Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38615430

RESUMO

Oxycodone, an opioid commonly used to treat pain in humans, has the potential to be abused in racehorses to enhance their performance. To understand the pharmacokinetics of oxycodone and its metabolites in horses, as well as to detect the illegal use of oxycodone in racehorses, a method for quantification and confirmation of oxycodone and its metabolites is needed. In this study, we developed and validated an ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method that can simultaneously quantify and confirm oxycodone and eight metabolites in equine urine. Samples were subjected to enzymatic hydrolysis and then liquid-liquid extraction using ethyl acetate. The analyte separation was achieved on a Hypersil Gold C18 sub-2 µm column and analytes were detected on a triple quadrupole mass spectrometer. The limit of detection (LOD) and lower limit of quantification (LLOQ) were 25-50 pg/mL and 100 pg/mL, respectively. Excellent linearity of the calibration curves was observed over a range of 100-10000 pg/mL for all nine analytes. Retention time, signal-to-noise ratio, and product ion ratios were utilized as confirmation criteria, with the limits of confirmation (LOC) ranging from 100 to 250 pg/mL. The data from a pilot pharmacokinetic (PK) study suggested that oxycodone metabolites have longer detection periods in equine urine compared to oxycodone itself; thus, the detection of metabolites in equine urine extends the ability to detect oxycodone exposure in racehorses.


Assuntos
Limite de Detecção , Oxicodona , Espectrometria de Massas em Tandem , Animais , Cavalos , Espectrometria de Massas em Tandem/métodos , Oxicodona/urina , Oxicodona/farmacocinética , Oxicodona/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Reprodutibilidade dos Testes , Modelos Lineares
2.
Neuropsychopharmacology ; 48(13): 1889-1900, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37407648

RESUMO

A two-neuron model of ventral tegmental area (VTA) opioid function classically involves VTA GABA neuron regulation of VTA dopamine neurons via a mu-opioid receptor dependent inhibitory circuit. However, this model predates the discovery of a third major type of neuron in the VTA: glutamatergic neurons. We found that about one-quarter of VTA neurons expressing the mu-opioid receptor are glutamate neurons without molecular markers of GABA co-release. Glutamate-Mu opioid receptor neurons are largely distributed in the anterior VTA. The majority of remaining VTA mu-opioid receptor neurons are GABAergic neurons that are mostly within the posterior VTA and do not express molecular markers of glutamate co-release. Optogenetic stimulation of VTA glutamate neurons resulted in excitatory currents recorded from VTA dopamine neurons that were reduced by presynaptic activation of the mu-opioid receptor ex vivo, establishing a local mu-opioid receptor dependent excitatory circuit from VTA glutamate neurons to VTA dopamine neurons. This VTA glutamate to VTA dopamine pathway regulated dopamine release to the nucleus accumbens through mu-opioid receptor activity in vivo. Behaviorally, VTA glutamate calcium-related neuronal activity increased following oral oxycodone consumption during self-administration and response-contingent oxycodone-associated cues during abstinent reinstatement of drug-seeking behavior. Further, chemogenetic inhibition of VTA glutamate neurons reduced abstinent oral oxycodone-seeking behavior in male but not female mice. These results establish 1) a three-neuron model of VTA opioid function involving a mu-opioid receptor gated VTA glutamate neuron pathway to VTA dopamine neurons that controls dopamine release within the nucleus accumbens, and 2) that VTA glutamate neurons participate in opioid-seeking behavior.


Assuntos
Analgésicos Opioides , Área Tegmentar Ventral , Camundongos , Masculino , Animais , Área Tegmentar Ventral/metabolismo , Analgésicos Opioides/farmacologia , Analgésicos Opioides/metabolismo , Neurônios Dopaminérgicos/metabolismo , Ácido Glutâmico/metabolismo , Receptores Opioides mu/metabolismo , Oxicodona/metabolismo , Dopamina/metabolismo , Ácido gama-Aminobutírico/metabolismo
3.
Addict Biol ; 28(1): e13260, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36577736

RESUMO

Oxycodone is a highly prescribed opioid and its abuse has been rampant. Accumulating evidence shows that the cannabinoid CB1 receptor (CB1R) plays a key role in mediating rewarding effects to opioids. However, the downstream signalling of CB1R induced by oxycodone remains unclear. The neuropeptide oxytocin is well known as a potential remedy for drug addiction. Thus, our study aims to explore the mechanism of oxycodone-induced learning and memory deficits underlying the endocannabinoid system (ECS) and the effect of oxytocin. Rats were intraperitoneally injected with oxycodone once a day for eight consecutive day. Novel object recognition, resident-intruder and Morris Water Maze tests were employed to assess the cognitive, social and spatial memory of the rats after oxycodone withdrawal. The (co-)expression of CB1R, cyclin-dependent kinase 5 (Cdk5), regulatory protein p25, tau and phosphorylated tau was measured 1 day after the last behavioural test. The histopathological staining and synaptic density in the hippocampus were observed as well. We found that oxycodone upregulated the expression of p-GSK3ß, co-expression of p-Cdk5 and p25 through CB1R. This finding was accompanied by elevation of pSer396, pSer404 in the tau, and reduction of the number of neurons, dendritic spines and synaptic density in the hippocampus. Furthermore, i.c.v. treatment with oxytocin ameliorates memory deficits in oxycodone-treated rats through inhibition of the ECS. We propose further studies on the clinical use of this neuropeptide, which may potentially cure drug addiction.


Assuntos
Neuropeptídeos , Ocitocina , Ratos , Animais , Ocitocina/farmacologia , Ocitocina/metabolismo , Endocanabinoides/metabolismo , Oxicodona/farmacologia , Oxicodona/metabolismo , Hipocampo , Analgésicos Opioides/farmacologia , Analgésicos Opioides/metabolismo , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Receptores de Canabinoides/metabolismo , Neuropeptídeos/metabolismo , Receptor CB1 de Canabinoide/metabolismo
4.
Front Neural Circuits ; 16: 983323, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389179

RESUMO

Opioids are the most common medications for moderate to severe pain. Unfortunately, they also have addictive properties that have precipitated opioid misuse and the opioid epidemic. In the present study, we examined the effects of acute administration of oxycodone, a µ-opioid receptor (MOR) agonist, on Ca2+ transient activity of medium-sized spiny neurons (MSNs) in freely moving animals. Ca2+ imaging of MSNs in dopamine D1-Cre mice (expressing Cre predominantly in the direct pathway) or adenosine A2A-Cre mice (expressing Cre predominantly in the indirect pathway) was obtained with the aid of miniaturized microscopes (Miniscopes) and a genetically encoded Cre-dependent Ca2+ indicator (GCaMP6f). Systemic injections of oxycodone (3 mg/kg) increased locomotor activity yet, paradoxically, reduced concomitantly the number of active MSNs. The frequency of Ca2+ transients was significantly reduced in MSNs from A2A-Cre mice but not in those from D1-Cre mice. For comparative purposes, a separate group of mice was injected with a non-Cre dependent Ca2+ indicator in the cerebral cortex and the effects of the opioid also were tested. In contrast to MSNs, the frequency of Ca2+ transients in cortical pyramidal neurons was significantly increased by oxycodone administration. Additional electrophysiological studies in brain slices confirmed generalized inhibitory effects of oxycodone on MSNs, including membrane hyperpolarization, reduced excitability, and decreased frequency of spontaneous excitatory and inhibitory postsynaptic currents. These results demonstrate a dissociation between locomotion and striatal MSN activity after acute administration of oxycodone.


Assuntos
Cálcio , Oxicodona , Camundongos , Animais , Cálcio/metabolismo , Oxicodona/farmacologia , Oxicodona/metabolismo , Corpo Estriado/metabolismo , Neurônios/metabolismo , Dopamina/metabolismo
5.
Addict Biol ; 27(6): e13237, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36301206

RESUMO

One of the most challenging issues in the treatment of substance use disorder, including misuse of opioids such as oxycodone, is persistent vulnerability to relapse, often triggered by cues or contexts previously associated with drug use. In rats, cue-induced craving progressively intensifies ('incubates') during withdrawal from extended-access self-administration of several classes of misused drugs, including the psychostimulants cocaine and methamphetamine. For these psychostimulants, incubation is associated with strengthening of excitatory synapses in the nucleus accumbens (NAc) through incorporation of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors that lack the GluA2 subunit and are therefore Ca2+ -permeable (CP-AMPARs). Once CP-AMPAR upregulation occurs, their stimulation is required for expression of incubation. It is not known if a similar mechanism contributes to incubation of oxycodone craving. Using male rats, we established that incubation occurs by withdrawal day (WD) 15 and persists through WD30. Then, using cell-surface biotinylation, we found that surface levels of the AMPAR subunit GluA1 but not GluA2 are elevated in NAc core and shell of oxycodone rats on WD15, although this wanes by WD30. Next, using intra-NAc injection of the selective CP-AMPAR antagonist Naspm before a seeking test, we demonstrate that CP-AMPAR blockade in either subregion decreases oxycodone seeking on WD15 or WD30 (after incubation), but not WD1, and has no effect in saline self-administering animals. The Naspm results suggest CP-AMPARs persist in synapses through WD30 even if total cell surface levels wane. These results suggest that a common neurobiological mechanism contributes to expression of incubation of craving for oxycodone and psychostimulants.


Assuntos
Cocaína , Síndrome de Abstinência a Substâncias , Ratos , Masculino , Animais , Núcleo Accumbens , Receptores de AMPA/metabolismo , Fissura/fisiologia , Oxicodona/farmacologia , Oxicodona/metabolismo , Síndrome de Abstinência a Substâncias/metabolismo , Ratos Sprague-Dawley , Cocaína/farmacologia , Autoadministração
6.
Addict Biol ; 27(6): e13241, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36301217

RESUMO

A major obstacle in treating opioid use disorder is the persistence of drug seeking or craving during periods of abstinence, which is believed to contribute to relapse. Dopamine transmission in the mesolimbic pathway is posited to contribute to opioid reinforcement, but the processes by which dopamine influences drug seeking have not been completely elucidated. To examine whether opioid seeking during abstinence is associated with alterations in dopamine transmission, female and male rats self-administered oxycodone under an intermittent access schedule of reinforcement. Following self-administration, rats underwent a forced abstinence period, and cue-induced seeking tests were conducted to assess oxycodone seeking. One day following the final seeking test, rats were sacrificed to perform ex vivo fast scan cyclic voltammetry and western blotting in the nucleus accumbens. Rats displayed reduced dopamine uptake rate on abstinence day 2 and abstinence day 15, compared to oxycodone-naïve rats. Further, on abstinence day 15, rats had reduced phosphorylation of the dopamine transporter. Additionally, local application of oxycodone to the nucleus accumbens reduced dopamine uptake in oxycodone-naïve rats and in rats during oxycodone abstinence, on abstinence day 2 and abstinence day 15. These observations suggest that abstinence from oxycodone results in dysfunctional dopamine transmission, which may contribute to sustained oxycodone seeking during abstinence.


Assuntos
Cocaína , Núcleo Accumbens , Feminino , Masculino , Ratos , Animais , Núcleo Accumbens/metabolismo , Oxicodona/farmacologia , Oxicodona/metabolismo , Dopamina/metabolismo , Analgésicos Opioides/farmacologia , Analgésicos Opioides/metabolismo , Comportamento de Procura de Droga , Autoadministração , Cocaína/farmacologia
7.
Bioengineered ; 13(4): 9628-9644, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35412431

RESUMO

Endothelial dysfunction is an important mechanism involved in myocardial ischemia-reperfusion (I/R) injury. We aimed to explore the effects of Oxycodone on myocardial I/R injury in vivo and in vitro to reveal its mechanisms related to Sigma-1 Receptor (SIGMAR1). A rat model of I/R-induced myocardial injury was developed. The ischemic area and myocardial histopathological changes after oxycodone addition were evaluated by TTC staining and H&E staining. LDH, CK-MB and cTnI levels were used to assess myocardial function. Then, the endothelial integrity was reflected by the expressions of ZO-1, Claudin-1 and Occludin. Afterward, ELISA, RT-qPCR, western blot and immunofluorescence assays were adopted for the detection of inflammation-related genes. SIGMAR1 expression in myocardial tissues induced by I/R and cardiac microvascular endothelial cells (CMECs) under hypoxic/reoxygenation (H/R) was determined using RT-qPCR and western blotting. Subsequently, after SIGMAR1 silencing or BD1047 addition (a SIGMAR1 antagonist), cell apoptosis and endothelial integrity were analyzed in the presence of Oxycodone in H/R-stimulated CMECs. Results indicated that Oxycodone decreased the ischemic area and improved myocardial function in myocardial I/R injury rat. Oxycodone improved myocardial histopathological injury and elevated endothelial integrity, evidenced by upregulated ZO-1, Claudin-1 and Occludin expressions. Moreover, inflammatory response was alleviated after Oxycodone administration. Molecular docking suggested that SIGMAR1 could directly bind to Oxycodone. Oxycodone elevated SIGMAR1 expression and SIGMAR1 deletion or BD1047 addition attenuated the impacts of Oxycodone on apoptosis and endothelial integrity of CMECs induced by H/R. Collectively, Oxycodone alleviates myocardial I/R injury in vivo and in vitro by binding to SIGMAR1.


Assuntos
Células Endoteliais , Traumatismo por Reperfusão Miocárdica , Oxicodona , Receptores sigma , Animais , Apoptose , Claudina-1/metabolismo , Claudina-1/farmacologia , Células Endoteliais/metabolismo , Simulação de Acoplamento Molecular , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Ocludina/metabolismo , Ocludina/farmacologia , Oxicodona/metabolismo , Oxicodona/farmacologia , Ratos , Receptores sigma/metabolismo , Receptor Sigma-1
8.
Addict Biol ; 27(2): e13148, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35229934

RESUMO

Neuronal ensembles within the infralimbic cortex (IL) and their projections to the nucleus accumbens (NAc) mediate opiate seeking in well-trained rats. However, it is unclear how early this circuitry is recruited during oxycodone self-administration. Here, we used retrograde labelling (CTb) and immunohistochemistry to identify NAc-projecting neurons in the IL that were activated during initial oxycodone seeking. Next, we sought to determine the role of IL neuronal ensembles in initial oxycodone self-administration. We used the Daun02 procedure in male and female Fos-LacZ rats to chemogenetically inactivate IL Fos-expressing neurons at different time points in oxycodone self-administration training: immediately after meeting criteria for acquisition of behaviour and following nine daily sessions with increasing schedules of reinforcement (FR1, FR2 and FR3) in which rats demonstrated stable oxycodone intake under increasing effort to self-administer. We found that Daun02 infusions attenuated oxycodone seeking at both the initial learning and well-trained time points. These results suggest that IL neuronal ensembles are formed during initial learning of oxycodone self-administration and required for the maintenance and expression of oxycodone seeking.


Assuntos
Neurônios , Oxicodona , Animais , Feminino , Masculino , Neurônios/metabolismo , Núcleo Accumbens/fisiologia , Oxicodona/metabolismo , Oxicodona/farmacologia , Ratos , Ratos Transgênicos , Autoadministração
9.
Bioengineered ; 13(3): 5205-5215, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35170371

RESUMO

Cerebrovascular disease, an important cause of acute ischemic stroke, has attracted worldwide attention. Oxycodone has been widely used to treat various painful disorders. This study was designed to explore the mechanism of oxycodone in oxygen-glucose deprivation/reoxygenation (OGD/R)-induced brain microvascular endothelial cell model. For the reliability of the results in the following experiments, the viability was firstly detected using CCK-8. With the application of LDH, TEER and TUNEL assays, the LDH expression, permeability and apoptosis of brain microvascular endothelial cells were detected, respectively. Besides, the mRNA and protein expressions of tight junction proteins and RhoA were measured using RT-qPCR and Western blot. Moreover, RT-qPCR was employed to evaluate the expressions of inflammatory cytokines. Western blot was adopted to measure the levels of RhoA, ROCK, MLC2 and apoptosis-related proteins. The results revealed that oxycodone attenuated permeability damage, inflammatory factor release and apoptosis of OGD/R-induced brain microvascular endothelial cells in a dose-dependent manner. It was also found that oxycodone could reduce the expressions of RhoA, ROCK and MLC2 in brain microvascular endothelial cells induced by OGD/R. More importantly, oxycodone exhibited desirable effects on OGD/R-induced brain microvascular endothelial cells through RhoA/ROCK/MLC2 signal. In conclusion, oxycodone relieved permeability damage and apoptosis of OGD/R-induced brain microvascular endothelial cells through RhoA/ROCK/MLC2 signal, suggesting that oxycodone might be an effective method for the improvement of cerebral ischemia-reperfusion injury.


Assuntos
Células Endoteliais , AVC Isquêmico , Apoptose , Encéfalo/metabolismo , Miosinas Cardíacas , Células Endoteliais/metabolismo , Glucose/metabolismo , Humanos , Cadeias Leves de Miosina , Oxicodona/metabolismo , Oxicodona/farmacologia , Oxigênio/farmacologia , Permeabilidade , Reprodutibilidade dos Testes , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
10.
Pharmacogenomics J ; 22(1): 25-32, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34480108

RESUMO

Urine drug testing (UDT) is a tool for monitoring drug use, including oxycodone. While variation in cytochrome P450 (CYP) genes is known to alter oxycodone metabolism, its impact on UDT results of oxycodone and its metabolites has not been well-studied. Here, multivariate analysis was performed on retrospective UDT results of 90,379 specimens collected from 14,684 genotyped patients prescribed oxycodone. Genetic variation in CYP2D6 and CYP2C19 had a significant impact on oxymorphone/oxycodone ratios, with a 6.9-fold difference between CYP2D6 ultrarapid metabolizers (UMs) and poor metabolizers (PMs; p < 10-300) and a 1.6-fold difference between CYP2C19 UMs and PMs (p = 1.50 × 10-4). CYP2D6 variation also significantly impacted noroxycodone/oxycodone ratios (p = 6.95 × 10-38). Oxycodone-positive specimens from CYP2D6 PMs were ~5-fold more likely to be oxymorphone-negative compared to normal metabolizers. These findings indicate that multivariate analysis of UDT data may be used to reveal the real-world impact of genetic and non-genetic factors on drug metabolism.


Assuntos
Analgésicos Opioides/metabolismo , Analgésicos Opioides/urina , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP3A/genética , Oxicodona/metabolismo , Oxicodona/urina , Detecção do Abuso de Substâncias/métodos , Adulto , Feminino , Testes Genéticos , Variação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Farmacogenética , Polimorfismo Genético , Estudos Retrospectivos
11.
Chem Res Toxicol ; 34(1): 103-109, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33393779

RESUMO

Cytochrome P450 3A4 is a highly polymorphic enzyme and metabolizes approximately 40%-60% of therapeutic drugs. Its genetic polymorphism may significantly affect the expression and function of CYP3A4 resulting in alterations of the pharmacokinetics and pharmacodynamics of the CYP3A4-mediated drugs. The purpose of this study was to evaluate the catalytic activities of 30 CYP3A4 nonsynonymous variants and wild type toward oxycodone in vitro. CYP3A4 proteins were incubated with oxycodone for 30 min at 37 °C and the reaction was terminated by cooling to -80 °C immediately. Ultraperformance liquid chromatography tandem mass-spectrometry was used to analyze noroxycodone, and kinetic parameters Km, Vmax, and intrinsic clearance (Vmax/Km) of noroxycodone were also determined. Compared with CYP3A4.1, 24 CYP3A4 variants (CYP3A4.2-.5, -.7-.16, -.18 and -.19, -.23 and -.24, -.28 and -.29, and -.31-.34) exhibited significantly decreased relative clearance values (from 4.82% ± 0.31% to 80.98% ± 5.08%), whereas CYP3A4.6, -.17, -.20, -.21, -.26, and -.30 displayed no detectable enzyme activity. As the first study of these alleles for oxycodone metabolism in vitro, results of this study may provide insight into establishing the genotype-phenotype relationship for oxycodone and serve as a reference for clinical administrators and advance the provision of personalized precision medicine.


Assuntos
Citocromo P-450 CYP3A/metabolismo , Oxicodona/metabolismo , Cromatografia Líquida de Alta Pressão , Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/genética , Variação Genética/genética , Humanos , Conformação Molecular , Oxicodona/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrometria de Massas em Tandem
12.
Addict Biol ; 26(4): e12994, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33325096

RESUMO

Prescription opioid misuse is a major public health concern among children and adolescents in the United States. Opioids are the most commonly abused drugs and are the fastest growing drug problem among adolescents. In humans and animals, adolescence is a particularly sensitive period associated with an increased response to drugs of abuse. Our previous studies indicate that oxycodone exposure during adolescence increases morphine reward in adulthood. How early drug exposure mediates long-term changes in the brain and behavior is not known, but epigenetic regulation is a likely mechanism. To address this question, we exposed mice to oxycodone or saline during adolescence and examined epigenetic modifications at genes associated with dopamine activity during adulthood at early and late withdrawal, in the ventral tegmental area (VTA). We then compared these with alterations in the VTA of adult-treated mice following an equivalent duration of exposure and withdrawal to determine if the effects of oxycodone are age dependent. We observed persistence of adolescent-like gene expression following adolescent oxycodone exposure relative to age-matched saline exposed controls, although dopamine-related gene expression was transiently activated at 1 day of withdrawal. Following prolonged withdrawal enrichment of the repressive histone mark, H3K27me3, was maintained, consistent with inhibition of gene regulation following adolescent exposure. By contrast, mice exposed to oxycodone as adults showed loss of the repressive mark and increased gene expression following 28 days of withdrawal following oxycodone exposure. Together, our findings provide evidence that adolescent oxycodone exposure has long-term epigenetic consequences in VTA of the developing brain.


Assuntos
Analgésicos Opioides/metabolismo , Dopamina/metabolismo , Expressão Gênica/efeitos dos fármacos , Transtornos Relacionados ao Uso de Opioides/metabolismo , Oxicodona/metabolismo , Animais , Epigênese Genética/efeitos dos fármacos , Masculino , Camundongos , Morfina/metabolismo , Recompensa , Autoadministração , Área Tegmentar Ventral/efeitos dos fármacos
13.
Anal Chem ; 92(12): 8218-8227, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32412733

RESUMO

Oxycodone is a strong opioid frequently used as an analgesic. Although proven efficacious in the management of moderate to severe acute pain and cancer pain, use of oxycodone imposes a risk of adverse effects such as addiction, overdose, and death. Fast and accurate determination of oxycodone blood concentration would enable personalized dosing and monitoring of the analgesic as well as quick diagnostics of possible overdose in emergency care. However, in addition to the parent drug, several metabolites are always present in the blood after a dose of oxycodone, and to date, there is no electrochemical data available on any of these metabolites. In this paper, a single-walled carbon nanotube (SWCNT) electrode and a Nafion-coated SWCNT electrode were used, for the first time, to study the electrochemical behavior of oxycodone and its two main metabolites, noroxycodone and oxymorphone. Both electrode types could selectively detect oxycodone in the presence of noroxycodone and oxymorphone. However, we have previously shown that addition of a Nafion coating on top of the SWCNT electrode is essential for direct measurements in complex biological matrices. Thus, the Nafion/SWCNT electrode was further characterized and used for measuring clinically relevant concentrations of oxycodone in buffer solution. The limit of detection for oxycodone with the Nafion/SWCNT sensor was 85 nM, and the linear range was 0.5-10 µM in buffer solution. This study shows that the fabricated Nafion/SWCNT sensor has potential to be applied in clinical concentration measurements.


Assuntos
Técnicas Eletroquímicas , Polímeros de Fluorcarboneto/química , Nanotubos de Carbono/química , Oxicodona/análise , Eletrodos , Estrutura Molecular , Oxicodona/metabolismo , Tamanho da Partícula , Propriedades de Superfície
14.
Neuroreport ; 31(2): 99-108, 2020 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-31895751

RESUMO

Neuroinflammation is a common pathogenic mechanism in several neurodegenerative diseases, and glial cells are the primary inflammatory mediators of the central nervous system (CNS). Acute neuronal injury, infection, and chronic neurodegeneration may induce astrocyte activation, which is a response characterized by hyperproliferation and release of multiple inflammatory signaling factors. The opioid analgesic oxycodone has demonstrated anti-inflammatory efficacy in peripheral tissue, but its effects on the CNS have not been studied. We evaluated the inhibitory effects of oxycodone on astrocyte activation and proinflammatory mediator production in response to lipopolysaccharide (LPS). Our results showed that oxycodone (5-20 µg/ml) dose-dependently inhibited the LPS-induced astrocytosis, as measured by 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide and bromodeoxyuridine assays, as well as the overexpression of glial fibrillary acidic protein, which are two hallmarks of reactive astrogliosis in neurodegenerative diseases. Oxycodone also decreased both the mRNA and protein expression levels of proinflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1ß. Besides, oxycodone increased the expression of the nuclear factor kappa-B (NF-κB) endogenous inhibitor IκB-α, and blocked NF-κB translocation to the nucleus. The anti-inflammatory efficacy of oxycodone on rat astrocytes increased with pretreatment duration. These results suggest that oxycodone can suppress neuroinflammation by inhibiting NF-κB signaling in astrocytes. Targeting the astrocytic NF-κB-mediated inflammatory response may be an effective therapeutic strategy against diseases involving neuroinflammatory damage.


Assuntos
Astrócitos/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , NF-kappa B/efeitos dos fármacos , Oxicodona/farmacologia , Animais , Astrócitos/metabolismo , Citocinas/efeitos dos fármacos , Citocinas/metabolismo , Hipocampo/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Microglia/efeitos dos fármacos , NF-kappa B/metabolismo , Oxicodona/metabolismo , Ratos Sprague-Dawley
15.
Neuropsychopharmacology ; 45(2): 416-425, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31443104

RESUMO

It has been demonstrated that opioid agonists that preferentially act at µ-opioid receptors to activate G protein signaling over ßarrestin2 recruitment produce antinociception with less respiratory suppression. However, most of the adverse effects associated with opioid therapeutics are realized after extended dosing. Therefore, we tested the onset of tolerance and dependence, and assessed for neurochemical changes associated with prolonged treatment with the biased agonist SR-17018. When chronically administered to mice, SR-17018 does not lead to hot plate antinociceptive tolerance, receptor desensitization in periaqueductal gray, nor a super-sensitization of adenylyl cyclase in the striatum, which are hallmarks of opioid neuronal adaptations that are seen with morphine. Interestingly, substitution with SR-17018 in morphine-tolerant mice restores morphine potency and efficacy, whereas the onset of opioid withdrawal is prevented. This is in contrast to buprenorphine, which can suppress withdrawal, but produces and maintains morphine antinociceptive tolerance. Biased agonists of this nature may therefore be useful for the treatment of opioid dependence while restoring opioid antinociceptive sensitivity.


Assuntos
Analgésicos Opioides/metabolismo , Tolerância a Medicamentos/fisiologia , Dependência de Morfina/metabolismo , Morfina/metabolismo , Receptores Opioides mu/metabolismo , Síndrome de Abstinência a Substâncias/metabolismo , Analgésicos Opioides/administração & dosagem , Animais , Relação Dose-Resposta a Droga , Feminino , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Bombas de Infusão Implantáveis , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Morfina/administração & dosagem , Oxicodona/administração & dosagem , Oxicodona/metabolismo , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Receptores Opioides mu/agonistas , Síndrome de Abstinência a Substâncias/prevenção & controle
16.
Drug Metab Dispos ; 48(2): 106-115, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31727673

RESUMO

Oxycodone is used as a potent analgesic medication. Oxycodone is extensively metabolized. To fully describe its metabolism, the oxygenation of oxycodone to oxycodone N-oxide was investigated in hepatic preparations. The hypothesis tested was that oxycodone N-oxygenation was enzymatic and the amount of N-oxide detected was a consequence of both oxygenation and retro-reduction. Methods for testing the hypothesis included both in vitro and in vivo studies. Results indicated that oxycodone was N-oxygenated by the flavin-containing monooxygenase. Oxycodone N-oxide is chemically quite stable but in the presence of hepatic preparations and NADPH was retro-reduced to its parent compound oxycodone. Subsequently, oxycodone was metabolized to other metabolites including noroxycodone, noroxymorphone, and oxymorphone via cytochrome P-450. Retro-reduction of oxycodone N-oxide to oxycodone was facilitated by quinone reductase, aldehyde oxidase, and hemoglobin but not to a great extent by cytochrome P-450 or the flavin-containing monooxygenase. To confirm the in vitro observations, oxycodone was administered to rats and humans. In good agreement with in vitro results, substantial oxycodone N-oxide was observed in urine after oxycodone administration to rats and humans. Administration of oxycodone N-oxide to rats showed substantial amount of recovered oxycodone N-oxide. In vivo, noroxycodone was formed as a major rat urinary metabolite from oxycodone N-oxide presumably after retro-reduction to oxycodone and oxidative N-demethylation. To a lesser extent, oxycodone, noroxymorphone, and oxymorphone were observed as urinary metabolites. SIGNIFICANCE STATEMENT: This manuscript describes the N-oxygenation of oxycodone in vitro as well as in small animals and humans. A new metabolite was quantified as oxycodone N-oxide. Oxycodone N-oxide undergoes extensive retro-reduction to oxycodone. This re-establishes the metabolic profile of oxycodone and introduces new concepts about a metabolic futile cycle related to oxycodone metabolism.


Assuntos
Óxidos/metabolismo , Oxicodona/metabolismo , Analgésicos Opioides/metabolismo , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Feminino , Hemoglobinas/metabolismo , Humanos , Masculino , Oxigenases de Função Mista/metabolismo , Morfinanos/metabolismo , NADP/metabolismo , Oximorfona/metabolismo , Ratos
17.
Drugs R D ; 20(1): 1-10, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31820365

RESUMO

BACKGROUND: The application of modeling and simulation approaches in clinical pharmacology studies has gained momentum over the last 20 years. OBJECTIVES: The objective of this study was to develop six empirical models from clearance data obtained from children aged > 2 years and adults to evaluate the suitability of the models to predict drug clearance in children aged ≤ 2 years (preterm, term, and infants). METHODS: Ten drugs were included in this study and administered intravenously: alfentanil, amikacin, busulfan, cefetamet, meperidine, oxycodone, propofol, sufentanil, theophylline, and tobramycin. These drugs were selected according to the availability of individual subjects' weight, age, and clearance data (concentration-time data for these drugs were not available to the author). The chosen drugs are eliminated by extensive metabolism by either the renal route or both the renal and hepatic routes. The six empirical models were (1) age and body weight-dependent sigmoidal maximum possible effect (Emax) maturation model, (2) body weight-dependent sigmoidal Emax model, (3) uridine 5'-diphospho [body weight-dependent allometric exponent model (BDE)], (4) age-dependent allometric exponent model (ADE), (5) a semi-physiological model, and (6) an allometric model developed from children aged > 2 years to adults. The model-predicted clearance values were compared with observed clearance values in an individual child. In this analysis, a prediction error of ≤ 50% for mean or individual clearance values was considered acceptable. RESULTS: Across all age groups and the ten drugs, data for 282 children were compared between observed and model-predicted clearance values. The validation data consisted of 33 observations (sum of different age groups for ten drugs). Only three of the six models (body weight-dependent sigmoidal Emax model, ADE, and semi-physiological model) provided reasonably accurate predictions of clearance (> 80% observation with ≤ 50% prediction error) in children aged ≤ 2 years. In most instances, individual predicted clearance values were erratic (as indicated by % error) and were not in agreement with the observed clearance values. CONCLUSIONS: The study indicated that simple empirical models can provide more accurate results than complex empirical models.


Assuntos
Taxa de Depuração Metabólica , Modelos Biológicos , Adulto , Alfentanil/administração & dosagem , Alfentanil/metabolismo , Amicacina/administração & dosagem , Amicacina/metabolismo , Bussulfano/administração & dosagem , Bussulfano/metabolismo , Ceftizoxima/administração & dosagem , Ceftizoxima/análogos & derivados , Ceftizoxima/metabolismo , Pré-Escolar , Humanos , Lactente , Injeções Intravenosas , Meperidina/administração & dosagem , Meperidina/metabolismo , Oxicodona/administração & dosagem , Oxicodona/metabolismo , Propofol/administração & dosagem , Propofol/metabolismo , Sufentanil/administração & dosagem , Sufentanil/metabolismo , Teofilina/administração & dosagem , Teofilina/metabolismo , Tobramicina/administração & dosagem , Tobramicina/metabolismo
18.
Med Sci Monit ; 25: 9073-9084, 2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31782408

RESUMO

BACKGROUND Tourniquet-related complications are a common clinical problem. In the present study, we compared the effects of dexmedetomidine vs. oxycodone in patients undergoing limb ischemia-reperfusion. MATERIAL AND METHODS Fifty-four patients undergoing unilateral lower-extremity surgery under combined spinal and epidural anesthesia were randomly assigned to a control (ischemia-reperfusion, I/R) group, a dexmedetomidine (Dex) group, and an oxycodone (Oxy) group. Tourniquet-induced hemodynamic parameters changes among groups were compared. The serum concentration of malondialdehyde (MDA), superoxide dismutase (SOD), tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), fatty acid binding protein 3 (FABP3), endothelin-1 (ET-1), and brain-derived neurotrophic factor (BDNF) were measured using ELISA before anesthesia and at 30 min and at 6 h after tourniquet release. RESULTS In the control group, tourniquet use caused significant increases in systolic arterial pressure (SAP), mean arterial pressure (MAP), diastolic arterial pressure (DAP), and rate-pressure product. Compared with Oxy, Dex significantly decreased heart rate (HR). Both Dex and Oxy lowered SAP compared with the control group. No significant difference was observed in DAP between Dex and Oxy. The levels of MDA, TNF-alpha, IL-6, FABP3, and ET-1 were significantly higher, while the SOD and BDNF were significantly lower compared to baseline in the I/R group, but the variation range of those agents was significantly smaller in the Dex and Oxy groups, and the measured values were comparable between the 2 groups. CONCLUSIONS Compared with Dex, Oxy was not inferior in mitigating tourniquet-induced hyperdynamic response, ameliorating the inflammatory reaction, and protecting remote multiple organs in lower-extremity surgery patients.


Assuntos
Dexmedetomidina/farmacologia , Oxicodona/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Adulto , Idoso , Fator Neurotrófico Derivado do Encéfalo/análise , Fator Neurotrófico Derivado do Encéfalo/sangue , China , Dexmedetomidina/metabolismo , Endotelina-1/análise , Endotelina-1/sangue , Proteína 3 Ligante de Ácido Graxo/análise , Proteína 3 Ligante de Ácido Graxo/sangue , Feminino , Hemodinâmica/efeitos dos fármacos , Humanos , Interleucina-6/análise , Interleucina-6/sangue , Isquemia/complicações , Extremidade Inferior/cirurgia , Masculino , Malondialdeído/análise , Malondialdeído/sangue , Pessoa de Meia-Idade , Oxicodona/metabolismo , Doenças Vasculares Periféricas , Estudos Prospectivos , Distribuição Aleatória , Superóxido Dismutase/análise , Superóxido Dismutase/sangue , Fator de Necrose Tumoral alfa/análise , Fator de Necrose Tumoral alfa/sangue
19.
Anal Chem ; 91(16): 10582-10588, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31314489

RESUMO

The opioid epidemic continues in the United States. Many have been impacted by this epidemic, including neonates who exhibit Neonatal Abstinence Syndrome (NAS). Opioid diagnosis and NAS can be negatively impacted by limited testing options outside the hospital, due to poor assay performance, false-negatives, rapid drug clearance rates, and difficulty in obtaining enough specimen for testing. Here we report a small volume urine assay for oxycodone, hydrocodone, fentanyl, noroxycodone, norhydrocodone, and norfentanyl with excellent LODs and LOQs. The free-solution assay (FSA), coupled with high affinity DNA aptamer probes and a compensated interferometric reader (CIR), represents a potential solution for quantifying opioids rapidly, at high sensitivity, and noninvasively on small sample volumes. The mix-and-read test is 5- to 275-fold and 50- to 1250-fold more sensitive than LC-MS/MS and immunoassays, respectively. Using FSA, oxycodone, hydrocodone, fentanyl, and their urinary metabolites were quantified using 10 µL of urine at 28-81 pg/mL, with >95% specificity and excellent accuracy in ∼1 h. The assay sensitivity, small sample size requirement, and speed could enable opioid screening, particularly for neonates, and points to the potential for pharmacokinetic tracking.


Assuntos
Analgésicos Opioides/urina , Aptâmeros de Nucleotídeos/química , Analgésicos Opioides/metabolismo , Fentanila/metabolismo , Fentanila/urina , Humanos , Hidrocodona/análogos & derivados , Hidrocodona/metabolismo , Hidrocodona/urina , Estrutura Molecular , Morfinanos/metabolismo , Morfinanos/urina , Oxicodona/metabolismo , Oxicodona/urina
20.
Brain Res ; 1721: 146319, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31276638

RESUMO

Cerebral ischemia/reperfusion injury (CIRI) can lead to perioperative neurocognitive disorders (PND) during clinical recanalization procedures in cerebral vessels, principally due to neuronal apoptosis in the hippocampus. Oxycodone appears to be a multiple opioid receptor agonist and exerts intrinsic antinociception activity via κ-opioid receptor (KOR). Recent evidence has revealed that activation of both δ-opioid receptor (DOR) and KOR can provide neuroprotection against CIRI in vivo and in vitro. In our study, we established an oxygen-glucose deprivation/recovery (OGD/R) model with fetal hippocampal neurons and found that oxycodone could induce CIRI tolerance in these neurons, primarily through KOR and DOR. Possible mechanisms might involve the regulatory effect of oxycodone on the MAPK-Bcl2/Bax-caspase-9-caspase-3 pathway, as well as its inhibitory effect on cellular reactive oxygen species (ROS) production and mitochondrial membrane potential activation. Taken together, our findings may indicate a potential method for the prevention and treatment of PND associated with CIRI.


Assuntos
Apoptose/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Oxicodona/farmacologia , Animais , Animais Recém-Nascidos , Caspases/metabolismo , Células Cultivadas , Feminino , Glucose/metabolismo , Hipocampo/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neurônios/metabolismo , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Oxicodona/metabolismo , Oxigênio/metabolismo , Gravidez , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Receptores Opioides delta/efeitos dos fármacos , Receptores Opioides delta/metabolismo , Receptores Opioides kappa/efeitos dos fármacos , Receptores Opioides kappa/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...