Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 470(3): 704-709, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26774340

RESUMO

Dark-operative protochlorophyllide (Pchlide) oxidoreductase (DPOR) is a nitrogenase-like enzyme catalyzing a reduction of the C17 = C18 double bond of Pchlide to form chlorophyllide a (Chlide) in bacteriochlorophyll biosynthesis. DPOR consists of an ATP-dependent reductase component, L-protein (a BchL dimer), and a catalytic component, NB-protein (a BchN-BchB heterotetramer). The L-protein transfers electrons to the NB-protein to reduce Pchlide, which is coupled with ATP hydrolysis. Here we determined the stoichiometry of ATP hydrolysis and the Chlide formation of DPOR. The minimal ratio of ATP to Chlide (ATP/2e(-)) was 4, which coincides with that of nitrogenase. The ratio increases with increasing molar ratio of L-protein to NB-protein. This profile differs from that of nitrogenase. These results suggest that DPOR has a specific intrinsic property, while retaining the common features shared with nitrogenase.


Assuntos
Trifosfato de Adenosina/química , Clorofilídeos/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Rhodobacter capsulatus/enzimologia , Trifosfato de Adenosina/efeitos da radiação , Clorofilídeos/efeitos da radiação , Hidrólise , Luz , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/efeitos da radiação , Rhodobacter capsulatus/efeitos da radiação
2.
Sci Rep ; 4: 5455, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24965831

RESUMO

Photosynthesis converts solar energy to chemical energy using chlorophylls (Chls). In a late stage of biosynthesis of Chls, dark-operative protochlorophyllide (Pchlide) oxidoreductase (DPOR), a nitrogenase-like enzyme, reduces the C17 = C18 double bond of Pchlide and drastically changes the spectral properties suitable for photosynthesis forming the parental chlorin ring for Chl a. We previously proposed that the spatial arrangement of the proton donors determines the stereospecificity of the Pchlide reduction based on the recently resolved structure of the DPOR catalytic component, NB-protein. However, it was not clear how the two-electron and two-proton transfer events are coordinated in the reaction. In this study, we demonstrate that DPOR initiates a single electron transfer reaction from a [4Fe-4S]-cluster (NB-cluster) to Pchlide, generating Pchlide anion radicals followed by a single proton transfer, and then, further electron/proton transfer steps transform the anion radicals into chlorophyllide (Chlide). Thus, DPOR is a unique iron-sulphur enzyme to form substrate radicals followed by sequential proton- and electron-transfer steps with the protein folding very similar to that of nitrogenase. This novel radical-mediated reaction supports the biosynthesis of Chl in a wide variety of photosynthetic organisms.


Assuntos
Bacterioclorofila A/síntese química , Ferro/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Protoclorifilida/química , Enxofre/química , Bacterioclorofila A/biossíntese , Ativação Enzimática/efeitos da radiação , Radicais Livres , Ferro/efeitos da radiação , Luz , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/efeitos da radiação , Fotossíntese/fisiologia , Fotossíntese/efeitos da radiação , Protoclorifilida/efeitos da radiação , Especificidade por Substrato , Enxofre/efeitos da radiação
3.
Mol Plant ; 2(6): 1289-97, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19843617

RESUMO

Biogenesis of photosynthetic pigment/protein complexes is a highly regulated process that requires various assisting factors. Here, we report on the molecular analysis of the Pitt gene (slr1644) from the cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis 6803) that encodes a membrane-bound tetratricopeptide repeat (TPR) protein of formerly unknown function. Targeted inactivation of Pitt affected photosynthetic performance and light-dependent chlorophyll synthesis. Yeast two-hybrid analyses and native PAGE strongly suggest a complex formation between Pitt and the light-dependent protochlorophyllide oxidoreductase (POR). Consistently, POR levels are approximately threefold reduced in the pitt insertion mutant. The membrane sublocalization of Pitt was found to be dependent on the presence of the periplasmic photosystem II (PSII) biogenesis factor PratA, supporting the idea that Pitt is involved in the early steps of photosynthetic pigment/protein complex formation.


Assuntos
Synechocystis/metabolismo , Sequência de Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/genética , Clorofila/genética , Clorofila/metabolismo , Luz , Dados de Sequência Molecular , Mutagênese Insercional , Oryza/enzimologia , Oryza/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/efeitos da radiação , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Synechocystis/enzimologia , Synechocystis/genética , Tilacoides/genética , Tilacoides/metabolismo
4.
Z Naturforsch C J Biosci ; 64(1-2): 117-24, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19323276

RESUMO

Both light-dependent and light-independent (dark) protochlorophyllide (Pchlide) reductase account for catalyzing the reduction of Pchlide to chlorophyllide during the biosynthesis of Mg-tetrapyrrole pigments in cyanobacteria. To gain more insight into the interaction between the wavelength of the light and these two chlorophyll synthetic pathways in Synechocystis sp. PCC 6803, the spectral effectiveness of the formation of chlorophyll a was investigated during the regreening process in chlL(-) and chlN(-) mutants, which could not synthesize chlorophyll during growth in the dark. The action spectra showed obvious maxima around 450 nm and 650 nm, similar to those of higher plants except that the intensities of two peaks are reversed. The mRNA levels of chlL and chlN and chlorophyll a content under different wavelengths of light in the wild-type strain were also measured. The RT-PCR analysis revealed that the transcripts of chlL and chlN were up-regulated in red light but simultaneously down-regulated in green light which resulted in corresponding changes of the chlorophyll content. This fact indicates that the regulation of dark-operative protochlorophyllide oxidoreductase (DPOR) in the transcriptional level is essential for cyanobacteria to synthesize appropriate chlorophyll for acclimating in various light colour environments.


Assuntos
Clorofila/biossíntese , Cianobactérias/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Clorofila A , Cianobactérias/enzimologia , Cianobactérias/genética , Cianobactérias/efeitos da radiação , Escuridão , Luz , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/deficiência , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/efeitos da radiação , RNA Bacteriano/genética , RNA Bacteriano/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Deleção de Sequência , Espectrofotometria , Synechocystis/genética , Synechocystis/metabolismo
5.
Nature ; 456(7224): 1001-4, 2008 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-19092933

RESUMO

The role of conformational changes in explaining the huge catalytic power of enzymes is currently one of the most challenging questions in biology. Although it is now widely regarded that enzymes modulate reaction rates by means of short- and long-range protein motions, it is almost impossible to distinguish between conformational changes and catalysis. We have solved this problem using the chlorophyll biosynthetic enzyme NADPH:protochlorophyllide (Pchlide) oxidoreductase, which catalyses a unique light-driven reaction involving hydride and proton transfers. Here we report that prior excitation of the enzyme-substrate complex with a laser pulse induces a more favourable conformation of the active site, enabling the coupled hydride and proton transfer reactions to occur. This effect, which is triggered during the Pchlide excited-state lifetime and persists on a long timescale, switches the enzyme into an active state characterized by a high rate and quantum yield of formation of a catalytic intermediate. The corresponding spectral changes in the mid-infrared following the absorption of one photon reveal significant conformational changes in the enzyme, illustrating the importance of flexibility and dynamics in the structure of enzymes for their function.


Assuntos
Luz , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/efeitos da radiação , Synechocystis/enzimologia , Biocatálise/efeitos da radiação , Domínio Catalítico/efeitos da radiação , Modelos Moleculares , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Conformação Proteica/efeitos da radiação , Prótons , Relação Estrutura-Atividade , Fatores de Tempo
6.
Biochem J ; 394(Pt 1): 243-8, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16274361

RESUMO

The enzyme POR [Pchlide (protochlorophyllide) oxidoreductase] catalyses the reduction of Pchlide to chlorophyllide, which is a key step in the chlorophyll biosynthesis pathway. This light-dependent reaction has previously been studied in great detail but recent reports suggest that a mixture of MV (monovinyl) and DV (divinyl) Pchlides may have influenced some of these properties of the reaction. Low-temperature absorbance and fluorescence spectroscopy have revealed several spectral differences between MV and DV Pchlides, which were purified from a Rhodobacter capsulatus strain that was shown to contain a mixture of the two pigments. A thorough steady-state kinetic characterization using both Pchlide forms demonstrates that neither pigment appears to affect the kinetic properties of the enzyme. The reaction has also been monitored following illumination at low temperatures and was shown to consist of an initial photochemical step followed by four 'dark' steps for both pigments. However, minor differences were observed in the spectral properties of some of the intermediates, although the temperature dependency of each step was nearly identical for the two pigments. This work provides the first detailed kinetic and spectroscopic study of this unique enzyme using biologically important MV and DV substrate analogues. It also has significant implications for the DV reductase enzyme, which is responsible for converting DV pigments into their MV counterparts, and its position in the sequence of reactions that comprise the chlorophyll biosynthesis pathway.


Assuntos
Luz , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Protoclorifilida/análogos & derivados , Protoclorifilida/metabolismo , Rhodobacter capsulatus/enzimologia , Clorofila/biossíntese , Cinética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/efeitos da radiação , Protoclorifilida/química , Espectrometria de Fluorescência , Especificidade por Substrato
7.
Plant Biol (Stuttg) ; 6(5): 537-44, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15375724

RESUMO

Light-dependent NADPH-protochlorophyllide oxidoreductase (LPOR) is a nuclear-encoded chloroplast protein in green algae and higher plants which catalyzes the light-dependent reduction of protochlorophyllide to chlorophyllide. Light-dependent chlorophyll biosynthesis occurs in all oxygenic photosynthetic organisms. With the exception of angiosperms, this pathway coexists with a separate light-independent chlorophyll biosynthetic pathway, which is catalyzed by light-independent protochlorophyllide reductase (DPOR) in the dark. In contrast, the light-dependent function of chlorophyll biosynthesis is absent from anoxygenic photosynthetic bacteria. Consequently, the question is whether cyanobacteria are the ancestors of all organisms that conduct light-dependent chlorophyll biosynthesis. If so, how did photosynthetic eukaryotes acquire the homologous genes of LPOR in their nuclear genomes? The large number of complete genome sequences now available allow us to detect the evolutionary history of LPOR genes by conducting a genome-wide sequence comparison and phylogenetic analysis. Here, we show the results of a detailed phylogenetic analysis of LPOR and other functionally related enzymes in the short chain dehydrogenase/reductase (SDR) family. We propose that the LPOR gene originated in the cyanobacterial genome before the divergence of eukaryotic photosynthetic organisms. We postulated that the photosynthetic eukaryotes obtained their LPOR homologues through endosymbiotic gene transfer.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Sequência de Aminoácidos , Archaea/enzimologia , Archaea/genética , Sequência Conservada , Cianobactérias/enzimologia , Cianobactérias/genética , Eucariotos/enzimologia , Eucariotos/genética , Evolução Molecular , Genes Arqueais , Genes Bacterianos , Genes de Plantas , Luz , Dados de Sequência Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/efeitos da radiação , Filogenia , Plantas/enzimologia , Plantas/genética , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...