Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.291
Filtrar
1.
BMC Genomics ; 25(1): 469, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745121

RESUMO

Carotenoid cleavage oxygenases (CCOs) enzymes play a vital role in plant growth and development through the synthesis of apocarotenoids and their derivative. These chemicals are necessary for flower and fruit coloration, as well as the manufacture of plant hormones such as abscisic acid (ABA) and strigolactones, which control a variety of physiological processes. The CCOs gene family has not been characterized in Arachis hypogaea. Genome mining of A. hypogaea identifies 24 AhCCO gene members. The AhCCO gene family was divided into two subgroups based on the recent study of the Arabidopsis thaliana CCO gene family classification system. Twenty-three AhCCO genes, constituting 95.8% of the total, were regulated by 29 miRNAs, underscoring the significance of microRNAs (miRNAs) in governing gene expression in peanuts. AhCCD19 is the only gene that lacks a miRNA target site. The physicochemical characteristics of CCO genes and their molecular weights and isoelectric points were studied further. The genes were then characterized regarding chromosomal distribution, structure, and promoter cis-elements. Light, stress development, drought stress, and hormone responsiveness were discovered to be associated with AhCCO genes, which can be utilized in developing more resilient crops. The investigation also showed the cellular location of the encoded proteins and discovered that the peanut carotenoid oxygenase gene family's expansion was most likely the result of tandem, segmental, and whole-genome duplication events. The localization expresses the abundance of genes mostly in the cytoplasm and chloroplast. Expression analysis shows that AhCCD7 and AhCCD14 genes show the maximum expression in the apical meristem, lateral leaf, and pentafoliate leaf development, while AhNCED9 and AhNCED13 express in response to Aspergillus flavus resistance. This knowledge throws light on the evolutionary history of the AhCCO gene family and may help researchers better understand the molecular processes behind gene duplication occurrences in plants. An integrated synteny study was used to find orthologous carotenoid oxygenase genes in A. hypogaea, whereas Arabidopsis thaliana and Beta vulgaris were used as references for the functional characterization of peanut CCO genes. These studies provide a foundation for future research on the regulation and functions of this gene family. This information provides valuable insights into the genetic regulation of AhCCO genes. This technology could create molecular markers for breeding programs to develop new peanut lines.


Assuntos
Arachis , Regulação da Expressão Gênica de Plantas , Família Multigênica , Oxigenases , Estresse Fisiológico , Arachis/genética , Arachis/enzimologia , Estresse Fisiológico/genética , Oxigenases/genética , Oxigenases/metabolismo , Carotenoides/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Filogenia , Genoma de Planta , Regiões Promotoras Genéticas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Nat Commun ; 15(1): 4226, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762502

RESUMO

Aerobic methanotrophic bacteria are considered strict aerobes but are often highly abundant in hypoxic and even anoxic environments. Despite possessing denitrification genes, it remains to be verified whether denitrification contributes to their growth. Here, we show that acidophilic methanotrophs can respire nitrous oxide (N2O) and grow anaerobically on diverse non-methane substrates, including methanol, C-C substrates, and hydrogen. We study two strains that possess N2O reductase genes: Methylocella tundrae T4 and Methylacidiphilum caldifontis IT6. We show that N2O respiration supports growth of Methylacidiphilum caldifontis at an extremely acidic pH of 2.0, exceeding the known physiological pH limits for microbial N2O consumption. Methylocella tundrae simultaneously consumes N2O and CH4 in suboxic conditions, indicating robustness of its N2O reductase activity in the presence of O2. Furthermore, in O2-limiting conditions, the amount of CH4 oxidized per O2 reduced increases when N2O is added, indicating that Methylocella tundrae can direct more O2 towards methane monooxygenase. Thus, our results demonstrate that some methanotrophs can respire N2O independently or simultaneously with O2, which may facilitate their growth and survival in dynamic environments. Such metabolic capability enables these bacteria to simultaneously reduce the release of the key greenhouse gases CO2, CH4, and N2O.


Assuntos
Metano , Óxido Nitroso , Óxido Nitroso/metabolismo , Metano/metabolismo , Concentração de Íons de Hidrogênio , Oxirredutases/metabolismo , Oxirredutases/genética , Oxigênio/metabolismo , Oxirredução , Anaerobiose , Metanol/metabolismo , Hidrogênio/metabolismo , Oxigenases/metabolismo , Oxigenases/genética
3.
Physiol Plant ; 176(2): e14287, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606719

RESUMO

Salt stress substantially leads to flowering delay. The regulation of salt-induced late flowering has been studied at the transcriptional and protein levels; however, the involvement of secondary metabolites has rarely been investigated. Here, we report that FMOGS-OXs (EC 1.14.13.237), the enzymes that catalyze the biosynthesis of glucosinolates (GSLs), promote flowering transition in Arabidopsis thaliana. It has been reported that WRKY75 is a positive regulator, and MAF4 is a negative regulator of flowering transition. The products of FMOGS-OXs, methylsulfinylalkyl GSLs (MS GSLs), facilitate flowering by inducing WRKY75 and repressing the MAS-MAF4 module. We further show that the degradation of MS GSLs is involved in salt-induced late flowering and salt tolerance. Salt stress induces the expression of myrosinase genes, resulting in the degradation of MS GSLs, thereby relieving the promotion of WRKY75 and inhibition of MAF4, leading to delayed flowering. In addition, the degradation products derived from MS GSLs enhance salt tolerance. Previous studies have revealed that FMOGS-OXs exhibit alternative catalytic activity to form trimethylamine N-oxide (TMAO) under salt stress, which activates multiple stress-related genes to promote salt tolerance. Therefore, FMOGS-OXs integrate flowering transition and salt tolerance in various ways. Our study shed light on the functional diversity of GSLs and established a connection between flowering transition, salt resistance, and GSL metabolism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oxigenases , Arabidopsis/metabolismo , Tolerância ao Sal , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Glucosinolatos
4.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167188, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657913

RESUMO

The incidence of gallbladder cholesterol stones (GCS) increases rapidly among people living in high-altitude hypoxic environments compared to those in normoxic areas. Upregulation of hepatic hypoxia inducible factor 1α (Hif-1α) plays a key role in the formation of GCS. High plasma trimethylamine-N-oxide (TMAO) levels are positively correlated with the occurrence of GCS. We hypothesized that HIF-1α may upregulate TMAO levels by promoting the transcription of flavin-containing monooxygenase 3 (Fmo3), which eventually leads to GCS formation. Our study shows that in women, high plasma total cholesterol and apolipoprotein B were positively correlated with cholecystolithiasis and hypoxia. Hif-1α binds to the Fmo3 promoter and promotes Fmo3 expression. Hypoxia and lithogenic diet induce the expression of Hif-1α, Fmo3, TMAO and cholesterol tube transporters in the livers of mice, disturb the proportion of bile and plasma components, and induce the formation of GCS. In cell experiments, silencing Hif-1α downregulates the expression of Fmo3, TMAO and cholesterol tube transporters. In a mouse model of hypoxic cholecystolithiasis, silencing Hif-1α downregulates the expression of related genes, restores the proportion of bile and plasma lipid components, and reduces the formation of GCS. Our study shows that Hif-1α binds to the promoter region of Fmo3 and promotes Fmo3 transcription. Thus, it mediates the transcriptional activation of the TMA/Fmo3/TMAO pathway, upregulates the expression of ATP-binding cassettes (Abc) g5 and g8, and participates in the regulation of the occurrence of GCS in the plateau region.


Assuntos
Colesterol , Cálculos Biliares , Subunidade alfa do Fator 1 Induzível por Hipóxia , Metilaminas , Oxigenases , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Animais , Humanos , Feminino , Camundongos , Colesterol/metabolismo , Cálculos Biliares/metabolismo , Cálculos Biliares/genética , Cálculos Biliares/patologia , Oxigenases/metabolismo , Oxigenases/genética , Metilaminas/metabolismo , Masculino , Vesícula Biliar/metabolismo , Vesícula Biliar/patologia , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , Hipóxia/metabolismo , Hipóxia/genética , Adulto , Camundongos Endogâmicos C57BL , Colecistolitíase/metabolismo , Colecistolitíase/genética
5.
Proc Natl Acad Sci U S A ; 121(16): e2311390121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38593075

RESUMO

Many organisms that utilize the Calvin-Benson-Bassham (CBB) cycle for autotrophic growth harbor metabolic pathways to remove and/or salvage 2-phosphoglycolate, the product of the oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). It has been presumed that the occurrence of 2-phosphoglycolate salvage is linked to the CBB cycle, and in particular, the C2 pathway to the CBB cycle and oxygenic photosynthesis. Here, we examined 2-phosphoglycolate salvage in the hyperthermophilic archaeon Thermococcus kodakarensis, an obligate anaerobe that harbors a Rubisco that functions in the pentose bisphosphate pathway. T. kodakarensis harbors enzymes that have the potential to convert 2-phosphoglycolate to glycine and serine, and their genes were identified by biochemical and/or genetic analyses. 2-phosphoglycolate phosphatase activity increased 1.6-fold when cells were grown under microaerobic conditions compared to anaerobic conditions. Among two candidates, TK1734 encoded a phosphatase specific for 2-phosphoglycolate, and the enzyme was responsible for 80% of the 2-phosphoglycolate phosphatase activity in T. kodakarensis cells. The TK1734 disruption strain displayed growth impairment under microaerobic conditions, which was relieved upon addition of sodium sulfide. In addition, glycolate was detected in the medium when T. kodakarensis was grown under microaerobic conditions. The results suggest that T. kodakarensis removes 2-phosphoglycolate via a phosphatase reaction followed by secretion of glycolate to the medium. As the Rubisco in T. kodakarensis functions in the pentose bisphosphate pathway and not in the CBB cycle, mechanisms to remove 2-phosphoglycolate in this archaeon emerged independent of the CBB cycle.


Assuntos
Archaea , Ribulose-Bifosfato Carboxilase , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Archaea/metabolismo , Fotossíntese , Glicolatos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Oxigenases/metabolismo , Pentoses
6.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1076-1088, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658150

RESUMO

Flavin-containing monooxygenase (FMO) is the key enzyme in the biosynthesis pathway of CSOs with sulfur oxidation. In order to explore the molecular regulatory mechanism of FMO in the synthesis of onion CSOs, based on transcriptome database and phylogenetic analysis, one AcFMO gene that may be involved in alliin synthesis was obtained, the AcFMO had a cDNA of 1 374 bp and encoded 457 amino acids, which was evolutionarily closest to the AsFMO of garlic. Real-time fluorescence quantitative polymerase chain reaction (qRT-PCR) indicated that AcFMO was the highest in the flowers and the lowest in the leaf sheaths. The results of subcellular localization showed that the AcFMO gene product was widely distributed throughout the cell A yeast expression vector was constructed, and the AcFMO gene was ecotopically overexpressed in yeast to further study the enzyme function in vitro and could catalyze the synthesis of alliin by S-allyl-l-cysteine. In summary, the cloning and functional identification of AcFMO have important reference value for understanding the biosynthesis of CSOs in onions.


Assuntos
Clonagem Molecular , Cisteína/análogos & derivados , Cebolas , Cebolas/genética , Cebolas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cisteína/biossíntese , Cisteína/metabolismo , Oxigenases/genética , Oxigenases/metabolismo , Sequência de Aminoácidos , Filogenia , Dissulfetos/metabolismo , Dados de Sequência Molecular , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
7.
Biochemistry ; 63(9): 1170-1177, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38587906

RESUMO

The MbnBC enzyme complex converts cysteine residues in a peptide substrate, MbnA, to oxazolone/thioamide groups during the biosynthesis of copper chelator methanobactin (Mbn). MbnBC belongs to the mixed-valent diiron oxygenase (MVDO) family, of which members use an Fe(II)Fe(III) cofactor to react with dioxygen for substrate modification. Several crystal structures of the inactive Fe(III)Fe(III) form of MbnBC alone and in complex with MbnA have been reported, but a mechanistic understanding requires determination of the oxidation states of the crystallographically observed Fe ions in the catalytically active Fe(II)Fe(III) state, along with the site of MbnA binding. Here, we have used electron nuclear double resonance (ENDOR) spectroscopy to determine such structural and electronic properties of the active site, in particular, the mode of substrate binding to the MV state, information not accessible by X-ray crystallography alone. The oxidation states of the two Fe ions were determined by 15N ENDOR analysis. The presence and locations of both bridging and terminal exogenous solvent ligands were determined using 1H and 2H ENDOR. In addition, 2H ENDOR using an isotopically labeled MbnA substrate indicates that MbnA binds to the Fe(III) ion of the cluster via the sulfur atom of its N-terminal modifiable cysteine residue, with displacement of a coordinated solvent ligand as shown by complementary 1H ENDOR. These results, which underscore the utility of ENDOR in studying MVDOs, provide a molecular picture of the initial steps in Mbn biosynthesis.


Assuntos
Imidazóis , Oligopeptídeos , Imidazóis/metabolismo , Imidazóis/química , Oligopeptídeos/metabolismo , Oligopeptídeos/química , Oligopeptídeos/biossíntese , Oxirredução , Cristalografia por Raios X , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Espectroscopia de Ressonância de Spin Eletrônica , Oxigenases/metabolismo , Oxigenases/química , Domínio Catalítico , Especificidade por Substrato , Modelos Moleculares , Ferro/metabolismo , Ferro/química
8.
Molecules ; 29(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38611907

RESUMO

The insecticidal property of ring C-seco limonoids has been discovered empirically and the target protein identified, but, to date, the molecular mechanism of action has not been described at the atomic scale. We elucidate on computational grounds whether nine C-seco limonoids present sufficiently high affinity to bind specifically with the putative target enzyme of the insects (ecdysone 20-monooxygenase). To this end, 3D models of ligands and the receptor target were generated and their interaction energies estimated by docking simulations. As a proof of concept, the tetrahydro-isoquinolinyl propenamide derivative QHC is the reference ligand bound to aldosterone synthase in the complex with PDB entry 4ZGX. It served as the 3D template for target modeling via homology. QHC was successfully docked back to its crystal pose in a one-digit nanomolar range. The reported experimental binding affinities span over the nanomolar to lower micromolar range. All nine limonoids were found with strong affinities in the range of -9 < ΔG < -13 kcal/mol. The molt hormone ecdysone showed a comparable ΔG energy of -12 kcal/mol, whereas -11 kcal/mol was the back docking result for the liganded crystal 4ZGX. In conclusion, the nine C-seco limonoids were strong binders on theoretical grounds in an activity range between a ten-fold lower to a ten-fold higher concentration level than insecticide ecdysone with its known target receptor. The comparable or even stronger binding hints at ecdysone 20-monooxygenase as their target biomolecule. Our assumption, however, is in need of future experimental confirmation before conclusions with certainty can be drawn about the true molecular mechanism of action for the C-seco limonoids under scrutiny.


Assuntos
Inseticidas , Limoninas , Oxigenases , Inseticidas/farmacologia , Ecdisona , Limoninas/farmacologia , Muda
9.
Molecules ; 29(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542906

RESUMO

(1) Background: Particulate methane monooxygenase (pMMO) has a strong dependence on the natural electron transfer path and is prone to denaturation, which results in its redox activity centers being unable to transfer electrons with bare electrodes directly and making it challenging to observe an electrochemical response; (2) Methods: Using methanobactin (Mb) as the electron transporter between gold electrodes and pMMO, a bionic interface with high biocompatibility and stability was created. The Mb-AuNPs-modified functionalized gold net electrode as a working electrode, the kinetic behaviors of pMMO bioelectrocatalysis, and the effect of Mb on pMMO were analyzed. The CV tests were performed at different scanning rates to obtain electrochemical kinetics parameters. (3) Results: The values of the electron transfer coefficient (α) and electron transfer rate constant (ks) are relatively large in test environments containing only CH4 or O2. In contrast, in the test environment containing both CH4 and O2, the bioelectrocatalysis of pMMO is a two-electron transfer process with a relatively small α and ks; (4) Conclusions: It was inferred that Mb formed the complex with pMMO. More importantly, Mb not only played a role in electron transfer but also in stabilizing the enzyme structure of pMMO and maintaining a specific redox state. Furthermore, the continuous catalytic oxidation of natural substrate methane was realized.


Assuntos
Ouro , Imidazóis , Nanopartículas Metálicas , Oligopeptídeos , Oxigenases , Ouro/química , Cobre/química , Nanopartículas Metálicas/química , Oxirredução , Minerais , Metano/química , Eletrodos
10.
Arch Toxicol ; 98(6): 1581-1628, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38520539

RESUMO

Data are presented on the formation of potentially toxic metabolites of drugs that are substrates of human drug metabolizing enzymes. The tabular data lists the formation of potentially toxic/reactive products. The data were obtained from in vitro experiments and showed that the oxidative reactions predominate (with 96% of the total potential toxication reactions). Reductive reactions (e.g., reduction of nitro to amino group and reductive dehalogenation) participate to the extent of 4%. Of the enzymes, cytochrome P450 (P450, CYP) enzymes catalyzed 72% of the reactions, myeloperoxidase (MPO) 7%, flavin-containing monooxygenase (FMO) 3%, aldehyde oxidase (AOX) 4%, sulfotransferase (SULT) 5%, and a group of minor participating enzymes to the extent of 9%. Within the P450 Superfamily, P450 Subfamily 3A (P450 3A4 and 3A5) participates to the extent of 27% and the Subfamily 2C (P450 2C9 and P450 2C19) to the extent of 16%, together catalyzing 43% of the reactions, followed by P450 Subfamily 1A (P450 1A1 and P450 1A2) with 15%. The P450 2D6 enzyme participated in an extent of 8%, P450 2E1 in 10%, and P450 2B6 in 6% of the reactions. All other enzymes participate to the extent of 14%. The data show that, of the human enzymes analyzed, P450 enzymes were dominant in catalyzing potential toxication reactions of drugs and their metabolites, with the major role assigned to the P450 Subfamily 3A and significant participation of the P450 Subfamilies 2C and 1A, plus the 2D6, 2E1 and 2B6 enzymes contributing. Selected examples of drugs that are activated or proposed to form toxic species are discussed.


Assuntos
Sistema Enzimático do Citocromo P-450 , Humanos , Sistema Enzimático do Citocromo P-450/metabolismo , Preparações Farmacêuticas/metabolismo , Sulfotransferases/metabolismo , Oxirredução , Aldeído Oxidase/metabolismo , Peroxidase/metabolismo , Oxigenases
11.
Int J Biol Macromol ; 264(Pt 2): 130739, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460639

RESUMO

Extradiol dioxygenases (EDOs) catalyzing meta-cleavage of catecholic compounds promise an effective way to detoxify aromatic pollutants. This work reported a novel scenario to engineer our recently identified Type I EDO from Tcu3516 for a broader substrate scope and enhanced activity, which was based on 2,3-dihydroxybiphenyl (2,3-DHB)-liganded molecular docking of Tcu3516 and multiple sequence alignment with other 22 Type I EDOs. 11 non-conservative residues of Tcu3516 within 6 Å distance to the 2,3-DHB ligand center were selected as potential hotspots and subjected to semi-rational design using 6 catecholic analogues as substrates; the mutants V186L and V212N returned with progressive evolution in substrate scope and catalytic activity. Both mutants were combined with D285A for construction of double mutants and final triple mutant V186L/V212N/D285A. Except for 2,3-DHB (the mutant V186L/D285A gave the best catalytic performance), the triple mutant prevailed all other 5 catecholic compounds for their degradation; affording the catalytic efficiency kcat/Km value increase by 10-30 folds, protein Tm (structural rigidity) increase by 15 °C and the half-life time enhancement by 10 times compared to the wild type Tcu3516. The molecular dynamic simulation suggested that a stabler core and a more flexible entrance are likely accounting for enhanced catalytic activity and stability of enzymes.


Assuntos
Compostos Orgânicos , Oxigenases , Simulação de Acoplamento Molecular , Oxigenases/química , Alinhamento de Sequência , Especificidade por Substrato
12.
J Am Chem Soc ; 146(11): 7313-7323, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38452252

RESUMO

DUF692 multinuclear iron oxygenases (MNIOs) are an emerging family of tailoring enzymes involved in the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs). Three members, MbnB, TglH, and ChrH, have been characterized to date and shown to catalyze unusual and complex transformations. Using a co-occurrence-based bioinformatic search strategy, we recently generated a sequence similarity network of MNIO-RiPP operons that encode one or more MNIOs adjacent to a transporter. The network revealed >1000 unique gene clusters, evidence of an unexplored biosynthetic landscape. Herein, we assess an MNIO-RiPP cluster from this network that is encoded in Proteobacteria and Actinobacteria. The cluster, which we have termed mov (for methanobactin-like operon in Vibrio), encodes a 23-residue precursor peptide, two MNIOs, a RiPP recognition element, and a transporter. Using both in vivo and in vitro methods, we show that one MNIO, homologous to MbnB, installs an oxazolone-thioamide at a Thr-Cys dyad in the precursor. Subsequently, the second MNIO catalyzes N-Cα bond cleavage of the penultimate Asn to generate a C-terminally amidated peptide. This transformation expands the reaction scope of the enzyme family, marks the first example of an MNIO-catalyzed modification that does not involve Cys, and sets the stage for future exploration of other MNIO-RiPPs.


Assuntos
Imidazóis , Oligopeptídeos , Oxigenases , Processamento de Proteína Pós-Traducional , Oxigenases/genética , Peptídeos/química , Família Multigênica , Catálise
13.
Phytomedicine ; 128: 155349, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522315

RESUMO

BACKGROUND: Trimethylamine N-oxide (TMAO), a metabolite produced by intestinal microbiota through metabolizing phosphatidylcholine, choline, l-carnitine and betaine in the diet, has been implicated in the pathogenesis of atherosclerosis (AS). Concurrently, dietary polyphenols have garnered attention for their potential to ameliorate obesity, diabetes and atherosclerosis primarily by modulating the intestinal microbial structure. Hickory (Carya cathayensis) nut, a polyphenol-rich food product favored for its palatability, emerges as a candidate for exploration. HYPOTHESIS/PURPOSE: The relationship between polyphenol of hickory nut and atherosclerosis prevention will be firstly clarified, providing theoretical basis for the discovery of natural products counteracting TMAO-induced AS process in hickory nut. STUDY DESIGN AND METHODS: Employing Enzyme-linked Immunosorbent Assay (ELISA) and histological examination of aortic samples, the effects of total polyphenol extract on obesity index, inflammatory index and pathological changes of atherosclerosis in C57BL/6 J mice fed with high-fat and high choline diet were evaluated. Further, the composition, abundance, and function of mouse gut microbiota were analyzed through 16srDNA sequencing. Concurrently, the levels of TMAO and the expression of key enzymes (CutC and FMO3) involved in its synthesis are quantified using ELISA, Western Blot and Real-Time Quantitative PCR (RT-qPCR). Additionally, targeted metabolomic profiling of the hickory nut polyphenol extract was conducted, accompanied by molecular docking simulations to predict interactions between candidate polyphenols and the CutC/FMO3 using Autodock Vina. Finally, the docking prediction were verified by microscale thermophoresis (MST) . RESULTS: Polyphenol extracts of hickory nut improved the index of obesity and inflammation, and alleviated the pathological changes of atherosclerosis in C57BL/6 J mice fed with high-fat and high-choline diet. Meanwhile, these polyphenol extracts also changed the composition and function of intestinal microbiota, and increased the abundance of microorganisms in mice. Notably, the abundance of intestinal microbiota endowed with CutC gene was significantly reduced, coherent with expression of CutC catalyzing TMA production. Moreover, polyphenol extracts also decreased the expression of FMO3 in the liver, contributing to the reduction of TMAO levels in serum. Furthermore, metabonomic profile analysis of these polyphenol extracts identified 647 kinds of polyphenols. Molecular docking predication further demonstrated that Casuariin and Cinnamtannin B2 had the most potential inhibition on the enzymatic activities of CutC or FMO3, respectively. Notably, MST analysis corroborated the potential for direct interaction between CutC enzyme and available polyphenols such as Corilagin, (-)-Gallocatechin gallate and Epigallocatechin gallate. CONCLUSION: Hickory polyphenol extract can mitigate HFD-induced AS by regulating intestinal microflora in murine models. In addition, TMA-FMO3-TMAO pathway may play a key role in this process. This research unveils, for the inaugural time, the complex interaction between hickory nut-derived polyphenols and gut microbial, providing novel insights into the role of dietary polyphenols in AS prevention.


Assuntos
Aterosclerose , Microbioma Gastrointestinal , Metilaminas , Camundongos Endogâmicos C57BL , Oxigenases , Polifenóis , Animais , Polifenóis/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Metilaminas/metabolismo , Aterosclerose/prevenção & controle , Aterosclerose/tratamento farmacológico , Masculino , Camundongos , Nozes/química , Dieta Hiperlipídica/efeitos adversos , Colina , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Obesidade/prevenção & controle , Simulação de Acoplamento Molecular
14.
Planta ; 259(4): 84, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448635

RESUMO

MAIN CONCLUSION: A novel electroporation method for genome editing was performed using plant tissue samples by direct RNPs-introduction in carnation. Genome editing is becoming a very useful tool in plant breeding. In this study, a novel electroporation method was performed for genome editing using plant tissue samples. The objective was to create a flower color mutant using the pink-flowered carnation 'Kane Ainou 1-go'. For this purpose, a ribonucleoprotein consisting of guide RNA and clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) was introduced into the stem tissue to induce mutations in the anthocyanidin synthase (ANS) gene, which is involved in anthocyanin biosynthesis. As the ANS of 'Kane Ainou 1-go' has not been previously isolated, we initially isolated the ANS gene from 'Kane Ainou 1-go' for characterization. Southern hybridization analysis confirmed that the ANS gene was present in the genome as a two-allele gene with a pair of homologous sequences (ANS-1 and 2); these sequences were used as the target for genome editing. Genome editing was performed by introducing #2_single-guide RNA into the stem tissue using the ribonucleoprotein. This molecule was used because it exhibited the highest efficiency in an analysis of cleavage activity against the target sequence in vitro. Cleaved amplified polymorphic sequence analysis of genomic DNA extracted from 85 regenerated individuals after genome editing was performed. The results indicated that mutations in the ANS gene may have been introduced into two lines. Cloning of the ANS gene in these two lines confirmed the introduction of a single nucleotide substitution mutation for ANS-1 in both lines, and a single amino acid substitution in one line. We discussed the possibility of color change by the amino acid substitution, and also the future applications of this technology.


Assuntos
Dianthus , Oxigenases , Humanos , Edição de Genes , RNA Guia de Sistemas CRISPR-Cas , Melhoramento Vegetal , Eletroporação , Ribonucleoproteínas
15.
Proc Natl Acad Sci U S A ; 121(11): e2308570121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442170

RESUMO

Cytokinesis is the last step of cell division and is regulated by the small GTPase RhoA. RhoA activity is required for all steps of cytokinesis, including prior to abscission when daughter cells are ultimately physically separated. Like germ cells in all animals, the Caenorhabditis elegans embryonic germline founder cell initiates cytokinesis but does not complete abscission, leaving a stable intercellular bridge between the two daughter cells. Here, we identify and characterize C. elegans OSGN-1 as a cytokinetic regulator that promotes RhoA activity during late cytokinesis. Sequence analyses and biochemical reconstitutions reveal that OSGN-1 is a flavin-containing monooxygenase (MO). Genetic analyses indicate that the MO activity of OSGN-1 is required to maintain active RhoA at the end of cytokinesis in the germline founder cell and to stabilize the intercellular bridge. Deletion of OSGIN1 in human cells results in an increase in binucleation as a result of cytokinetic furrow regression, and this phenotype can be rescued by expressing a catalytically active form of C. elegans OSGN-1, indicating that OSGN-1 and OSGIN1 are functional orthologs. We propose that OSGN-1 and OSGIN1 are conserved MO enzymes required to maintain RhoA activity at the intercellular bridge during late cytokinesis and thus favor its stability, enabling proper abscission in human cells and bridge stabilization in C. elegans germ cells.


Assuntos
Citocinese , Dermatite , Oxigenases , Animais , Humanos , Citocinese/genética , Caenorhabditis elegans/genética , Divisão Celular
16.
Chembiochem ; 25(7): e202300833, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306174

RESUMO

The styrene monooxygenase, a two-component enzymatic system for styrene epoxidation, was characterised through the study of Fus-SMO - a chimera resulting from the fusion of StyA and StyB using a flexible linker. Notably, it remains debated whether the transfer of FADH2 from StyB to StyA occurs through diffusion, channeling, or a combination of both. Fus-SMO was identified as a trimer with one bound FAD molecule. In silico modelling revealed a well-distanced arrangement (45-50 Å) facilitated by the flexible linker's loopy structure. Pre-steady-state kinetics elucidated the FADox reduction intricacies (kred=110 s-1 for bound FADox), identifying free FADox binding as the rate-determining step. The aerobic oxidation of FADH2 (kox=90 s-1) and subsequent decomposition to FADox and H2O2 demonstrated StyA's protective effect on the bound hydroperoxoflavin (kdec=0.2 s-1) compared to free cofactor (kdec=1.8 s-1). At varied styrene concentrations, kox for FADH2 ranged from 80 to 120 s-1. Studies on NADH consumption vs. styrene epoxidation revealed Fus-SMO's ability to achieve quantitative coupling efficiency in solution, surpassing natural two-component SMOs. The results suggest that Fus-SMO exhibits enhanced FADH2 channelling between subunits. This work contributes to comprehending FADH2 transfer mechanisms in SMO and illustrates how protein fusion can elevate catalytic efficiency for biocatalytic applications.


Assuntos
Peróxido de Hidrogênio , Oxigenases , Oxigenases/metabolismo , Estireno , Simulação por Computador , Cinética , Flavina-Adenina Dinucleotídeo/metabolismo
17.
Environ Res ; 250: 118492, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38373550

RESUMO

Dioxin-like pollutants (DLPs), such as polychlorinated biphenyl 126 (PCB 126), are synthetic chemicals classified as persistent organic pollutants. They accumulate in adipose tissue and have been linked to cardiometabolic disorders, including fatty liver disease. The toxicity of these compounds is associated with activation of the aryl hydrocarbon receptor (Ahr), leading to the induction of phase I metabolizing enzyme cytochrome P4501a1 (Cyp1a1) and the subsequent production of reactive oxygen species (ROS). Recent research has shown that DLPs can also induce the xenobiotic detoxification enzyme flavin-containing monooxygenase 3 (FMO3), which plays a role in metabolic homeostasis. We hypothesized whether genetic deletion of Fmo3 could protect mice, particularly in the liver, where Fmo3 is most inducible, against PCB 126 toxicity. To test this hypothesis, male C57BL/6 wild-type (WT) mice and Fmo3 knockout (Fmo3 KO) mice were exposed to PCB 126 or vehicle (safflower oil) during a 12-week study, at weeks 2 and 4. Various analyses were performed, including hepatic histology, RNA-sequencing, and quantitation of PCB 126 and F2-isoprostane concentrations. The results showed that PCB 126 exposure caused macro and microvesicular fat deposition in WT mice, but this macrovesicular fatty change was absent in Fmo3 KO mice. Moreover, at the pathway level, the hepatic oxidative stress response was significantly different between the two genotypes, with the induction of specific genes observed only in WT mice. Notably, the most abundant F2-isoprostane, 8-iso-15-keto PGE2, increased in WT mice in response to PCB 126 exposure. The study's findings also demonstrated that hepatic tissue concentrations of PCB 126 were higher in WT mice compared to Fmo3 KO mice. In summary, the absence of FMO3 in mice led to a distinctive response to dioxin-like pollutant exposure in the liver, likely due to alterations in lipid metabolism and storage, underscoring the complex interplay of genetic factors in the response to environmental toxins.


Assuntos
Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo , Oxigenases , Bifenilos Policlorados , Animais , Oxigenases/genética , Oxigenases/metabolismo , Bifenilos Policlorados/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Masculino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Poluentes Ambientais/toxicidade
18.
Biotechnol J ; 19(2): e2300210, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38403458

RESUMO

ε-Caprolactone is an important non-toxic compound for polymer synthesis like polycaprolactone which has been widely used in drug delivery and degradable plastics. To meet the demand for a green economy, a bi-enzymatic cascade, consisting of an alcohol dehydrogenase (ADH) and a cyclohexanone monooxygenase (CHMO), was designed and introduced into Escherichia coli to synthesize ε-caprolactone from cyclohexanol with a self-sufficient NADPH-cofactor regeneration system. To further improve the catalytic efficiency, a carbonyl group-dependent colorimetric method using inexpensive 2,4-dinitrophenylhydrazine (DNPH) was developed for assay of cyclohexanone, an intermediate production of cascade reaction. It can be used to screen mutant strains with high catalytic efficiency from high-throughput library by detecting the absorbance value in microtiter plates (MTP) instead of gas chromatography (GC) analysis. Moreover, an RBS combinatorial library was constructed for balancing the expression of ADH and CHMO from two independent transcriptional units. After the high-throughput screening based on intermediate product control, an optimal variant with higher substrate tolerance and long-term stability was obtained from RBS combinatorial library. Through a fed-batch process, ε-caprolactone production reached 148.2 mM after 70 h of reaction under the optimized conditions, which was the highest yield achieved to date.


Assuntos
Escherichia coli , Oxigenases , Escherichia coli/genética , Escherichia coli/metabolismo , Caproatos/química , Lactonas/química , Álcool Desidrogenase/metabolismo
19.
Org Lett ; 26(9): 1807-1812, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38393343

RESUMO

We have identified the biosynthetic gene cluster (hvm) for the sterol O-acyltransferase inhibitor helvamide (1) from the genome of Aspergillus rugulosus MST-FP2007. Heterologous expression of hvm in A. nidulans produced a previously unreported analog helvamide B (5). An α-ketoglutarate-dependent oxygenase Hvm1 was shown to catalyze intramolecular cyclization of 1 to yield 5. The biosynthetic branch to the related hancockiamides and helvamides was found to be controlled by the substrate selectivity of monomodular nonribosomal peptide synthetases.


Assuntos
Ácidos Cetoglutáricos , Oxigenases , Oxigenases/genética , Oxigenases/metabolismo , Esterol O-Aciltransferase/genética , Esterol O-Aciltransferase/metabolismo , Ciclização , Família Multigênica , Peptídeo Sintases/metabolismo
20.
Chem Rev ; 124(3): 1288-1320, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38305159

RESUMO

Methane is a potent greenhouse gas that contributes significantly to climate change and is primarily regulated in Nature by methanotrophic bacteria, which consume methane gas as their source of energy and carbon, first by oxidizing it to methanol. The direct oxidation of methane to methanol is a chemically difficult transformation, accomplished in methanotrophs by complex methane monooxygenase (MMO) enzyme systems. These enzymes use iron or copper metallocofactors and have been the subject of detailed investigation. While the structure, function, and active site architecture of the copper-dependent particulate methane monooxygenase (pMMO) have been investigated extensively, its putative quaternary interactions, regulation, requisite cofactors, and mechanism remain enigmatic. The iron-dependent soluble methane monooxygenase (sMMO) has been characterized biochemically, structurally, spectroscopically, and, for the most part, mechanistically. Here, we review the history of MMO research, focusing on recent developments and providing an outlook for future directions of the field. Engineered biological catalysis systems and bioinspired synthetic catalysts may continue to emerge along with a deeper understanding of the molecular mechanisms of biological methane oxidation. Harnessing the power of these enzymes will necessitate combined efforts in biochemistry, structural biology, inorganic chemistry, microbiology, computational biology, and engineering.


Assuntos
Cobre , Metano , Cobre/química , Ferro , Metanol , Oxigenases/metabolismo , Oxirredução , Oxigenases de Função Mista
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...