production of viral progeny. However, the activities of σNS during individual steps of the reovirus replication cycle are poorly understood. We explored the function of σNS by disrupting its expression during infection using cells expressing a small interfering RNA (siRNA) targeting the σNS-encoding S3 gene and found that σNS is required for viral genome replication. Using complementary biochemical assays, we determined that σNS forms complexes with viral and nonviral RNAs. We also discovered, using in vitro and cell-based RNA degradation experiments, that σNS increases the RNA half-life. Cryo-electron microscopy revealed that σNS and ssRNAs organize into long, filamentous structures. Collectively, our findings indicate that σNS functions as an RNA-binding protein that increases the viral RNA half-life. These results suggest that σNS forms RNA-protein complexes in preparation for genome replication.IMPORTANCE Following infection, viruses synthesize nonstructural proteins that mediate viral replication and promote dissemination. Viruses from the family Reoviridae encode nonstructural proteins that are required for the formation of progeny viruses. Although nonstructural proteins of different viruses in the family Reoviridae diverge in primary sequence, they are functionally homologous and appear to facilitate conserved mechanisms of dsRNA virus replication. Using in vitro and cell culture approaches, we found that the mammalian reovirus nonstructural protein σNS binds and stabilizes viral RNA and is required for genome synthesis. This work contributes new knowledge about basic mechanisms of dsRNA virus replication and provides a foundation for future studies to determine how viruses in the family Reoviridae assort and replicate their genomes.


Assuntos
Genoma Viral , Orthoreovirus de Mamíferos/fisiologia , RNA Viral/biossíntese , Proteínas de Ligação a RNA/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/fisiologia , Células HEK293 , Humanos , RNA Viral/genética , Proteínas de Ligação a RNA/genética , Proteínas não Estruturais Virais/genética
12.
Adv Virus Res ; 100: 223-246, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29551138

RESUMO

Viruses are constantly engaged in a molecular arms race with the host, where efficient and tactical use of cellular receptors benefits critical steps in infection. Receptor use dictates initiation, establishment, and spread of viral infection to new tissues and hosts. Mammalian orthoreoviruses (reoviruses) are pervasive pathogens that use multiple receptors to overcome protective host barriers to disseminate from sites of initial infection and cause disease in young mammals. In particular, reovirus invades the central nervous system (CNS) with serotype-dependent tropism and disease. A single viral gene, encoding the attachment protein σ1, segregates with distinct patterns of CNS injury. Despite the identification and characterization of several reovirus receptors, host factors that dictate tropism via interaction with σ1 remain undefined. Here, we summarize the state of the reovirus receptor field and discuss open questions toward understanding how the reovirus attachment protein dictates CNS tropism.


Assuntos
Proteínas do Capsídeo/metabolismo , Orthoreovirus de Mamíferos/fisiologia , Receptores Virais/metabolismo , Infecções por Reoviridae/virologia , Animais , Interações Hospedeiro-Patógeno , Humanos , Orthoreovirus de Mamíferos/patogenicidade , Tropismo Viral/fisiologia , Internalização do Vírus , Replicação Viral
13.
Virology ; 518: 77-86, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29455064

RESUMO

Mammalian reovirus viral factories (VFs) form filamentous or globular structures depending on the viral strain. In this study, we attempt to characterize the dynamics of both filamentous and globular VFs. Here, we present evidence demonstrating that globular VFs are dynamic entities coalescing between them, thereby gaining in size and concomitantly decreasing in numbers during the course of the infection. Additionally, both kinds of VFs condense into a perinuclear position. Our results show that globular VFs rely on an intact MT-network for dynamic motion, structural assembly, and maintenance and for perinuclear condensation. Interestingly, dynein localizes in both kinds of VFs, having a role at least in large globular VFs formation. To study filamentous VF dynamics, we used different transfection ratios of µNS with filamentous µ2. We found a MT-network dependency for VF-like structures perinuclear condensation. Also, µNS promotes VFLSs perinuclear positioning as well as an increase in acetylated tubulin levels.


Assuntos
Microtúbulos/fisiologia , Orthoreovirus de Mamíferos/fisiologia , Replicação Viral/fisiologia , Animais , Linhagem Celular , Regulação Viral da Expressão Gênica/fisiologia , Proteínas Motores Moleculares
14.
Pediatr Res ; 83(5): 1057-1066, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29364865

RESUMO

BackgroundInfants and young children are particularly susceptible to viral encephalitis; however, the mechanisms are unknown. We determined the age-dependent contribution of innate and adaptive immune functions to reovirus-induced encephalitis in mice.MethodsNewborn wild-type mice, 2-20 days of age, were inoculated with reovirus or diluent and monitored for mortality, weight gain, and viral load. Four- and fifteen-day-old IFNAR-/- and RAG2-/- mice were inoculated with reovirus and similarly monitored.ResultsWeight gain was impaired in mice inoculated with reovirus at 8 days of age or less. Clinical signs of encephalitis were detected in mice inoculated at 10 days of age or less. Mortality decreased when mice were inoculated after 6 days of age. Survival was ≤15% in wild type (WT), RAG2-/-, and IFNAR-/- mice inoculated at 4 days of age. All WT mice, 92% of RAG2-/- mice, and only 48% of IFNAR-/- mice survived following inoculation at 15 days of age.ConclusionsSusceptibility of mice to reovirus-induced disease decreases between 6 and 8 days of age. Enhanced reovirus virulence in IFNAR-/- mice relative to WT and RAG2-/- mice inoculated at 15 days of age suggests that maturation of the type-I interferon response contributes to age-related mortality following reovirus infection.


Assuntos
Fatores Etários , Proteínas de Ligação a DNA/genética , Encefalite Viral/imunologia , Receptor de Interferon alfa e beta/genética , Infecções por Reoviridae/imunologia , Imunidade Adaptativa , Animais , Apoptose , Encéfalo/metabolismo , Linhagem Celular , Proteínas de Ligação a DNA/imunologia , Regulação Viral da Expressão Gênica , Imunidade Inata , Interferon Tipo I/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Orthoreovirus de Mamíferos/genética , Orthoreovirus de Mamíferos/fisiologia , Receptor de Interferon alfa e beta/imunologia , Baço/metabolismo , Carga Viral , Replicação Viral
15.
J Virol ; 91(22)2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28878073

RESUMO

Within infected host cells, mammalian orthoreovirus (MRV) forms viral factories (VFs), which are sites of viral transcription, translation, assembly, and replication. The MRV nonstructural protein µNS comprises the structural matrix of VFs and is involved in recruiting other viral proteins to VF structures. Previous attempts have been made to visualize VF dynamics in live cells, but due to current limitations in recovery of replicating reoviruses carrying large fluorescent protein tags, researchers have been unable to directly assess VF dynamics from virus-produced µNS. We set out to develop a method to overcome this obstacle by utilizing the 6-amino-acid (CCPGCC) tetracysteine (TC) tag and FlAsH-EDT2 reagent. The TC tag was introduced into eight sites throughout µNS, and the capacity of the TC-µNS fusion proteins to form virus factory-like (VFL) structures and colocalize with virus proteins was characterized. Insertion of the TC tag interfered with recombinant virus rescue in six of the eight mutants, likely as a result of loss of VF formation or important virus protein interactions. However, two recombinant (r)TC-µNS viruses were rescued and VF formation, colocalization with associating virus proteins, and characterization of virus replication were subsequently examined. Furthermore, the rTC-µNS viruses were utilized to infect cells and examine VF dynamics using live-cell microscopy. These experiments demonstrate active VF movement with fusion events as well as transient interactions between individual VFs and demonstrate the importance of microtubule stability for VF fusion during MRV infection. This work provides important groundwork for future in-depth studies of VF dynamics and host cell interactions.IMPORTANCE MRV has historically been used as a model to study the double-stranded RNA (dsRNA) Reoviridae family, the members of which infect and cause disease in humans, animals, and plants. During infection, MRV forms VFs that play a critical role in virus infection but remain to be fully characterized. To study VFs, researchers have focused on visualizing the nonstructural protein µNS, which forms the VF matrix. This work provides the first evidence of recovery of replicating reoviruses in which VFs can be labeled in live cells via introduction of a TC tag into the µNS open reading frame. Characterization of each recombinant reovirus sheds light on µNS interactions with viral proteins. Moreover, utilizing the TC-labeling FlAsH-EDT2 biarsenical reagent to visualize VFs, evidence is provided of dynamic VF movement and interactions at least partially dependent on intact microtubules.


Assuntos
Proteínas do Capsídeo/metabolismo , Exossomos/virologia , Orthoreovirus de Mamíferos/fisiologia , RNA Viral/metabolismo , Replicação Viral/fisiologia , Anticorpos Monoclonais Murinos/química , Anticorpos Antivirais/química , Proteínas do Capsídeo/genética , Linhagem Celular , Exossomos/genética , Exossomos/metabolismo , Humanos , RNA Viral/genética
16.
Oncotarget ; 8(21): 35138-35153, 2017 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-28422714

RESUMO

New therapeutic interventions are essential for improved management of patients with metastatic colorectal cancer (mCRC). This is especially critical for those patients whose tumors harbor a mutation in the KRAS oncogene (40-45% of all patients). This patient cohort is excluded from receiving anti-EGFR monoclonal antibodies that have added a significant therapeutic benefit for KRAS wild type CRC patients. Reovirus, a double stranded (ds) RNA virus is in clinical development for patients with chemotherapy refractory KRAS mutated tumors. Toll Like Receptor (TLR) 3, a member of the toll like receptor family of the host innate immune system is the pattern recognition motif for dsRNA pathogens. Using TLR3 expressing commercial HEK-BlueTM-hTLR3 cells we confirm that TLR3 is the host pattern recognition motif responsible for the detection of reovirus. Further, our investigation with KRAS mutated HCT116 cell line showed that effective expression of host TLR3 dampens the infection potential of reovirus by mounting a robust innate immune response. Down regulation of TLR3 expression with siRNA improves the anticancer activity of reovirus. In vivo experiments using human CRC cells derived xenografts in athymic mice further demonstrate the beneficial effects of TLR3 knock down by improving tumor response rates to reovirus. Strategies to mitigate the TLR3 response pathway can be utilized as a tool towards improved reovirus efficacy to specifically target the dissemination of KRAS mutated CRC.


Assuntos
Neoplasias Colorretais/terapia , Orthoreovirus de Mamíferos/fisiologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptor 3 Toll-Like/genética , Animais , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Técnicas de Silenciamento de Genes , Células HCT116 , Humanos , Camundongos , Terapia Viral Oncolítica , Orthoreovirus de Mamíferos/imunologia , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Mol Biol (Mosk) ; 51(1): 111-117, 2017.
Artigo em Russo | MEDLINE | ID: mdl-28251973

RESUMO

The experimental study identified the antiviral activity of Bacillus pumilus RNase (binase) against the reovirus of serotype 1/strain Lang. For the first time, it has been found that 50 µg/mL of binase effectively reduced the hemagglutinin and cytocidal activity of reovirus in Vero cell line. The preincubation of the enzyme with reovirus before infection of the cells inhibited the viral replication. To determine the stagedependent effect of reovirus reproduction upon binase inhibition, the infected cells were treated with binase or RNase A at different phases of the infectious cycle. The treatment of virus-infected cells has revealed that both enzymes have a maximal antiviral effect on the reovirus propagation during early phases of the reovirus reproduction cycle, with binase being more effective than RNase A. It has been hypothesized that the combined action of the oncolytic reovirus and binase is promising for the elimination of tumor cells carrying mutated RAS gene.


Assuntos
Endorribonucleases/farmacologia , Orthoreovirus de Mamíferos/fisiologia , Ribonucleases/farmacologia , Animais , Antivirais/farmacologia , Chlorocebus aethiops , Orthoreovirus de Mamíferos/efeitos dos fármacos , Sorogrupo , Células Vero , Replicação Viral
18.
J Virol ; 91(11)2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28298603

RESUMO

Reoviruses, like many eukaryotic viruses, contain an inverted 7-methylguanosine (m7G) cap linked to the 5' nucleotide of mRNA. The traditional functions of capping are to promote mRNA stability, protein translation, and concealment from cellular proteins that recognize foreign RNA. To address the role of mRNA capping during reovirus replication, we assessed the benefits of adding the African swine fever virus NP868R capping enzyme during reovirus rescue. C3P3, a fusion protein containing T7 RNA polymerase and NP868R, was found to increase protein expression 5- to 10-fold compared to T7 RNA polymerase alone while enhancing reovirus rescue from the current reverse genetics system by 100-fold. Surprisingly, RNA stability was not increased by C3P3, suggesting a direct effect on protein translation. A time course analysis revealed that C3P3 increased protein synthesis within the first 2 days of a reverse genetics transfection. This analysis also revealed that C3P3 enhanced processing of outer capsid µ1 protein to µ1C, a previously described hallmark of reovirus assembly. Finally, to determine the rate of infectious-RNA incorporation into new virions, we developed a new recombinant reovirus S1 gene that expressed the fluorescent protein UnaG. Following transfection of cells with UnaG and infection with wild-type virus, passage of UnaG through progeny was significantly enhanced by C3P3. These data suggest that capping provides nontraditional functions to reovirus, such as promoting assembly and infectious-RNA incorporation.IMPORTANCE Our findings expand our understanding of how viruses utilize capping, suggesting that capping provides nontraditional functions to reovirus, such as promoting assembly and infectious-RNA incorporation, in addition to enhancing protein translation. Beyond providing mechanistic insight into reovirus replication, our findings also show that reovirus reverse genetics rescue is enhanced 100-fold by the NP868R capping enzyme. Since reovirus shows promise as a cancer therapy, efficient reovirus reverse genetics rescue will accelerate production of recombinant reoviruses as candidates to enhance therapeutic potency. NP868R-assisted reovirus rescue will also expedite production of recombinant reovirus for mechanistic insights into reovirus protein function and structure.


Assuntos
Vírus da Febre Suína Africana/enzimologia , Nucleotidiltransferases/metabolismo , Orthoreovirus de Mamíferos/genética , Orthoreovirus de Mamíferos/fisiologia , RNA Viral/metabolismo , Vírion/fisiologia , Montagem de Vírus , Vírus da Febre Suína Africana/genética , Linhagem Celular , Proteínas Recombinantes de Fusão/metabolismo , Genética Reversa , Vírion/genética , Replicação Viral
19.
J Virol ; 91(7)2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28077655

RESUMO

Lambda interferon (IFN-λ) has potent antiviral effects against multiple enteric viral pathogens, including norovirus and rotavirus, in both preventing and curing infection. Because the intestine includes a diverse array of cell types, however, the cell(s) upon which IFN-λ acts to exert its antiviral effects is unclear. Here, we sought to identify IFN-λ-responsive cells by generation of mice with lineage-specific deletion of the receptor for IFN-λ, Ifnlr1 We found that expression of IFNLR1 on intestinal epithelial cells (IECs) in the small intestine and colon is required for enteric IFN-λ antiviral activity. IEC Ifnlr1 expression also determines the efficacy of IFN-λ in resolving persistent murine norovirus (MNoV) infection and regulates fecal shedding and viral titers in tissue. Thus, the expression of Ifnlr1 by IECs is necessary for the response to both endogenous and exogenous IFN-λ. We further demonstrate that IEC Ifnlr1 expression is required for the sterilizing innate immune effects of IFN-λ by extending these findings in Rag1-deficient mice. Finally, we assessed whether our findings pertained to multiple viral pathogens by infecting mice specifically lacking IEC Ifnlr1 expression with reovirus. These mice phenocopied Ifnlr1-null animals, exhibiting increased intestinal tissue titers and enhanced reovirus fecal shedding. Thus, IECs are the critical cell type responding to IFN-λ to control multiple enteric viruses. This is the first genetic evidence that supports an essential role for IECs in IFN-λ-mediated control of enteric viral infection, and these findings provide insight into the mechanism of IFN-λ-mediated antiviral activity.IMPORTANCE Human noroviruses (HNoVs) are the leading cause of epidemic gastroenteritis worldwide. Type III interferons (IFN-λ) control enteric viral infections in the gut and have been shown to cure mouse norovirus, a small-animal model for HNoVs. Using a genetic approach with conditional knockout mice, we identified IECs as the dominant IFN-λ-responsive cells in control of enteric virus infection in vivo Upon murine norovirus or reovirus infection, Ifnlr1 depletion in IECs largely recapitulated the phenotype seen in Ifnlr1-/- mice of higher intestinal tissue viral titers and increased viral shedding in the stool. Moreover, IFN-λ-mediated sterilizing immunity against murine norovirus requires the capacity of IECs to respond to IFN-λ. These findings clarify the mechanism of action of this cytokine and emphasize the therapeutic potential of IFN-λ for treating mucosal viral infections.


Assuntos
Células Epiteliais/metabolismo , Norovirus/fisiologia , Orthoreovirus de Mamíferos/fisiologia , Receptores de Interferon/metabolismo , Animais , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/metabolismo , Infecções por Caliciviridae/virologia , Linhagem Celular , Células Epiteliais/imunologia , Células Epiteliais/virologia , Imunidade Inata , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Intestino Grosso/imunologia , Intestino Grosso/metabolismo , Intestino Grosso/virologia , Intestino Delgado/imunologia , Intestino Delgado/metabolismo , Intestino Delgado/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Especificidade de Órgãos , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/metabolismo , Infecções por Reoviridae/virologia , Eliminação de Partículas Virais
20.
J Virol ; 91(7)2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28077658

RESUMO

To replicate efficiently, viruses must create favorable cell conditions and overcome cell antiviral responses. We previously reported that the reovirus protein µ2 from strain T1L, but not strain T3D, represses one antiviral response: alpha/beta interferon signaling. We report here that T1L, but not T3D, µ2 localizes to nuclear speckles, where it forms a complex with the mRNA splicing factor SRSF2 and alters its subnuclear localization. Reovirus replicates in cytoplasmic viral factories, and there is no evidence that reovirus genomic or messenger RNAs are spliced, suggesting that T1L µ2 might target splicing of cell RNAs. Indeed, RNA sequencing revealed that reovirus T1L, but not T3D, infection alters the splicing of transcripts for host genes involved in mRNA posttranscriptional modifications. Moreover, depletion of SRSF2 enhanced reovirus replication and cytopathic effect, suggesting that T1L µ2 modulation of splicing benefits the virus. This provides the first report of viral antagonism of the splicing factor SRSF2 and identifies the viral protein that determines strain-specific differences in cell RNA splicing.IMPORTANCE Efficient viral replication requires that the virus create favorable cell conditions. Many viruses accomplish this by repressing specific antiviral responses. We demonstrate here that some mammalian reoviruses, RNA viruses that replicate strictly in the cytoplasm, express a protein variant that localizes to nuclear speckles, where it targets a cell mRNA splicing factor. Infection with a reovirus strain that targets this splicing factor alters splicing of cell mRNAs involved in the maturation of many other cell mRNAs. Depletion of this cell splicing factor enhances reovirus replication and cytopathic effect. Our results provide the first evidence of viral antagonism of this splicing factor and suggest that downstream consequences to the cell are global and benefit the virus.


Assuntos
Orthoreovirus de Mamíferos/fisiologia , Fatores de Processamento de Serina-Arginina/fisiologia , Proteínas Virais/metabolismo , Replicação Viral , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Animais , Núcleo Celular/virologia , Citoplasma/virologia , Células HEK293 , Humanos , Camundongos , Microtúbulos/metabolismo , Ligação Proteica , Multimerização Proteica , Splicing de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...