Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 567
Filtrar
1.
Chemosphere ; 358: 142163, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697572

RESUMO

Diphenhydramine (DPH) is an antihistamine drug. It has been frequently detected in the environment, because it is not completely degraded in wastewater treatment plants. Recent studies have shown the adverse effects of DPH exposure to various aquatic organisms; however, its chronic effects on fish have been poorly elucidated. In this study, several pairs of mature Japanese medaka (Oryzias latipes) were exposed to DPH for a long period to determine the effects of DPH exposure on the subsequent generations, number of spawned and fertilized eggs, expression of sex-related genes, feeding behavior, embryo development, hatching rate, malformations among the hatched larvae, and mortality rate. The number of spawned eggs significantly decreased, when the parent fish were continuously exposed to 31.6 µg/L DPH for over 46 days. DPH exposure also altered the feeding behavior of medaka individuals, and increased the larval mortality rate. The effects of DPH exposure to fish may occur to some extent in the actual aquatic environment, although the risk evaluations in the field are limited.


Assuntos
Difenidramina , Oryzias , Reprodução , Poluentes Químicos da Água , Animais , Oryzias/fisiologia , Reprodução/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Difenidramina/toxicidade , Masculino , Feminino , Larva/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos
2.
Sci Total Environ ; 927: 172289, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38599405

RESUMO

Cu, as an essential and toxic element, has gained widespread attention. Both salinity and dissolved organic carbon (DOC) are known to influence Cu toxicity in marine organisms. However, the intricate interplay between these factors and their specific influence on Cu toxicity remains ambiguous. So, this study conducted toxicity tests of Cu on Oryzias melastigma. The experiments involved three salinity levels (10, 20, and 30 ppt) and three DOC levels (0, 1, and 5 mg/L) to comprehensively investigate the underlying mechanisms of toxicity. The complex toxic effects were analyzed by mortality, NKA activity, net Na+ flux and Cu bioaccumulation in O. melastigma. The results indicate that Cu toxicity is notably influenced by both DOC and salinity. Interestingly, the discernible variation in Cu toxicity across different DOC levels diminishes as salinity levels increase. The presence of DOC enhances the impact of salinity on Cu toxicity, especially at higher Cu concentrations. Additionally, Visual MINTEQ was utilized to elucidate the chemical composition of Cu, revealing that DOC had a significant impact on Cu forms. Furthermore, we observed that fluctuations in salinity lead to the inhibition of Na+/K+-ATPase (NKA) activity, subsequently hindering the inflow of Na+. The effects of salinity and DOC on the bioaccumulation of copper were not significant. The influence of salinity on Cu toxicity is mainly through its effect on the osmotic regulation and biophysiology of O. melastigma. Additionally, DOC plays a crucial role in the different forms of Cu. Moreover, DOC-Cu complexes can be utilized by organisms. This study contributes to understanding the mechanism of copper's biological toxicity in intricate marine environments and serves as a valuable reference for developing marine water quality criteria for Cu.


Assuntos
Carbono , Cobre , Oryzias , Salinidade , Poluentes Químicos da Água , Cobre/toxicidade , Cobre/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Carbono/metabolismo , Oryzias/metabolismo , Oryzias/fisiologia , Bioacumulação
3.
Chemosphere ; 357: 142103, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653400

RESUMO

Salinity is an important environmental factor influencing the toxicity of chemicals. Bisphenol A (BPA) is an environmental endocrine disruptor with adverse effects on aquatic organisms, such as fish. However, the influence of salinity on the biotoxicity of BPA and the underlying mechanism are unclear. In this study, we exposed marine medaka (Oryzias melastigma) to BPA at different salinities (0 psµ, 15 psµ, and 30 psµ) for 70days to investigate the toxic effects. At 0 psµ salinity, BPA had an inhibitory effect on the swimming behavior of female medaka. At 15 psµ salinity, exposure to BPA resulted in necrotic cells in the ovaries but not on the spermatozoa. In addition, BPA exposure changed the transcript levels of genes related to the nervous system (gap43, elavl3, gfap, mbpa, and α-tubulin) and the hypothalamic-pituitary-gonadal (HPG) axis (fshr, lhr, star, arα, cyp11a, cyp17a1, cyp19a, and erα); the expression changes differed among salinity levels. These results suggest that salinity influences the adverse effects of BPA on the nervous system and reproductive system of medaka. These results emphasize the importance of considering the impact of environmental factors when carrying out ecological risk assessment of pollutants.


Assuntos
Compostos Benzidrílicos , Disruptores Endócrinos , Oryzias , Fenóis , Reprodução , Salinidade , Poluentes Químicos da Água , Animais , Oryzias/fisiologia , Fenóis/toxicidade , Compostos Benzidrílicos/toxicidade , Poluentes Químicos da Água/toxicidade , Feminino , Reprodução/efeitos dos fármacos , Masculino , Disruptores Endócrinos/toxicidade , Comportamento Animal/efeitos dos fármacos , Ovário/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos
4.
Artigo em Inglês | MEDLINE | ID: mdl-38663833

RESUMO

Disruption of the thyroid hormone system by synthetic chemicals is gaining attention owing to its potential negative effects on organisms. In this study, the effects of the dio-inhibitor iopanoic acid (IOP) on the levels of thyroid hormone and related gene expression, swim bladder inflation, and swimming performance were investigated in Japanese medaka. Iopanoic acid exposure suppressed thyroid-stimulating hormone ß (tshß), tshß-like, iodotyronin deiodinase 1 (dio1), and dio2 expression, and increased T4 and T3 levels. In addition, IOP exposure inhibited swim bladder inflation, reducing swimming performance. Although adverse outcome pathways of thyroid hormone disruption have been developed using zebrafish, no adverse outcome pathways have been developed using Japanese medaka. This study confirmed that IOP inhibits dio expression (a molecular initiating event), affects T3 and T4 levels (a key event), and reduces swim bladder inflation (a key event) and swimming performance (an adverse outcome) in Japanese medaka.


Assuntos
Sacos Aéreos , Ácido Iopanoico , Oryzias , Natação , Hormônios Tireóideos , Animais , Oryzias/fisiologia , Sacos Aéreos/efeitos dos fármacos , Sacos Aéreos/metabolismo , Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/sangue , Ácido Iopanoico/toxicidade , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Tiroxina/sangue , Tri-Iodotironina/sangue , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo
5.
Chemosphere ; 357: 141967, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615950

RESUMO

The organochlorine pesticide dichlorodiphenyltrichloroethane (DDT) is an endocrine-disrupting compound (EDC) that has been banned by most countries for decades. However, it continues to be detected in nearly all humans and wildlife due to its biological and environmental persistence. The ovarian dysgenesis syndrome hypothesis speculates that exposure to EDCs during sensitive developmental windows such as early gonadal differentiation lead to reproductive disorders later in life. Yet, mechanisms by which DDT affects developing gonads remain unclear due to the inherent challenge of getting developmental exposure data from adults presenting with reproductive disease. The Japanese medaka (Oryzias latipes) is a valuable fish model for sex-specific toxicological studies due to its chromosomal sex determination, external embryonic development, short generation time, and extensively mapped genome. It is well documented that medaka exposed to DDT and its metabolites and byproducts (herein referred to as DDT+) at different developmental time points experience permanent alterations in gonadal morphology, reproductive success, and molecular and hormonal signaling. However, the overwhelming majority of studies focus primarily on functional and morphological outcomes in males and females and have rarely investigated long-term transcriptional or molecular effects. This review summarizes previous experimental findings and the state of our knowledge concerning toxic effects DDT + on reproductive development, fertility, and health in the valuable medaka model. It also identifies gaps in knowledge, emphasizing a need for more focus on molecular mechanisms of ovarian endocrine disruption using enhanced molecular tools that have become increasingly available over the past few decades. Furthermore, DDT forms a myriad of over 45 metabolites and transformation products in biota and the environment, very few of which have been evaluated for environmental abundance or health effects. This reinforces the demand for high throughput and economical in vivo models for predictive toxicology screening, and the Japanese medaka is uniquely positioned to meet this need.


Assuntos
DDT , Disruptores Endócrinos , Oryzias , Reprodução , Poluentes Químicos da Água , Animais , Oryzias/fisiologia , DDT/toxicidade , Feminino , Reprodução/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Poluentes Químicos da Água/toxicidade , Saúde Reprodutiva , Masculino
6.
Aquat Toxicol ; 271: 106927, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643640

RESUMO

As awareness of BPA's health risks has increased, many countries and regions have implemented strict controls on its use. Consequently, bisphenol analogues like BPF and BPAF are being increasingly used as substitutes. However, these compounds are also becoming increasingly prevalent in the environment due to production, use and disposal processes. The oceans act as a repository for various pollutants, and recent studies have revealed the extensive presence of bisphenols (BPs, including BPA, BPF, BPAF, etc.) in the marine environment, posing numerous health hazards to marine wildlife. Nevertheless, the reproductive toxicity of these chemicals on marine fish is not comprehensively comprehended yet. Thus, the histological features of the gonads and the gene expression profiles of HPG (Hypothalamic-Pituitary-Gonadal) axis-related genes in marine medaka (Oryzias melastigma) were studied after exposure to single and combined BPs for 70 days. The effects of each exposure group on spawning, embryo fertilization, and hatching in marine medaka were also assessed. Furthermore, the impacts of each exposure group on the genes related to methylation in the F2 and F3 generations were consistently investigated. BPs exposure was found to cause follicular atresia, irregular oocytes, and empty follicles in the ovary; but no significant lesions in the testis were observed. The expression of several HPG axis genes, including cyp19b, 17ßhsd, 3ßhsd, and fshr, resulted in significant changes compared to the control group. The quantity of eggs laid and fertilization rate decreased in all groups treated with BPs, with the BPAF-treated group showing a notable reduction in the number of eggs laid. Additionally, the hatching rate showed a more significant decline in the BPF-treated group. The analysis of methylated genes in the offspring of bisphenol-treated groups revealed significant changes in the expression of genes including amh, dnmt1, dnmt3ab, mbd2, and mecp2, indicating a potential transgenerational impact of bisphenols on phenotype through epigenetic modifications. Overall, the potential detrimental impact of bisphenol on the reproduction of marine medaka emphasizes the need for caution in considering the use of BPAF and BPF as substitutes.


Assuntos
Compostos Benzidrílicos , Oryzias , Fenóis , Reprodução , Poluentes Químicos da Água , Animais , Oryzias/genética , Oryzias/fisiologia , Fenóis/toxicidade , Compostos Benzidrílicos/toxicidade , Poluentes Químicos da Água/toxicidade , Masculino , Reprodução/efeitos dos fármacos , Feminino , Gônadas/efeitos dos fármacos
7.
Zebrafish ; 21(1): 15-27, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38377346

RESUMO

The marine medaka is emerging as a potential behavioral model organism for ocean studies, namely on marine ecotoxicology. However, not much is known on the behavior of the species and behavioral assays lack standardization. This study assesses the marine medaka as a potential model for chemical communication. We investigated how short exposure to visual and chemical cues mediated the stress response to social isolation with the light/dark preference test (LDPT) and the open field test (OFT). After a 5-day isolation period, and 1 h before testing, isolated fish were randomly assigned to one of four groups: (1) placed in visual contact with conspecifics; (2) exposed to a flow of holding water from a group of conspecifics; (3) exposed to both visual and chemical cues from conspecifics; or (4) not exposed to any stimuli (controls). During the LDPT, the distance traveled and transitions between zones were more pronounced in animals exposed to the conspecific's chemical stimuli. The time spent in each area did not differ between the groups, but a clear preference for the bright area in all animals indicates robust phototaxis. During the OFT, animals exposed only to chemical cues initially traveled more than those exposed to visual or both stimuli, and displayed lower thigmotaxis. Taken together, results show that chemical cues play a significant role in exploratory behavior in this species and confirm the LDPT and OFT as suitable tests for investigating chemical communication in this species.


Assuntos
Oryzias , Poluentes Químicos da Água , Animais , Oryzias/fisiologia , Sinais (Psicologia) , Peixe-Zebra , Isolamento Social , Poluentes Químicos da Água/toxicidade
8.
Environ Pollut ; 346: 123599, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38369093

RESUMO

Microplastics (MPs) and nanoplastics (NPs) are emerging pollutants in the ocean, but their transfer and toxicity along the food chains are unclear. In this study, a marine rotifer (Brachionus plicatilis)-marine medaka (Oryzias melastigma) food chain was constructed to evaluate the transfer of polystyrene MPs and NPs (70 nm, 500 nm, and 2 µm, 2000 µg/L) and toxicity of 70 nm PS-NPs (0, 20, 200, and 2000 µg/L) on marine medaka after long-term food chain exposure. The results showed that the amount of 70 nm NPs accumulated in marine medaka was 1.24 µg/mg, which was significantly higher than that of 500 nm NPs (0.87 µg/mg) and 2 µm MP (0.69 µg/mg). Long-term food chain exposure to NPs caused microflora dysbiosis, resulting in activation of toll-like receptor 4 (TLR4) pathway, which induced liver inflammation. Moreover, NPs food chain exposure increased liver and muscle tissue triglyceride and lactate content, but decreased the protein, sugar, and glycogen content. NPs food chain exposure impaired reproductive function and inhibited offspring early development, which might pose a threat to the sustainability of marine medaka population. Overall, the study revealed the transfer of MPs and NPs and the effects of NPs on marine medaka along the food chain.


Assuntos
Oryzias , Rotíferos , Poluentes Químicos da Água , Animais , Microplásticos , Plásticos/toxicidade , Oryzias/fisiologia , Cadeia Alimentar , Poluentes Químicos da Água/análise , Rotíferos/metabolismo , Poliestirenos/toxicidade
9.
Mar Environ Res ; 195: 106381, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286076

RESUMO

Microplastics (MPs) have become a popular research topic due to their potential ramifications on aquatic organisms. To evaluate the ecotoxicological impacts of chronic exposure to different microplastics on marine medaka larvae, we exposed medaka larvae to 200 µg/L of polyethylene (PE-200) and polylactic acid (PLA-200) microplastics for 60 days, respectively. The results indicated that both exposures had no significant effect on fish length/weight and did not result in fish mortality. Notably, the structure of intestinal microbiota was not disrupted either. However, microscopy observations of intestinal tissue suggested that exposure to MPs resulted in inflammation of the intestinal tract of fish and significant atrophy and shedding of small intestinal villus. Linear discriminant analysis Effect Size (LEfSe) showed that intestinal enrichment of Streptomyces occurred in marine medaka larvae in both MPs treatments, while the PE-200 treatment exhibited a significant enrichment. In addition, the PICRUSt2 prediction indicated significant upregulation of the Novobiocin biosynthesis function in gut microbiota in the PE-200 treatment. Overall, multi-level assessment is necessary to determine the risk of exposure of aquatic organisms to MPs.


Assuntos
Microbiota , Oryzias , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Plásticos , Oryzias/fisiologia , Larva , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Organismos Aquáticos
10.
J Hazard Mater ; 465: 133176, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38070264

RESUMO

The application of 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) as an antifouling biocide causes high toxicity to non-target marine organisms. To examine the developmental cardiotoxicity and mechanisms of DCOIT, we concurrently performed sub-chronic exposure and life-cycle exposure experiments using marine medaka embryos. After sub-chronic exposure to DCOIT at 1, 3, 10, and 33 µg/L, cardiac defects were caused by upregulation of cardiac gene transcriptions, decreasing heart size, and accelerating heartbeat. Hyperthyroidism in medaka larvae was identified as the cause of developmental cardiotoxicity of DCOIT sub-chronic exposure. In addition, parental life-cycle exposure to 1, 3, and 10 µg/L DCOIT led to transgenerational impairment of cardiogenesis in offspring medaka. A crossbreeding strategy discriminated a concentration-dependent mechanism of transgenerational cardiotoxicity. At 1 µg/L, the DCOIT-exposed female parent transferred a significantly higher amount of triiodothyronine (T3) hormone to offspring, corresponding to an accelerated heart rate. However, DCOIT at higher exposure concentrations modified the methylome imprinting in larval offspring, which was associated with cardiac dysfunction. Overall, the findings provide novel insights into the developmental cardiotoxicity of DCOIT. The high risks of DCOIT-even at environmentally realistic concentrations-raise concerns about its applicability as an antifoulant in a marine environment.


Assuntos
Oryzias , Poluentes Químicos da Água , Animais , Feminino , Oryzias/fisiologia , Cardiotoxicidade , Poluentes Químicos da Água/toxicidade , Tiazóis/toxicidade , Estágios do Ciclo de Vida , Larva
11.
J Hazard Mater ; 465: 133087, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38035524

RESUMO

It is still limited that how the microalgal toxin okadaic acid (OA) affects the intestinal microbiota in marine fishes. In the present study, adult marine medaka Oryzias melastigma was exposed to the environmentally relevant concentration of OA (5 µg/L) for 10 days, and then recovered in fresh seawater for 10-days depuration. Analysis of taxonomic composition and diversity of the intestinal microbiota, as well as function prediction analysis and histology observation were carried out in this study. Functional prediction analysis indicated that OA potentially affected the development of colorectal cancer, protein and carbohydrate digestion and absorption functions, and development of neurodegenerative diseases like Parkinson's disease, which may be associated with changes in Proteobacteria and Firmicutes in marine medaka. Significant increases of C-reactive protein (CRP) and inducible nitric oxide synthase (iNOS) levels, as well as the changes of histology of intestinal tissue demonstrated that an intestinal inflammation was induced by OA exposure in marine medaka. This study showed that the environmental concentrations of OA could harm to the intestinal microbiota thus threatening the health of marine medaka, which hints that the chemical ecology of microalgal toxins should be paid attention to in future studies.


Assuntos
Microbioma Gastrointestinal , Oryzias , Poluentes Químicos da Água , Animais , Oryzias/fisiologia , Ácido Okadáico , Ecologia
12.
Environ Sci Technol ; 58(1): 99-109, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38117130

RESUMO

Identifying endocrine disrupting chemicals in order to limit their usage is a priority and required according to the European Regulation. There are no Organization for Economic Co-operation and Development (OECD) test guidelines based on fish available for the detection of Thyroid axis Active Chemicals (TACs). This study aimed to fill this gap by developing an assay at eleuthero-embryonic life stages in a novel medaka (Oryzias latipes) transgenic line. This transgenic line expresses green fluorescent protein (GFP) in thyrocytes, under the control of the medaka thyroglobulin gene promoter. The fluorescence expressed in the thyrocytes is inversely proportional to the thyroid axis activity. When exposed for 72 h to activators (triiodothyronine (T3) and thyroxine (T4)) or inhibitors (6-N-propylthiouracil (PTU), Tetrabromobisphenol A (TBBPA)) of the thyroid axis, the thyrocytes can change their size and express lower or higher levels of fluorescence, respectively. This reflects the regulation of thyroglobulin by the negative feedback loop of the Hypothalamic-Pituitary-Thyroid axis. T3, T4, PTU, and TBBPA induced fluorescence changes with the lowest observable effect concentrations (LOECs) of 5 µg/L, 1 µg/L, 8 mg/L, and 5 mg/L, respectively. This promising tool could be used as a rapid screening assay and also to help decipher the mechanisms by which TACs can disrupt the thyroid axis in medaka.


Assuntos
Oryzias , Glândula Tireoide , Animais , Glândula Tireoide/fisiologia , Oryzias/fisiologia , Tireoglobulina/metabolismo , Tireoglobulina/farmacologia , Tri-Iodotironina/metabolismo , Tri-Iodotironina/farmacologia
13.
Sci Total Environ ; 912: 169344, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38097088

RESUMO

This study aims to investigate the impact of tralopyril, a newly developed marine antifouling agent, on the reproductive endocrine system and developmental toxicity of offspring in marine medaka. The results revealed that exposure to tralopyril (0, 1, 20 µg/L) for 42 days resulted in decreased reproductive capacity in marine medaka. Moreover, it disrupted the levels of sex hormones E2 and T, as well as the transcription levels of genes related to the HPG axis, such as cyp19b and star. Sex-dependent differences were observed, with females experiencing more pronounced effects. Furthermore, intergenerational toxicity was observed in F1 offspring, including increased heart rate, changes in retinal morphology and cartilage structure, decreased swimming activity, and downregulation of transcription levels of relevant genes (HPT axis, GH/IGF axis, cox, bmp4, bmp2, runx2, etc.). Notably, the disruption of the F1 endocrine system by tralopyril persisted into adulthood, indicating a transgenerational effect. Molecular docking analysis suggested that tralopyril's RA receptor activity might be one of the key factors contributing to the developmental toxicity observed in offspring. Overall, our study highlights the potential threat posed by tralopyril to the sustainability of fish populations, as it can disrupt the endocrine system and negatively impact aquatic organisms for multiple generations.


Assuntos
Oryzias , Poluentes Químicos da Água , Animais , Feminino , Oryzias/fisiologia , Simulação de Acoplamento Molecular , Sistema Endócrino , Pirróis , Poluentes Químicos da Água/toxicidade
14.
Environ Sci Technol ; 57(49): 20551-20558, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38037888

RESUMO

Hexaphenoxycyclotriphosphazene (HPCTP), an unregistered chemical, has been used as a substitute for triphenyl phosphate in flame retardants and plasticizers. Here, we identified its metabolite, pentaphenoxycyclotriphosphazene (PPCTP) in the liver of Japanese medaka exposed to HPCTP. When sexually mature female medaka were exposed to HPCTP at 37.0, 90.4, and 465.4 ng/L for 35 days, the HPCTP concentration (642.1-2531.9 ng/g lipid weight [lw]) in the embryos considerably exceeded that (34.7-298.1 ng/g lw) in the maternal muscle, indicating remarkable maternal transfer. During 0-9 days postfertilization, the HPCTP concentration in the embryos decreased continuously, while the PPCTP concentration increased. HPCTP and PPCTP antagonized the retinoic X receptor with 50% inhibitory concentrations (IC50) of 34.8 and 21.2 µM, respectively, and PPCTP also antagonized the retinoic acid receptor with IC50 of 2.79 µM. Such antagonistic activities may contribute to eye deformity (4.7% at 465.4 ng/L), body malformation (2.1% at 90.4 ng/L and 6.8% at 465.4 ng/L), and early developmental mortality (11.6-21.7% in all exposure groups) of the embryos. HPCTP was detected in a main tributary of the Yangtze River Basin. Thus, HPCTP poses a risk to wild fish populations, given the developmental toxicities associated with this chemical and its metabolite.


Assuntos
Retardadores de Chama , Oryzias , Poluentes Químicos da Água , Animais , Feminino , Tretinoína , Fígado , Oryzias/fisiologia , Retardadores de Chama/toxicidade , Poluentes Químicos da Água/análise
15.
Zebrafish ; 20(6): 229-235, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38010808

RESUMO

The longevity of sperm in teleost such as zebrafish and medaka is short when isolated even in saline-balanced solution at a physiological temperature. In contrast, some internal fertilizers exhibit the long-term storage of sperm, >10 months, in the female reproductive tract. This evidence implies that sperm in teleost possesses the ability to survive for a long time under suitable conditions; however, these conditions are not well understood. In this study, we show that the sperm of zebrafish can survive and maintain fertility in L-15-based storage medium supplemented with bovine serum albumin, fetal bovine serum, glucose, and lactic acid for 28 days at room temperature. The fertilized embryos developed to normal fertile adults. This storage medium was effective in medaka sperm stored for 7 days at room temperature. These results suggest that sperm from external fertilizer zebrafish and medaka has the ability to survive for at least 4 and 1 week, respectively, in the body fluid-like medium at a physiological temperature. This sperm storage method allows researchers to ship sperm by low-cost methods and to investigate key factors for motility and fertile ability in those sperm.


Assuntos
Oryzias , Preservação do Sêmen , Masculino , Feminino , Animais , Peixe-Zebra , Oryzias/fisiologia , Temperatura , Sêmen , Espermatozoides/fisiologia , Preservação do Sêmen/veterinária , Preservação do Sêmen/métodos , Motilidade dos Espermatozoides/fisiologia
16.
Zoolog Sci ; 40(5): 404-413, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37818889

RESUMO

High stocking densities have negative effects on fish. However, the mechanism mediating density perception and growth inhibition is still unknown. This study was conducted to confirm the occurrence of growth inhibition and evaluate changes in growth-related factors in fish reared under high-stocking-density conditions and to determine the role of vision in density perception of medaka. In the graduated-stocking experiment, growth inhibition was clearly observed in fish reared at higher densities, although environmental factors, such as water quality, dissolved oxygen, and feeding conditions, were the same in each experimental group. Differences in growth were observed between the 6-fish and 8-fish groups, indicating that medaka have a superior sense that allows them to accurately perceive the number of individuals in their surroundings. In the pseudo-high stocking experiment, the inner 2-L tank in both groups contained six fish; however, the outer 3-L tank in the pseudo group contained several fish, while that of the control group contained only water. Growth inhibition was observed among the fish in the inner tank of the pseudo group despite having similar spatial density with the control group. These findings suggest that vision is important for density perception. The gene expression of growth-related and metabolic-regulatory hormones decreased in the high-density group. Furthermore, neuropeptide Y expression increased, while pro-opiomelanocortin expression decreased in the high-density group. This study is the first to report that fish can visually perceive density and the resulting growth inhibition, and concluded that medaka is a suitable model for studying density effects and perception in fish.


Assuntos
Oryzias , Animais , Oryzias/fisiologia , Percepção Visual
17.
Biol Reprod ; 109(6): 904-917, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37712895

RESUMO

Cathepsin L plays physiological and pathological roles in immune responses, cancer, metamorphosis, and oogenesis in several species. However, the function of Cathepsin L in medaka ovaries remains unclear. Therefore, here, we examined the physiological functions of Cathepsin L in the medaka ovaries. Cathepsin L mRNA transcripts and proteins were found to be constitutively expressed in the ovaries of Oryzias latipes over a 24-h spawning cycle. Expression was localized within the oocyte cytoplasm of growing follicles and the follicle layer of preovulatory and postovulatory follicles. Moreover, the active form of Cathepsin L was highly expressed in the follicle layer of periovulatory follicles and the ovaries 2-6 h after ovulation. Recombinant Cathepsin L was activated under acidic conditions and exhibited enzymatic activity in acidic and neutral pH conditions. However, extracellular matrix proteins were degraded by recombinant Cathepsin L under acidic, not neutral pH conditions. Cathepsin L was secreted from preovulatory follicles, while active recombinant Cathepsin L was detected in the conditioned medium of a medaka cell line, OLHNI-2. Mechanistically, recombinant Cathepsin L activates recombinant urokinase-type plasminogen activator-1, which is expressed within the follicle layers post-ovulation. Meanwhile, the treatment of medakas with an E-64 or anti-Cathepsin L antibody effectively blocked follicular layer degeneration and degradation after ovulation, whereas in vitro ovulation was not inhibited by either. Collectively, the findings of this study indicate that although Cathepsin L does not impact ovulation in medakas, it contributes to the degeneration and degradation of the follicle layers following ovulation via activation of urokinase-type plasminogen activator-1, and not via the degradation of extracellular matrix proteins.


Assuntos
Oryzias , Ovário , Feminino , Animais , Ovário/fisiologia , Oryzias/fisiologia , Catepsina L/genética , Catepsina L/farmacologia , Ativador de Plasminogênio Tipo Uroquinase/farmacologia , Ovulação/fisiologia , Proteínas da Matriz Extracelular
18.
Environ Sci Technol ; 57(34): 12602-12619, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37581432

RESUMO

As a heterogeneous reproductive disorder, polycystic ovary syndrome (PCOS) can be caused by genetic, diet, and environmental factors. Bisphenol A (BPA) can induce PCOS and nonalcoholic fatty liver disease (NAFLD) due to direct exposure; however, whether these phenotypes persist in future unexposed generations is not currently understood. In a previous study, we observed that transgenerational NAFLD persisted in female medaka for five generations (F4) after exposure to an environmentally relevant concentration (10 µg/L) of BPA. Here, we demonstrate PCOS in the same F4 generation female medaka that developed NAFLD. The ovaries contained immature follicles, restricted follicular progression, and degenerated follicles, which are characteristics of PCOS. Untargeted metabolomic analysis revealed 17 biomarkers in the ovary of BPA lineage fish, whereas transcriptomic analysis revealed 292 genes abnormally expressed, which were similar to human patients with PCOS. Metabolomic-transcriptomic joint pathway analysis revealed activation of the cancerous pathway, arginine-proline metabolism, insulin signaling, AMPK, and HOTAIR regulatory pathways, as well as upstream regulators esr1 and tgf signaling in the ovary. The present results suggest that ancestral BPA exposure can lead to PCOS phenotypes in the subsequent unexposed generations and warrant further investigations into potential health risks in future generations caused by initial exposure to EDCs.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Oryzias , Síndrome do Ovário Policístico , Animais , Humanos , Feminino , Síndrome do Ovário Policístico/metabolismo , Oryzias/fisiologia , Fenótipo
19.
Aquat Toxicol ; 261: 106622, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37392728

RESUMO

Manganese (Mn) is an essential metal for organisms, but high levels can induce serious toxicity. To date, the toxic mechanism of Mn to marine fish is still poorly understood. In the present study, Oryzias melastigma embryos were exposed to different concentrations of MnCl2 (0-152.00 mg/L) to investigate its effect on early development. The results showed that exposure to MnCl2 caused developmental toxicity to embryos, including increased heart rate, delayed hatching time, decreased hatching rate and increased malformation rate. MnCl2 exposure could induce oxidative stress in O. melastigma embryos, as indicated by increased the contents of malondialdehyde (MDA) and the activities of the antioxidant enzymes (superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT)). The heart might be an important target organ for MnCl2 because of cardiac malformations and disruption in the expression of cardiac development-related genes (ATPase, epo, fg8g, cox1, cox2, bmp4 and gata4). In addition, the expression levels of stress- (omTERT and p53) and inflammation-related genes (TNFα and il1ß) were significantly up-regulated, suggesting that MnCl2 can trigger stress and inflammatory response in O. melastigma embryos. In conclusion, this study demonstrated that MnCl2 exposure can induce developmental toxicity, oxidative stress and inflammatory response in O. melastigma embryos, providing insights into the toxic mechanism of Mn to the early development of marine fish.


Assuntos
Oryzias , Poluentes Químicos da Água , Animais , Oryzias/fisiologia , Manganês/toxicidade , Cloretos , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo
20.
Chemosphere ; 338: 139543, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37474033

RESUMO

Pollution by microplastics in aquatic ecosystems is a worldwide problem, and the role of microplastics as vectors of pollutants has been a concern. Although small microplastics are thought to have a greater effect than large microplastics as vectors of pollutants, the impact of the size of microplastics on their ability to serve as vectors of pollutants has not been quantified. In this study, we conducted the 14-day experiment (7 days of exposure and 7 days of depuration) with polystyrene microplastics (2-µm or 10-µm diameter) and anthracene. On the last day of the exposure period, the concentration of anthracene in the muscle of Java medaka exposed to both anthracene and 2-µm polystyrene microplastics was the highest (47.4 ± 15.2 µg/g-muscle) of any group, followed by the group exposed to both anthracene and 10-µm polystyrene microplastics (23.0 ± 4.2 µg/g-muscle) and the group exposed to only anthracene (11.2 ± 2.2 µg/g-muscle). These results demonstrated that the size of microplastics was a critical determinant of their ability to serve as vectors of anthracene. The concentrations of anthracene and fine microplastics in the environment are sufficiently low that the effect of microplastics as vectors of anthracene may be observed only under experimental conditions that are unlikely to occur in the present environment. However, because pollution by plastics is expected to become more serious in the future, careful thought and proactive action will be needed to ensure that the impact of microplastics as vectors of pollutants does not become demonstrable under future environmental conditions.


Assuntos
Poluentes Ambientais , Oryzias , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Poliestirenos/toxicidade , Poliestirenos/análise , Plásticos , Oryzias/fisiologia , Ecossistema , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Antracenos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...