Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 257
Filtrar
1.
Drug Metab Dispos ; 51(3): 369-384, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36418184

RESUMO

Cytochrome P450 2B6 (CYP2B6) is a highly polymorphic human enzyme involved in the metabolism of many clinically relevant drugs, environmental toxins, and endogenous molecules with disparate structures. Over the last 20-plus years, in silico and in vitro studies of CYP2B6 using various ligands have provided foundational information regarding the substrate specificity and structure-function relationship of this enzyme. Approaches such as homology modeling, X-ray crystallography, molecular docking, and kinetic activity assays coupled with CYP2B6 mutagenesis have done much to characterize this originally neglected monooxygenase. However, a complete understanding of the structural details that make new chemical entities substrates of CYP2B6 is still lacking. Surprisingly little in vitro data has been obtained about the structure-function relationship of amino acids identified to be in the CYP2B6 active site. Since much attention has already been devoted to elucidating the function of CYP2B6 allelic variants, here we review the salient findings of in silico and in vitro studies of the CYP2B6 structure-function relationship with a deliberate focus on the active site. In addition to summarizing these complementary approaches to studying structure-function relationships, we note gaps/challenges in existing data such as the need for more CYP2B6 crystal structures, molecular docking results with various ligands, and data coupling CYP2B6 active site mutagenesis with kinetic parameter measurement under standard expression conditions. Harnessing in silico and in vitro techniques in tandem to understand the CYP2B6 structure-function relationship will likely offer further insights into CYP2B6-mediated metabolism. SIGNIFICANCE STATEMENT: The apparent importance of cytochrome P450 2B6 (CYP2B6) in the metabolism of various xenobiotics and endogenous molecules has grown since its discovery with many in silico and in vitro studies offering a partial description of its structure-function relationship. Determining the structure-function relationship of CYP2B6 is difficult but may be aided by thorough biochemical investigations of the CYP2B6 active site that provide a more complete pharmacological understanding of this important enzyme.


Assuntos
Simulação de Dinâmica Molecular , Oxirredutases N-Desmetilantes , Humanos , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP2B6/metabolismo , Domínio Catalítico , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Oxirredutases N-Desmetilantes/química , Oxirredutases N-Desmetilantes/metabolismo
2.
Nat Immunol ; 23(9): 1342-1354, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35995859

RESUMO

Appropriate regulation of B cell differentiation into plasma cells is essential for humoral immunity while preventing antibody-mediated autoimmunity; however, the underlying mechanisms, especially those with pathological consequences, remain unclear. Here, we found that the expression of Jmjd1c, a member of JmjC domain histone demethylase, in B cells but not in other immune cells, protected mice from rheumatoid arthritis (RA). In humans with RA, JMJD1C expression levels in B cells were negatively associated with plasma cell frequency and disease severity. Mechanistically, Jmjd1c demethylated STAT3, rather than histone substrate, to restrain plasma cell differentiation. STAT3 Lys140 hypermethylation caused by Jmjd1c deletion inhibited the interaction with phosphatase Ptpn6 and resulted in abnormally sustained STAT3 phosphorylation and activity, which in turn promoted plasma cell generation. Germinal center B cells devoid of Jmjd1c also acquired strikingly increased propensity to differentiate into plasma cells. STAT3 Lys140Arg point mutation completely abrogated the effect caused by Jmjd1c loss. Mice with Jmjd1c overexpression in B cells exhibited opposite phenotypes to Jmjd1c-deficient mice. Overall, our study revealed Jmjd1c as a critical regulator of plasma cell differentiation and RA and also highlighted the importance of demethylation modification for STAT3 in B cells.


Assuntos
Artrite Reumatoide , Histona Desmetilases com o Domínio Jumonji , Animais , Diferenciação Celular , Hematopoese , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Camundongos , Oxirredutases N-Desmetilantes/química , Oxirredutases N-Desmetilantes/genética , Oxirredutases N-Desmetilantes/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
3.
Nat Commun ; 13(1): 95, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013177

RESUMO

Non-heme iron and α-ketoglutarate-dependent (Fe/αKG) oxygenases catalyze various oxidative biotransformations. Due to their catalytic flexibility and high efficiency, Fe/αKG oxygenases have attracted keen attention for their application as biocatalysts. Here, we report the biochemical and structural characterizations of the unusually promiscuous and catalytically versatile Fe/αKG oxygenase SptF, involved in the biosynthesis of fungal meroterpenoid emervaridones. The in vitro analysis revealed that SptF catalyzes several continuous oxidation reactions, including hydroxylation, desaturation, epoxidation, and skeletal rearrangement. SptF exhibits extremely broad substrate specificity toward various meroterpenoids, and efficiently produced unique cyclopropane-ring-fused 5/3/5/5/6/6 and 5/3/6/6/6 scaffolds from terretonins. Moreover, SptF also hydroxylates steroids, including androsterone, testosterone, and progesterone, with different regiospecificities. Crystallographic and structure-based mutagenesis studies of SptF revealed the molecular basis of the enzyme reactions, and suggested that the malleability of the loop region contributes to the remarkable substrate promiscuity. SptF exhibits great potential as a promising biocatalyst for oxidation reactions.


Assuntos
Proteínas Fúngicas/química , Ferro/química , Ácidos Cetoglutáricos/química , Oxirredutases N-Desmetilantes/química , Terpenos/química , Androsterona/química , Androsterona/metabolismo , Sítios de Ligação , Biocatálise , Cátions Bivalentes , Cristalografia por Raios X , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Humanos , Hidroxilação , Ferro/metabolismo , Ácidos Cetoglutáricos/metabolismo , Cinética , Modelos Moleculares , Mutação , Oxirredução , Oxirredutases N-Desmetilantes/genética , Oxirredutases N-Desmetilantes/metabolismo , Progesterona/química , Progesterona/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Especificidade por Substrato , Terpenos/classificação , Terpenos/metabolismo , Testosterona/química , Testosterona/metabolismo
4.
Nat Commun ; 13(1): 225, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017571

RESUMO

Cytochalasans (CYTs), as well as their polycyclic (pcCYTs) and polymerized (meCYTs) derivatives, constitute one of the largest families of fungal polyketide-nonribosomal peptide (PK-NRP) hybrid natural products. However, the mechanism of chemical conversion from mono-CYTs (moCYTs) to both pcCYTs and meCYTs remains unknown. Here, we show the first successful example of the reconstitution of the CYT core backbone as well as the whole pathway in a heterologous host. Importantly, we also describe the berberine bridge enzyme (BBE)-like oxidase AspoA, which uses Glu538 as a general acid biocatalyst to catalyse an unusual protonation-driven double bond isomerization reaction and acts as a switch to alter the native (for moCYTs) and nonenzymatic (for pcCYTs and meCYTs) pathways to synthesize aspochalasin family compounds. Our results present an unprecedented function of BBE-like enzymes and highly suggest that the isolated pcCYTs and meCYTs are most likely artificially derived products.


Assuntos
Citocalasinas/biossíntese , Citocalasinas/química , Oxirredutases N-Desmetilantes/química , Oxirredutases N-Desmetilantes/metabolismo , Aspergillus/genética , Aspergillus/metabolismo , Produtos Biológicos , Catálise , Proteínas Fúngicas/metabolismo , Isomerismo , Simulação de Acoplamento Molecular , Oxirredutases N-Desmetilantes/genética , Policetídeos/metabolismo , Sordariales
5.
J Gene Med ; 23(4): e3322, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33591602

RESUMO

BACKGROUND: Genetic etiologies of autism spectrum disorders (ASD) are complex, and the genetic factors identified so far are very diverse. In complex genetic diseases such as ASD, de novo or inherited chromosomal abnormalities are valuable findings for researchers with respect to identifying the underlying genetic risk factors. With gene mapping studies on these chromosomal abnormalities, dozens of genes have been associated with ASD and other neurodevelopmental genetic diseases. In the present study, we aimed to idenitfy the causative genetic factors in patients with ASD who have an apparently balanced chromosomal translocation in their karyotypes. METHODS: For mapping the broken genes as a result of chromosomal translocations, we performed whole genome DNA sequencing. Chromosomal breakpoints and large DNA copy number variations (CNV) were determined after genome alignment. Identified CNVs and single nucleotide variations (SNV) were evaluated with VCF-BED intersect and Gemini tools, respectively. A targeted resequencing approach was performed on the JMJD1C gene in all of the ASD cohorts (220 patients). For molecular modeling, we used a homology modeling approach via the SWISS-MODEL. RESULTS: We found that there was no contribution of the broken genes or regulator DNA sequences to ASD, whereas the SNVs on the JMJD1C, CNKSR2 and DDX11 genes were the most convincing genetic risk factors for underlying ASD phenotypes. CONCLUSIONS: Genetic etiologies of ASD should be analyzed comprehensively by taking into account of the all chromosomal structural abnormalities and de novo or inherited CNV/SNVs with all possible inheritance patterns.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Transtorno do Espectro Autista/genética , RNA Helicases DEAD-box/genética , DNA Helicases/genética , Histona Desmetilases com o Domínio Jumonji/genética , Oxirredutases N-Desmetilantes/genética , Translocação Genética/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Transtorno do Espectro Autista/patologia , Aberrações Cromossômicas , Quebra Cromossômica , RNA Helicases DEAD-box/química , Variações do Número de Cópias de DNA/genética , DNA Helicases/química , Feminino , Predisposição Genética para Doença , Genoma Humano/genética , Humanos , Histona Desmetilases com o Domínio Jumonji/química , Masculino , Oxirredutases N-Desmetilantes/química , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Conformação Proteica , Alinhamento de Sequência
6.
Arch Biochem Biophys ; 700: 108766, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33485849

RESUMO

Monolignol oxidoreductases are members of the berberine bridge enzyme-like (BBE-like) protein family (pfam 08031) that oxidize monolignols to the corresponding aldehydes. They are FAD-dependent enzymes that exhibit the para-cresolmethylhydroxylase-topology, also known as vanillyl oxidase-topology. Recently, we have reported the structural and biochemical characterization of two monolignol oxidoreductases from Arabidopsis thaliana, AtBBE13 and AtBBE15. Now, we have conducted a comprehensive site directed mutagenesis study for AtBBE15, to expand our understanding of the catalytic mechanism of this enzyme class. Based on the kinetic properties of active site variants and molecular dynamics simulations, we propose a refined, structure-guided reaction mechanism for the family of monolignol oxidoreductases. Here, we propose that this reaction is facilitated stepwise by the deprotonation of the allylic alcohol and a subsequent hydride transfer from the Cα-atom of the alkoxide to the flavin. We describe an excessive hydrogen bond network that enables the catalytic mechanism of the enzyme. Within this network Tyr479 and Tyr193 act concertedly as active catalytic bases to facilitate the proton abstraction. Lys436 is indirectly involved in the deprotonation as this residue determines the position of Tyr193 via a cation-π interaction. The enzyme forms a hydrophilic cavity to accommodate the alkoxide intermediate and to stabilize the transition state from the alkoxide to the aldehyde. By means of molecular dynamics simulations, we have identified two different and distinct binding modes for the substrate in the alcohol and alkoxide state. The alcohol interacts with Tyr193 and Tyr479 while Arg292, Gln438 and Tyr193 form an alkoxide binding site to accommodate this intermediate. The pH-dependency of the activity of the active site variants revealed that the integrity of the alkoxide binding site is also crucial for the fine tuning of the pKa of Tyr193 and Tyr479. Sequence alignments showed that key residues for the mechanism are highly conserved, indicating that our proposed mechanism is not only relevant for AtBBE15 but for the majority of BBE-like proteins.


Assuntos
Álcoois/química , Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Flavina-Adenina Dinucleotídeo/química , Oxirredutases N-Desmetilantes/química , Álcoois/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Catálise , Cristalografia por Raios X , Flavina-Adenina Dinucleotídeo/genética , Flavina-Adenina Dinucleotídeo/metabolismo , Cinética , Oxirredução , Oxirredutases N-Desmetilantes/genética , Oxirredutases N-Desmetilantes/metabolismo
7.
Int J Cancer ; 146(2): 400-412, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31271662

RESUMO

Histone demethylases are promising therapeutic targets as they play fundamental roles for survival of Mixed lineage leukemia rearranged acute leukemia (MLLr AL). Here we focused on the catalytic Jumonji domain of histone H3 lysine 9 (H3K9) demethylase JMJD1C to screen for potential small molecular modulators from 149,519 natural products and 33,765 Chinese medicine components via virtual screening. JMJD1C Jumonji domain inhibitor 4 (JDI-4) and JDI-12 that share a common structural backbone were detected within the top 15 compounds. Surface plasmon resonance analysis showed that JDI-4 and JDI-12 bind to JMJD1C and its family homolog KDM3B with modest affinity. In vitro demethylation assays showed that JDI-4 can reverse the H3K9 demethylation conferred by KDM3B. In vivo demethylation assays indicated that JDI-4 and JDI-12 could induce the global increase of H3K9 methylation. Cell proliferation and colony formation assays documented that JDI-4 and JDI-12 kill MLLr AL and other malignant hematopoietic cells, but not leukemia cells resistant to JMJD1C depletion or cord blood cells. Furthermore, JDI-16, among multiple compounds structurally akin to JDI-4/JDI-12, exhibits superior killing activities against malignant hematopoietic cells compared to JDI-4/JDI-12. Mechanistically, JDI-16 not only induces apoptosis but also differentiation of MLLr AL cells. RNA sequencing and quantitative PCR showed that JDI-16 induced gene expression associated with cell metabolism; targeted metabolomics revealed that JDI-16 downregulates lactic acids, NADP+ and other metabolites. Moreover, JDI-16 collaborates with all-trans retinoic acid to repress MLLr AML cells. In summary, we identified bona fide JMJD1C inhibitors that induce preferential death of MLLr AL cells.


Assuntos
Antineoplásicos/farmacologia , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Leucemia Aguda Bifenotípica/tratamento farmacológico , Oxirredutases N-Desmetilantes/antagonistas & inibidores , Adulto , Idoso , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Medula Óssea/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desmetilação do DNA/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Feminino , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/química , Histona Desmetilases com o Domínio Jumonji/metabolismo , Leucemia Aguda Bifenotípica/patologia , Masculino , Pessoa de Meia-Idade , Simulação de Acoplamento Molecular , Oxirredutases N-Desmetilantes/química , Oxirredutases N-Desmetilantes/metabolismo , Domínios Proteicos , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície , Tretinoína/farmacologia , Tretinoína/uso terapêutico
8.
J Mol Biol ; 431(19): 3647-3661, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31412262

RESUMO

Caffeine, found in many foods, beverages, and pharmaceuticals, is the most used chemical compound for mental alertness. It is originally a natural product of plants and exists widely in environmental soil. Some bacteria, such as Pseudomonas putida CBB5, utilize caffeine as a sole carbon and nitrogen source by degrading it through sequential N-demethylation catalyzed by five enzymes (NdmA, NdmB, NdmC, NdmD, and NdmE). The environmentally friendly enzymatic reaction products, methylxanthines, are high-value biochemicals that are used in the pharmaceutical and cosmetic industries. However, the structures and biochemical properties of bacterial N-demethylases remain largely unknown. Here, we report the structures of NdmA and NdmB, the initial N1- and N3-specific demethylases, respectively. Reverse-oriented substrate bindings were observed in the substrate-complexed structures, offering methyl position specificity for proper N-demethylation. For efficient sequential degradation of caffeine, these enzymes form a unique heterocomplex with 3:3 stoichiometry, which was confirmed by enzymatic assays, fluorescent labeling, and small-angle x-ray scattering. The binary structure of NdmA with the ferredoxin domain of NdmD, which is the first structural information for the plant-type ferredoxin domain in a complex state, was also determined to better understand electron transport during N-demethylation. These findings broaden our understanding of the caffeine degradation mechanism by bacterial enzymes and will enable their use for industrial applications.


Assuntos
Cafeína/metabolismo , Oxirredutases N-Desmetilantes/química , Oxirredutases N-Desmetilantes/metabolismo , Pseudomonas putida/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Cafeína/química , Cristalografia por Raios X , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Oxirredutases N-Desmetilantes/isolamento & purificação , Domínios Proteicos , Especificidade por Substrato
9.
Blood Adv ; 3(9): 1499-1511, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31076406

RESUMO

JMJD1C, a member of the lysine demethylase 3 family, is aberrantly expressed in mixed lineage leukemia (MLL) gene-rearranged (MLLr) leukemias. We have shown previously that JMJD1C is required for self-renewal of acute myeloid leukemia (AML) leukemia stem cells (LSCs) but not normal hematopoietic stem cells. However, the domains within JMJD1C that promote LSC self-renewal are unknown. Here, we used clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) negative-selection screening and identified a requirement for the catalytic Jumonji (JmjC) domain and zinc finger domain for leukemia cell survival in vitro and in vivo. In addition, we found that histone H3 lysine 36 methylation (H3K36me) is a marker for JMJD1C activity at gene loci. Moreover, we performed single cell transcriptome analysis of mouse leukemia cells harboring a single guide RNA (sgRNA) against the JmjC domain and identified increased activation of RAS/MAPK and the JAK-STAT pathway in cells harboring the JmjC sgRNA. We discovered that upregulation of interleukin 3 (IL-3) receptor genes mediates increased activation of IL-3 signaling upon JMJD1C loss or mutation. Along these lines, we observed resistance to JMJD1C loss in MLLr AML bearing activating RAS mutations, suggesting that RAS pathway activation confers resistance to JMJD1C loss. Overall, we discovered the functional importance of the JMJD1C JmjC domain in AML leukemogenesis and a novel interplay between JMJD1C and the IL-3 signaling pathway as a potential resistance mechanism to targeting JMJD1C catalytic activity.


Assuntos
Histona-Lisina N-Metiltransferase/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Leucemia Mieloide Aguda/patologia , Proteína de Leucina Linfoide-Mieloide/genética , Oxirredutases N-Desmetilantes/metabolismo , Animais , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Edição de Genes , Histonas/metabolismo , Humanos , Interleucina-3/metabolismo , Histona Desmetilases com o Domínio Jumonji/química , Histona Desmetilases com o Domínio Jumonji/genética , Leucemia Mieloide Aguda/genética , Camundongos , Camundongos Endogâmicos C57BL , Oxirredutases N-Desmetilantes/química , Oxirredutases N-Desmetilantes/genética , Domínios Proteicos , RNA Guia de Cinetoplastídeos/metabolismo , Transdução de Sinais , Transplante Heterólogo , Dedos de Zinco/genética
10.
Sci Rep ; 8(1): 13576, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30206249

RESUMO

In this report, we investigate small proteins involved in bacterial alternative respiratory systems that improve the enzymatic efficiency through better anchorage and multimerization of membrane components. Using the small protein TorE of the respiratory TMAO reductase system as a model, we discovered that TorE is part of a subfamily of small proteins that are present in proteobacteria in which they play a similar role for bacterial respiratory systems. We reveal by microscopy that, in Shewanella oneidensis MR1, alternative respiratory systems are evenly distributed in the membrane contrary to what has been described for Escherichia coli. Thus, the better efficiency of the respiratory systems observed in the presence of the small proteins is not due to a specific localization in the membrane, but rather to the formation of membranous complexes formed by TorE homologs with their c-type cytochrome partner protein. By an in vivo approach combining Clear Native electrophoresis and fluorescent translational fusions, we determined the 4:4 stoichiometry of the complexes. In addition, mild solubilization of the cytochrome indicates that the presence of the small protein reinforces its anchoring to the membrane. Therefore, assembly of the complex induced by this small protein improves the efficiency of the respiratory system.


Assuntos
Proteínas de Bactérias/química , Citocromos/química , Regulação Bacteriana da Expressão Gênica , Oxirredutases N-Desmetilantes/química , Oxigênio/metabolismo , Shewanella/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Citocromos/genética , Citocromos/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Modelos Moleculares , Peso Molecular , Oxirredutases N-Desmetilantes/genética , Oxirredutases N-Desmetilantes/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Shewanella/enzimologia , Especificidade da Espécie
11.
Genetics ; 208(2): 633-637, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29247011

RESUMO

The trimethylation of histone H3 at lysine 27 (H3K27me3) by Polycomb Repressive Complex 2 (PRC2) is essential for the repression of Polycomb target genes. However, the role of enzymatic demethylation of H3K27me3 by the KDM6-family demethylases Utx, Uty, and JmjD3 is less clear. Studies in both mice and worms led to the proposal that KDM6 proteins, but not their H3K27me3 demethylase activity, is critical for normal development. Here, we investigated the requirement of the demethylase activity of the single KDM6 family member Utx in Drosophila We generated Drosophila expressing a full-length but catalytically inactive Utx protein and found that these mutants show the same phenotypes as animals lacking the Utx protein. Specifically, animals lacking maternally deposited active Utx demethylase in the early embryo show stochastic loss of HOX gene expression that appears to be propagated in a clonal fashion. This suggests that Utx demethylase activity is critical for the removal of ectopic H3K27 trimethylation from active HOX genes during the onset of zygotic gene transcription, and thereby prevents the inappropriate installment of long-term repression by Polycomb. Conversely, maternally deposited catalytically active Utx protein suffices to permit animals that lack zygotic expression of enzymatically active Utx to develop into morphologically normal adults, which eclose from the pupal case but die shortly thereafter. Utx demethylase activity is therefore also essential to sustain viability in adult flies. Together, these analyses identify the earliest embryonic stages and the adult stage as two phases during the Drosophila life cycle that critically require H3K27me3 demethylase activity.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Oxirredutases N-Desmetilantes/metabolismo , Animais , Sobrevivência Celular/genética , Códon , Proteínas de Drosophila/química , Éxons , Histonas/metabolismo , Metilação , Mutação , Oxirredutases N-Desmetilantes/química , Transgenes
12.
Sci Rep ; 7(1): 15407, 2017 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-29133832

RESUMO

Jumonji C (JmjC) domain-containing proteins have been shown to regulate cellular processes by hydroxylating or demethylating histone and non-histone targets. JMJD8 belongs to the JmjC domain-only family that was recently shown to be involved in angiogenesis and TNF-induced NF-κB signaling. Here, we employed bioinformatic analysis and immunofluorescence microscopy to examine the physiological properties of JMJD8. We demonstrated that JMJD8 localizes to the lumen of endoplasmic reticulum and that JMJD8 forms dimers or oligomers in vivo. Furthermore, we identified potential JMJD8-interacting proteins that are known to regulate protein complex assembly and protein folding. Taken together, this work demonstrates that JMJD8 is the first JmjC domain-containing protein found in the lumen of the endoplasmic reticulum that may function in protein complex assembly and protein folding.


Assuntos
Retículo Endoplasmático/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Oxirredutases N-Desmetilantes/metabolismo , Biologia Computacional , Células HEK293 , Células HeLa , Humanos , Histona Desmetilases com o Domínio Jumonji/química , Oxirredutases N-Desmetilantes/química , Domínios Proteicos , Dobramento de Proteína , Mapeamento de Interação de Proteínas , Multimerização Proteica
13.
Science ; 355(6321): 170-173, 2017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-27940577

RESUMO

The opportunistic pathogen Pseudomonas aeruginosa produces colorful redox-active metabolites called phenazines, which underpin biofilm development, virulence, and clinical outcomes. Although phenazines exist in many forms, the best studied is pyocyanin. Here, we describe pyocyanin demethylase (PodA), a hitherto uncharacterized protein that oxidizes the pyocyanin methyl group to formaldehyde and reduces the pyrazine ring via an unusual tautomerizing demethylation reaction. Treatment with PodA disrupts P. aeruginosa biofilm formation similarly to DNase, suggesting interference with the pyocyanin-dependent release of extracellular DNA into the matrix. PodA-dependent pyocyanin demethylation also restricts established biofilm aggregate populations experiencing anoxic conditions. Together, these results show that modulating extracellular redox-active metabolites can influence the fitness of a biofilm-forming microorganism.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/farmacologia , Biofilmes/efeitos dos fármacos , Mycobacterium fortuitum/enzimologia , Oxirredutases N-Desmetilantes/química , Oxirredutases N-Desmetilantes/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Piocianina/química , Cristalografia por Raios X , DNA/química , Metilação , Oxirredução , Pseudomonas aeruginosa/fisiologia
14.
Nature ; 539(7630): 593-597, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27851736

RESUMO

The universal Per-ARNT-Sim (PAS) domain functions as a signal transduction module involved in sensing diverse stimuli such as small molecules, light, redox state and gases. The highly evolvable PAS scaffold can bind a broad range of ligands, including haem, flavins and metal ions. However, although these ligands can support catalytic activity, to our knowledge no enzymatic PAS domain has been found. Here we report characterization of the first PAS enzyme: a haem-dependent oxidative N-demethylase. Unrelated to other amine oxidases, this enzyme contains haem, flavin mononucleotide, 2Fe-2S and tetrahydrofolic acid cofactors, and specifically catalyses the NADPH-dependent oxidation of dimethylamine. The structure of the α subunit reveals that it is a haem-binding PAS domain, similar in structure to PAS gas sensors. The dimethylamine substrate forms part of a highly polarized oxygen-binding site, and directly assists oxygen activation by acting as both an electron and proton donor. Our data reveal that the ubiquitous PAS domain can make the transition from sensor to enzyme, suggesting that the PAS scaffold can support the development of artificial enzymes.


Assuntos
Oxirredutases N-Desmetilantes/química , Oxirredutases N-Desmetilantes/metabolismo , Pseudomonas mendocina/enzimologia , Sítios de Ligação , Coenzimas/metabolismo , Cristalografia por Raios X , Dimetilaminas/metabolismo , Mononucleotídeo de Flavina/metabolismo , Heme/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Modelos Moleculares , NADP/metabolismo , Oxirredução , Oxigênio/metabolismo , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Tetra-Hidrofolatos/metabolismo
15.
PLoS One ; 11(6): e0156892, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27276217

RESUMO

Berberine bridge enzyme-like (BBE-like) proteins form a multigene family (pfam 08031), which is present in plants, fungi and bacteria. They adopt the vanillyl alcohol-oxidase fold and predominantly show bi-covalent tethering of the FAD cofactor to a cysteine and histidine residue, respectively. The Arabidopsis thaliana genome was recently shown to contain genes coding for 28 BBE-like proteins, while featuring four distinct active site compositions. We determined the structure of a member of the AtBBE-like protein family (termed AtBBE-like 28), which has an active site composition that has not been structurally and biochemically characterized thus far. The most salient and distinguishing features of the active site found in AtBBE-like 28 are a mono-covalent linkage of a histidine to the 8α-position of the flavin-isoalloxazine ring and the lack of a second covalent linkage to the 6-position, owing to the replacement of a cysteine with a histidine. In addition, the structure reveals the interaction of a glutamic acid (Glu426) with an aspartic acid (Asp369) at the active site, which appear to share a proton. This arrangement leads to the delocalization of a negative charge at the active site that may be exploited for catalysis. The structure also indicates a shift of the position of the isoalloxazine ring in comparison to other members of the BBE-like family. The dioxygen surrogate chloride was found near the C(4a) position of the isoalloxazine ring in the oxygen pocket, pointing to a rapid reoxidation of reduced enzyme by dioxygen. A T-DNA insertional mutant line for AtBBE-like 28 results in a phenotype, that is characterized by reduced biomass and lower salt stress tolerance. Multiple sequence analysis showed that the active site composition found in AtBBE-like 28 is only present in the Brassicaceae, suggesting that it plays a specific role in the metabolism of this plant family.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Oxirredutases N-Desmetilantes/química , Tolerância ao Sal/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ácido Aspártico/química , Ácido Aspártico/genética , Domínio Catalítico , Ácido Glutâmico/química , Ácido Glutâmico/genética , Mutagênese , Oxirredutases N-Desmetilantes/genética , Estrutura Secundária de Proteína , Especificidade da Espécie
16.
Genet Med ; 18(4): 378-85, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26181491

RESUMO

PURPOSE: Autism spectrum disorders are associated with defects in social response and communication that often occur in the context of intellectual disability. Rett syndrome is one example in which epilepsy, motor impairment, and motor disturbance may co-occur. Mutations in histone demethylases are known to occur in several of these syndromes. Herein, we aimed to identify whether mutations in the candidate histone demethylase JMJD1C (jumonji domain containing 1C) are implicated in these disorders. METHODS: We performed the mutational and functional analysis of JMJD1C in 215 cases of autism spectrum disorders, intellectual disability, and Rett syndrome without a known genetic defect. RESULTS: We found seven JMJD1C variants that were not present in any control sample (~ 6,000) and caused an amino acid change involving a different functional group. From these, two de novo JMJD1C germline mutations were identified in a case of Rett syndrome and in a patient with intellectual disability. The functional study of the JMJD1C mutant Rett syndrome patient demonstrated that the altered protein had abnormal subcellular localization, diminished activity to demethylate the DNA damage-response protein MDC1, and reduced binding to MECP2. We confirmed that JMJD1C protein is widely expressed in brain regions and that its depletion compromises dendritic activity. CONCLUSIONS: Our findings indicate that mutations in JMJD1C contribute to the development of Rett syndrome and intellectual disability.Genet Med 18 1, 378-385.


Assuntos
Deficiência Intelectual/genética , Histona Desmetilases com o Domínio Jumonji/genética , Mutação , Oxirredutases N-Desmetilantes/genética , Síndrome de Rett/genética , Adulto , Motivos de Aminoácidos , Sequência de Aminoácidos , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/genética , Encéfalo/metabolismo , Encéfalo/patologia , Sequência Conservada , Análise Mutacional de DNA , Feminino , Expressão Gênica , Ordem dos Genes , Estudos de Associação Genética , Loci Gênicos , Humanos , Deficiência Intelectual/diagnóstico , Histona Desmetilases com o Domínio Jumonji/química , Histona Desmetilases com o Domínio Jumonji/metabolismo , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Neurônios/metabolismo , Oxirredutases N-Desmetilantes/química , Oxirredutases N-Desmetilantes/metabolismo , Matrizes de Pontuação de Posição Específica , Conformação Proteica , Transporte Proteico , Síndrome de Rett/diagnóstico
17.
Angew Chem Int Ed Engl ; 54(50): 15051-4, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26487450

RESUMO

N-Dealkylation methods are well described for organic chemistry and the reaction is known in nature and drug metabolism; however, to our knowledge, enantioselective N-dealkylation has not been yet reported. In this study, exclusively the (S)-enantiomers of racemic N-ethyl tertiary amines (1-benzyl-N-ethyl-1,2,3,4-tetrahydroisoquinolines) were dealkylated to give the corresponding secondary (S)-amines in an enantioselective fashion at the expense of molecular oxygen. The reaction is catalyzed by the berberine bridge enzyme, which is known for CC bond formation. The dealkylation was demonstrated on a 100 mg scale and gave optically pure dealkylated products (ee>99 %).


Assuntos
Aminas/metabolismo , Isoquinolinas/metabolismo , Oxirredutases N-Desmetilantes/metabolismo , Alquilação , Aminas/química , Biocatálise , Eschscholzia/enzimologia , Isoquinolinas/química , Conformação Molecular , Oxirredução , Oxirredutases N-Desmetilantes/química , Oxigênio/química , Oxigênio/metabolismo , Estereoisomerismo
18.
J Biol Chem ; 290(30): 18770-81, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26037923

RESUMO

Plant genomes contain a large number of genes encoding for berberine bridge enzyme (BBE)-like enzymes. Despite the widespread occurrence and abundance of this protein family in the plant kingdom, the biochemical function remains largely unexplored. In this study, we have expressed two members of the BBE-like enzyme family from Arabidopsis thaliana in the host organism Komagataella pastoris. The two proteins, termed AtBBE-like 13 and AtBBE-like 15, were purified, and their catalytic properties were determined. In addition, AtBBE-like 15 was crystallized and structurally characterized by x-ray crystallography. Here, we show that the enzymes catalyze the oxidation of aromatic allylic alcohols, such as coumaryl, sinapyl, and coniferyl alcohol, to the corresponding aldehydes and that AtBBE-like 15 adopts the same fold as vanillyl alcohol oxidase as reported previously for berberine bridge enzyme and other FAD-dependent oxidoreductases. Further analysis of the substrate range identified coniferin, the glycosylated storage form of coniferyl alcohol, as a substrate of the enzymes, whereas other glycosylated monolignols were rather poor substrates. A detailed analysis of the motifs present in the active sites of the BBE-like enzymes in A. thaliana suggested that 14 out of 28 members of the family might catalyze similar reactions. Based on these findings, we propose a novel role of BBE-like enzymes in monolignol metabolism that was previously not recognized for this enzyme family.


Assuntos
Proteínas de Arabidopsis/química , Parede Celular/enzimologia , Lignina/metabolismo , Oxirredutases N-Desmetilantes/química , Oxirredutases N-Desmetilantes/metabolismo , Sequência de Aminoácidos , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Catálise , Domínio Catalítico , Cristalografia por Raios X , Cinética , Oxirredução , Oxirredutases N-Desmetilantes/genética , Estrutura Terciária de Proteína , Especificidade por Substrato
19.
FEBS J ; 282(16): 3060-74, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25619330

RESUMO

UNLABELLED: The ability of flavoenzymes to reduce dioxygen varies greatly, and is controlled by the protein environment, which may cause either a rapid reaction (oxidases) or a sluggish reaction (dehydrogenases). Previously, a 'gatekeeper' amino acid residue was identified that controls the reactivity to dioxygen in proteins from the vanillyl alcohol oxidase superfamily of flavoenzymes. We have identified an alternative gatekeeper residue that similarly controls dioxygen reactivity in the grass pollen allergen Phl p 4, a member of this superfamily that has glucose dehydrogenase activity and the highest redox potential measured in a flavoenzyme. A substitution at the alternative gatekeeper site (I153V) transformed the enzyme into an efficient oxidase by increasing dioxygen reactivity by a factor of 60,000. An inverse exchange (V169I) in the structurally related berberine bridge enzyme (BBE) decreased its dioxygen reactivity by a factor of 500. Structural and biochemical characterization of these and additional variants showed that our model enzymes possess a cavity that binds an anion and resembles the 'oxyanion hole' in the proximity of the flavin ring. We showed also that steric control of access to this site is the most important parameter affecting dioxygen reactivity in BBE-like enzymes. Analysis of flavin-dependent oxidases from other superfamilies revealed similar structural features, suggesting that dioxygen reactivity may be governed by a common mechanistic principle. DATABASE: Structural data are available in PDB database under the accession numbers 4PVE, 4PVH, 4PVJ, 4PVK, 4PWB, 4PWC and 4PZF.


Assuntos
Oxigenases/química , Oxigenases/metabolismo , Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Alérgenos/química , Alérgenos/genética , Alérgenos/metabolismo , Regulação Alostérica , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Domínio Catalítico/genética , Cristalografia por Raios X , Flavina-Adenina Dinucleotídeo/metabolismo , Flavinas/metabolismo , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oxirredução , Oxirredutases N-Desmetilantes/química , Oxirredutases N-Desmetilantes/genética , Oxirredutases N-Desmetilantes/metabolismo , Oxigênio/metabolismo , Oxigenases/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poaceae/enzimologia , Poaceae/genética , Poaceae/imunologia , Pólen/enzimologia , Pólen/genética , Pólen/imunologia , Engenharia de Proteínas , Homologia de Sequência de Aminoácidos
20.
J Proteome Res ; 14(1): 95-106, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25350919

RESUMO

Understanding the genes and enzymes involved in caffeine metabolism can lead to applications such as production of methylxanthines and environmental waste remediation. Pseudomonas sp. CES may provide insights into these applications, since this bacterium degrades caffeine and thrives in concentrations of caffeine that are three times higher (9.0 g L(-1)) than the maximum tolerable levels of other reported bacteria. We took a novel approach toward identifying the enzymatic pathways in Pseudomonas sp. CES that metabolize caffeine, which largely circumvented the need for exhaustive isolation of enzymes and the stepwise reconstitution of their activities. Here we describe an optimized, rapid alternative strategy based on multiplexed LC-MS/MS assays and show its application by discovering caffeine-degrading enzymes in the CES strain based on quantitative comparison of proteomes from bacteria grown in the absence and presence of caffeine, the latter condition of which was found to have a highly induced capacity for caffeine degradation. Comparisons were made using stable isotope dimethyl labeling, differences in the abundance of particular proteins were substantiated by reciprocal labeling experiments, and the role of the identified proteins in caffeine degradation was independently verified by genetic sequencing. Overall, multiple new components of a N-demethylase system were identified that resulted in rapid pathway validation and gene isolation using this new approach.


Assuntos
Proteínas de Bactérias/metabolismo , Cafeína/metabolismo , Proteoma/metabolismo , Pseudomonas/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Redes e Vias Metabólicas , Dados de Sequência Molecular , Oxirredutases N-Desmetilantes/química , Oxirredutases N-Desmetilantes/genética , Oxirredutases N-Desmetilantes/metabolismo , Proteoma/química , Proteoma/genética , Pseudomonas/genética , Coloração e Rotulagem , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...